Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 76
Filter
Add more filters








Publication year range
1.
Spectrochim Acta A Mol Biomol Spectrosc ; 319: 124555, 2024 Oct 15.
Article in English | MEDLINE | ID: mdl-38823242

ABSTRACT

Indoles are notable for their distinct photophysical and photochemical properties, making them useful indicators in biological systems and promising candidates for a variety of pharmaceutical applications. While some indoles exhibit room temperature phosphorescence, such a phenomenon has not been observed in nitroindoles. Typically, adding of a nitro group into aromatic compounds promotes ultrafast intersystem crossing and increases the formation quantum yield of the lowest excited triplet (T1). Therefore, understanding the reactivity of nitroindoles' T1 states is imperative. This study investigated the physical properties and chemical reactivities of the T1 state of 6-nitroindole (3HN-6NO2) in both polar aprotic and protic solvents, using transient absorption spectroscopy. Our results demonstrate the basicity and acidity of 3HN-6NO2, emphasizing its potential for protonation and dissociation in mildly acidic and basic conditions, respectively. Furthermore, 3HN-6NO2 has a high oxidizing capacity, participating in electron transfer reactions and proton-coupled electron transfer to produce radicals. Interestingly, in protic solvents like alcohols, 3HN-6NO2 dissociates at the -NH group and forms N-H…O hydrogen-bonded complexes with the nitro group. By identifying transient absorption spectra of intermediates and quantifying kinetic reaction rate constants, we illuminate the unique properties of the T1 state nitroindoles, enriching our understanding of their photophysical and photochemical behaviors. The results of this study have significant implications for their potential application in both biological systems and materials science.

2.
J Phys Chem A ; 127(47): 10008-10015, 2023 Nov 30.
Article in English | MEDLINE | ID: mdl-37971400

ABSTRACT

Imidazole-2-carboxaldehyde (IC) can be generated in atmospheric waters and absorbs solar radiation in the near UV region to produce its excited triplet state (3IC), which contributes to the formation of a secondary organic aerosol (SOA). The photoreactivity of IC is significantly influenced by its surroundings, such as water and acidic environment, because IC is capable of transforming into gem-diol under above conditions. Meanwhile, the electron configuration of 3IC is critical in elucidating the reaction mechanism of 3IC with other anthropogenic and biogenic volatile organic compounds (VOCs). In this study, steady-state and time-resolved resonance Raman as well as transient absorption spectroscopic experiments were conducted to provide vibrational and kinetic information on IC and 3IC in the presence of water and acid conditions. Using density functional theory (DFT) calculations, the H-bonding at the carbonyl O was confirmed and the hydrated structure of IC and 3IC was determined. 1,4-Cyclohexadiene is a good hydrogen donor, and it has a second-order rate constant of ∼107 M-1 s-1 toward 3IC. The results of CASSCF calculations suggest that the hydrogen abstraction may involve the transition from the ππ* to nπ* triplet state via the surface-crossing point.

3.
Spectrochim Acta A Mol Biomol Spectrosc ; 295: 122623, 2023 Jul 05.
Article in English | MEDLINE | ID: mdl-36963218

ABSTRACT

In this paper, binary and ternary cocrystals in the ternary cocrystal system of isoniazid-nicotinamide-succinic acid were prepared by solvent evaporation and grinding methods. All of them were characterized by terahertz time-domain spectroscopy (THz-TDS), confirming that the cocrystals could be obtained by the above two methods. In addition, to investigate the formation of hydrogen bonds and their influence in cocrystal, several possible forms of hydrogen bond in cocrystal were simulated by density functional theory (DFT). The simulated result was in good agreement with the experimental result, indicating that the hydrogen bonds in cocrystal were the carboxyl groups on both side of succinic acid forming a pyridine N-carboxylic acid heterosynthon with pyridine N of isoniazid or nicotinamide respectively. Meanwhile, the vibrational modes of the cocrystal were analyzed to investigate the effect of hydrogen bond to the molecules. To further understand the formation process of ternary cocrystal in this system, Raman spectroscopy was used to analyze the cocrystal samples with different time of grinding. Process information of cocrystal formation were obtained by analyzing the changes of the characteristic peaks in the corresponding Raman spectra. These results provide a wealth of information and a unique approach to the analysis of both structures and intermolecular interactions shown within ternary cocrystal.

4.
Anal Chim Acta ; 1247: 340899, 2023 Mar 22.
Article in English | MEDLINE | ID: mdl-36781252

ABSTRACT

Multianalyte detection and analogue discrimination are extremely valuable frontier areas for their wide applications in environmental, medical, clinical and industrial analyses. Nowadays, researchers rack their brains on how to develop excellent multianalyte chemosensors that have presented huge challenges in designing high-efficient fluorescent sensing materials and constructing high-throughput detection methods. In this paper, we propose a novel strategy to utilize the dual-emission fluorescent detection platform as a lab-on-a-molecule, arising from the disalicylaldehyde-coordinated hybrid H2Qj3/Tb based terbium sensibilization coupled excited-state intramolecular proton transfer effects. Using the statistical analysis (PCA and HCA) for sensing signals of three fluorescence channels (431, 543 and 583 nm), we demonstrate this elaborate chemosensor with multianalyte detection of three species (solvents, anions and cations) and pattern discrimination of analogues. As a result, the H2Qj3/Tb shows great lab-on-a-molecule characters for each set of species, resulting in the easier identification of many critical analytes (e.g., H2O, NO2- and Fe3+) and discrimination of analogues. In addition, it is also proven to be able to provide reliable content determination for an analyte, especially the NO2- (LOD = 0.37 µM), and discrimination for mixed analogues. A combination of easy-to-implement preparation procedure and data analysis technique makes this work promising for not only designing similar lanthanide-based materials but also realizing more high-efficient multianalyte sensing systems towards various potential applications.

5.
Spectrochim Acta A Mol Biomol Spectrosc ; 286: 121997, 2023 Feb 05.
Article in English | MEDLINE | ID: mdl-36308824

ABSTRACT

Nitro-polycyclic aromatic hydrocarbons (nitro-PAHs), often found in polluted air, are carcinogenic and mutagenic. The nitro group increases the spin-orbit coupling and results in the lowest excited triplet (T1) on the picosecond time scale with a high yield. The electron-donating substituents have a significant influence on the photophysics and photochemistry of nitro-PAHs. We used transient absorption spectroscopy and kinetic analysis to investigate the reactivities of the T1 state 1-methoxy-4-nitronaphthalene (3MeO-NN) and 1-methyl-4-nitronaphthalene (3Me-NN). The results show that the methoxy and methyl substitutions have a minor effect on their hydrogen abstraction and electron accepting abilities. The main distinction is their reaction rates towards protons. The second order rate constant of 3MeO-NN towards protons is three orders of magnitude greater than that of 3Me-NN, indicating that 3MeO-NN has a stronger hydrogen bond accepting ability. The kinetic analysis reveals that the dimer of 2,2,2-trifluoroethanol participates in the reaction with 3MeO-NN. These results suggest that the formation of the hydrogen-bonded complex is responsible for the unusually short lifetime of 3MeO-NN in methanol solution and the lack of hydrogen abstraction radicals during the decay of 3MeO-NN in methanol.


Subject(s)
Electrons , Polycyclic Aromatic Hydrocarbons , Kinetics , Protons , Methanol , Polycyclic Aromatic Hydrocarbons/chemistry
6.
Biomacromolecules ; 24(1): 344-357, 2023 01 09.
Article in English | MEDLINE | ID: mdl-36563170

ABSTRACT

Although the supramolecular helical structures of biomacromolecules have been studied, the examples of supramolecular systems that are assembled using coils to form helical polymer chains are still limited. Inspired by enhanced helical chirality at the supramolecular level in metal coordination-induced protein folding, a series of alanine-based coil copolymers (poly-(l-co-d)-ala-NH2) carrying (l)- and (d)-alanine pendants were synthesized as a fresh research model to study the cooperative processes between homochirality property and metal coordination. The complexes of poly-(l-co-d)-ala-NH2 and metal ions underwent a coil-to-helix transition and exhibited remarkable nonlinear effects based on the enantiomeric excess of the monomer unit in the copolymers, affording enhanced helical chirality compared to poly-(l-co-d)-ala-NH2. More importantly, the synergistic effect of amplification of asymmetry and metal coordination triggered the formation of a helical molecular orbital on the polymer backbone via the coordination with the d orbital of copper ions. Thus, the helical chirality enhancement degree of poly-(l-co-d)-ala-NH2/Cu2+ complexes (31.4) is approximately 3 times higher than that of poly-(l-co-d)-ala-NH2/Ag+ complexes (9.8). This study not only provides important mechanistic insights into the enhancement of helical chirality for self-assembly but also establishes a new strategy for studying the homochiral amplification of asymmetry in biological supramolecular systems.


Subject(s)
Alanine , Metals , Metals/chemistry , Macromolecular Substances , Alanine/chemistry , Polymers/chemistry , Ions , Protein Folding
7.
Phys Chem Chem Phys ; 25(1): 402-409, 2022 Dec 21.
Article in English | MEDLINE | ID: mdl-36477748

ABSTRACT

8-Hydroxy-5-nitroquinoline (NO2-QN-OH) is an antimicrobial, anti-inflammatory and anticancer agent, and has been approved for use in the treatment of diseases. Its photosensitivity, however, cannot be overlooked. The photochemistry of 8-hydroxy-5-nitroquinoline in acetonitrile is investigated using transient absorption and time-resolved resonance Raman spectroscopies. By identifying the short-lived intermediates during the photoreaction, it is clear that the Tn state NO2-QN-OH is generated in 0.8 ps via an ultrafast ISC, followed by the IC in 8.5 ps to produce the T1 state. In neat acetonitrile, the T1 state NO2-QN-OH undergoes intramolecular proton transfer and tautomerizes to form T1 state NO2-QNH-O. To our knowledge, this is the first time that the intramolecular excited state proton transfer of hydroxyl-quinolines in an aprotic polar solvent is observed.


Subject(s)
Nitrogen Dioxide , Protons , Spectrum Analysis, Raman , Solvents/chemistry
8.
Phys Chem Chem Phys ; 24(34): 20517-20529, 2022 Aug 31.
Article in English | MEDLINE | ID: mdl-35993921

ABSTRACT

The excited-state decay (ESD) and proton transfer (EPT) of p-nitrophenylphenol (NO2-Bp-OH), especially in the triplet states, were not characterized with high-level theoretical methods to date. Herein, the MS-CASPT2//CASSCF and QM(MS-CASPT2//CASSCF)/MM methods were employed to gain an atomic-level understanding of the ESD and EPT of NO2-Bp-OH in the gas phase and its hydrogen-bonded complex in methanol. Our calculation results revealed that the S1 and S2 states of NO2-Bp-OH are of 1ππ* and 1nπ* characters at the Franck-Condon (FC) point, which correspond to the ICT-EPT and intramolecular charge-transfer (ICT) states in spectroscopic experiments. The former state has a charge-transfer property that could facilitate the EPT reaction, while the latter one might be unfavorable for EPT. The vertical excitation energies of these states are almost degenerate at the FC region and the electronic configurations of 1ππ* and 1nπ* will exchange from the S1 FC region to the S1 minimum, which means that the 1nπ* state will participate in ESD once NO2-Bp-OH departs from the S1 FC region. Besides, we found that three triplets lie below the first bright state and will play very important roles in intersystem crossing processes. In terms of several pivotal surface crossings and relevant linearly interpolated internal coordinate (LIIC) paths, three feasible but competing ESD channels that could effectively lead the system to the ground state or the lowest triplet state were put forward. Once arrived at the T1 state, the system has enough time and internal energy to undergo the EPT reaction. The methanol solvent has a certain effect on the relative energies and spin-orbit couplings, but does not qualitatively change the ESD processes of NO2-Bp-OH. By contrast, the solvent effects will remarkably stabilize the proton-transferred product by the hydrogen bond networks and assist to form the triplet anion. Our present work would pave the road to properly understand the mechanistic photochemistry of similar hydroxyaromatic compounds.

9.
Int J Mol Sci ; 23(15)2022 Aug 01.
Article in English | MEDLINE | ID: mdl-35955684

ABSTRACT

Pharmaceutical cocrystals can offer another advanced strategy for drug preparation and development and can facilitate improvements to the physicochemical properties of active pharmaceutical ingredients (APIs) without altering their chemical structures and corresponding pharmacological activities. Therefore, cocrystals show a great deal of potential in the development and research of drugs. In this work, pharmaceutical cocrystals of ethenzamide (ETZ) with 2,6-dihydroxybenzoic acid (26DHBA), 2,4-dihydroxybenzoic acid (24DHBA) and gallic acid (GA) were synthesized by the solvent evaporation method. In order to gain a deeper understanding of the structural changes after ETZ cocrystallization, terahertz time domain spectroscopy (THz-TDS) and Raman spectroscopy were used to characterize the single starting samples, corresponding physical mixtures and the cocrystals. In addition, the possible molecular structures of ETZ-GA, ETZ-26DHBA and ETZ-24DHBA cocrystals were optimized by density functional theory (DFT). The results of THz and Raman spectra with the DFT simulations for the three cocrystals revealed that the ETZ-GA cocrystal formed an O-H∙∙∙O hydrogen bond between the -OH of GA and oxygen of the amide group of the ETZ molecule, and it was also found that ETZ formed a dimer through a supramolecular amide-amide homosynthon; meanwhile, the ETZ-26DHBA cocrystal was formed by a powerful supramolecular acid-amide heterosynthon, and the ETZ-24DHBA cocrystal formed the O-H∙∙∙O hydrogen bond between the 4-hydroxy group of 24DHBA and oxygen of the amide group of the ETZ molecule. It could be seen that in the molecular structure analysis of the three cocrystals, the position and number of hydroxyl groups in the coformers play an essential role in guiding the formation of specific supramolecular synthons.


Subject(s)
Amides , Oxygen , Crystallization , Density Functional Theory , Molecular Structure , Pharmaceutical Preparations , Salicylamides
10.
Phys Chem Chem Phys ; 24(30): 18427-18434, 2022 Aug 03.
Article in English | MEDLINE | ID: mdl-35881619

ABSTRACT

Hydroxyaromatic compounds (ArOHs) have a wide range of applications in catalytic synthesis and biological processes due to their increased acidity upon photo-excitation. The proton transfer of ArOHs via the excited singlet state has been extensively studied. However, there has still been a debate on the unique type of ArOH that can undergo an ultrafast intersystem crossing. The nitro group in p-nitrophenylphenol (NO2-Bp-OH) enhances the spin-orbit coupling between excited singlet states and the triplet manifold, enabling ultrafast intersystem crossing and the formation of the long-lived lowest excited triplet state (T1) with a high yield. In this work, we used time-resolved transient absorption to investigate the excited state proton transfer of NO2-Bp-OH in its T1 state to t-butylamine, methanol, and ethanol. The T1 state of the deprotonated form NO2-Bp-O- was first observed and identified in the case of t-butylamine. Kinetic analysis demonstrates that the formation of the hydrogen-bonded complex with methanol and ethanol as proton acceptors involves their trimers. The alcohol oligomer size required in the excited state proton transfer process is dependent on the excited acidity of photoacid.


Subject(s)
Amines , Protons , Amines/chemistry , Butylamines , Ethanol , Kinetics , Methanol , Nitrogen Dioxide
11.
Spectrochim Acta A Mol Biomol Spectrosc ; 281: 121593, 2022 Nov 15.
Article in English | MEDLINE | ID: mdl-35839693

ABSTRACT

The vibration band of the ring stretching (ν14), the fundamental ring breathing (ν17) and the Fermi resonance band of carbonyl stretching mixing with the overtone of the ring breathing (ν5 + 2ν17) have been investigated in solid ethylene carbonate (EC) and EC/CH3CN and EC/CHCl3 binary mixture. Dimer structure with aggregation-induced spectral splitting model (AIS) was applied to calculate the vibration spectra using the B3LYP-D3/6-311+G (d,p) procedure. The noncoincidence effect (NCE) and concentration induced frequency shifts of the ν14 and ν5 could be well explained by AIS model based on the dimer structure. Four bands were observed with two in the isotropic and two in the anisotropic Raman spectra and their NCE value decreased with the decrease of EC volume fraction in the binary mixture, and finally disappeared. NCE value and the Fermi resonance constants of EC at different concentrations were calculated from the experimental data.


Subject(s)
Dioxolanes , Vibration , Spectrum Analysis, Raman/methods
12.
Pharmaceutics ; 13(8)2021 Aug 20.
Article in English | MEDLINE | ID: mdl-34452267

ABSTRACT

Pharmaceutical cocrystal provides an alternative modification strategy for the formulation development of drugs owning to their potential ability to improve the physicochemical properties of active pharmaceutical ingredients (APIs) efficiently by changing inter-molecular interactions between raw materials. Isoniazid (INH) is an indispensable main drug for the treatment of tuberculosis, but its tablet formulation is unstable and prone to degradation. In the present study, the monohydrate cocrystal of INH and protocatechuic acid (PA) was prepared by solvent evaporation using PA as cocrystal former to optimize the properties of INH. The parent materials and corresponding 1:1 molar ratio INH-PA monohydrate cocrystal have been characterized by the terahertz time-domain (THz-TDS) and Raman spectroscopy. The THz absorption spectra displayed that there were obvious differences between the peaks of experimental cocrystal and the parent materials, and the same situation was found in Raman vibrational spectra. In addition, density functional theory (DFT) was applied to simulating and optimizing the structure of INH-PA monohydrate cocrystal and supplied corresponding vibrational modes. Our results provided a unique method to characterize the formation of INH-PA monohydrate cocrystal at the molecular-level and a lot of information about cocrystal structure and intra-molecular and/or inter-molecular hydrogen bond interactions in the emerging pharmaceutical cocrystal fields.

13.
Angew Chem Int Ed Engl ; 60(38): 20695-20699, 2021 09 13.
Article in English | MEDLINE | ID: mdl-34288332

ABSTRACT

Due to the high risk of heart disease caused by the intake of trans fatty acids, a method to eliminate trans fatty acids from foods has become a critical issue. Herein, we engineered fatty acid photo-decarboxylase from Chlorella variabilis (CvFAP) to selectively catalyze the decarboxylation of trans fatty acids to yield readily-removed hydrocarbons and carbon dioxide, while cis fatty acids remained unchanged. An efficient protein engineering based on FRISM strategy was implemented to intensify the electronic interaction between the residues and the double bond of the substrate that stabilized the binding of elaidic acid in the channel. For the model compounds, oleic acid and elaidic acid, the best mutant, V453E, showed a one-thousand-fold improvement in the trans-over-cis (ToC) selectivity compared with wild type (WT). As the first report of the direct biocatalytic decarboxylation resolution of trans/cis fatty acids, this work offers a safe, facile, and eco-friendly process to eliminate trans fatty acids from edible oils.


Subject(s)
Carboxy-Lyases/metabolism , Fatty Acids/metabolism , Protein Engineering , Carboxy-Lyases/chemistry , Chlorella/enzymology , Decarboxylation , Fatty Acids/chemistry , Models, Molecular , Molecular Structure
14.
Spectrochim Acta A Mol Biomol Spectrosc ; 258: 119762, 2021 Sep 05.
Article in English | MEDLINE | ID: mdl-33930854

ABSTRACT

Photophysical and photochemical reactions of microsolvation clusters are attracting an increasing attention due to their wide applications in materials science and biology. In this paper, 1, 2, 4-triazole-3-thione (3TT) is investigated in solid, protic, and aprotic solvents using FT-Raman, resonance Raman and electronic absorption spectroscopic experiments. The structures of microsolvation clusters in solvents were confirmed by 488 nm Raman spectroscopy combining with density functional theory (DFT) calculation. Steady-state absorption and resonance Raman spectra of 3TT in different environments indicate that the intermolecular hydrogen bonding may reveal important insights in the photophysical and photochemical process. With the aid of DFT and time-dependent density functional theory (TDDFT) calculations, we assigned the observed Raman spectra to the microsolvation clusters in acetonitrile, water and methanol, and carried out preliminary investigations on spectrum shifts of UV and Raman spectra due to the hydrogen bonding with the solvent molecules. The intermolecular >NH···O and >=S···H hydrogen bonding interactions, which are the key constituents of stable thione structure of 3TT, revealed the obvious spectrum shifts of 3TT, including Raman and absorption shifts in CH3CN, CH3OH and H2O. The hydrogen bond sites were further confirmed to be located on the functional group SCNH of 3TT with CH3CN, H2O and CH3OH.

15.
Spectrochim Acta A Mol Biomol Spectrosc ; 255: 119651, 2021 Jul 05.
Article in English | MEDLINE | ID: mdl-33765534

ABSTRACT

The vibrational frequency shift in the C=O stretch mode of 2-thiophenecarboxaldehyde (2TC) in the condensed phase is still not fully understood. In this paper, the vibrational spectra of 2TC were investigated using the FT-Raman, FT-IR and resonance Raman spectroscopies in conjunction with the density functional theory calculation. The pure compound (in the neat liquid) exhibits three vibrational bands 1658, 1672 and 1687 cm-1 in the νC=O spectral region. It differs from the band pair 1672 and 1682 cm-1 for 2-cyclohexene-1-one (CHO) and the single band 1700 cm-1 for benzaldehyde. The relative intensities of observed bands vary with the polarity of aprotic solvents and the compound's concentration. In a diluted solution, the strongest band in the resonance Raman spectra of 2TC appears the C=O stretch mode at 1690 cm-1 in cyclohexane and 1674/1675 cm-1 in acetonitrile. The imparting factors that shift the C=O stretch mode frequency in the neat liquid and solvents with different polarities were examined. The spectral sources of the vibrational bands at 1658 and 1672 cm-1 in the neat liquid and a dilute solution were determined, and the resonance Raman spectra were assigned. It is concluded that tetramers and monomer are the major sources of the bands at 1658 and 1672 cm-1 in the neat liquid, respectively, while the monomer is the main source of the bands at 1674/1675 cm-1 in acetonitrile and the band at 1690 cm-1 in cyclohexane with a dilute concentration. The band's source at 1662/1663 cm-1 in acetonitrile (a dilute concentration) can be either the dimers or 2TC-CH3CN clusters. The C=O bond's electronic charge density is the main factor that shifts the vibrational frequency of the C=O stretch mode of 2TC monomer when an aprotic solvent is used. The larger the polarity of an aprotic solvent, the more negative the electronic charge-density of the C=O bond for the monomer, the lower the frequency of the C=O stretch mode.

16.
Spectrochim Acta A Mol Biomol Spectrosc ; 245: 118885, 2021 Jan 15.
Article in English | MEDLINE | ID: mdl-32920445

ABSTRACT

Ternary co-crystal, as a novel co-crystal design strategy developed on the basis of binary co-crystal, could be used to improve the physicochemical properties of active pharmaceutical ingredients (APIs) efficiently. However, it is difficult to obtain specific ternary co-crystals since such ternary one involves complex assembly of three different molecules. There are few reports on the micro-molecular structure respect of specific ternary co-crystal systems. In present work, 1:1:1 ternary co-crystal between acetazolamide (ACZ), nicotinamide (NAM) and 2-pyridone (2HP) has been synthesized successfully by mechanical grinding approach, and their structures are investigated by terahertz time-domain spectroscopy (THz-TDS) and Raman spectroscopy combined with theoretical calculation at the molecular level. The experimental THz spectral results showed that ACZ-NAM-2HP ternary co-crystal and the starting parent materials exhibited a few distinct spectral features in frequency-domain absorption spectra. Likewise, the Raman spectral result also shows some difference between the co-crystal and starting raw materials. Through density functional theory (DFT) calculations, the theoretical THz/Raman spectra and vibrational modes of two kind of possible ternary co-crystal theoretical forms (form I and II) between ACZ, NAM and 2HP were obtained. By comparing experimental and theoretical spectral results, the most suitable structure and vibrational modes of ACZ-NAM-2HP ternary co-crystal were determined. These results provide a wealth of information and unique method for studying molecular assembly and also inter-molecular interactions in specific ternary co-crystals at the molecular level in the emerging pharmaceutical co-crystal fields.

17.
Phys Chem Chem Phys ; 22(29): 16772-16782, 2020 Aug 07.
Article in English | MEDLINE | ID: mdl-32662496

ABSTRACT

The photophysical and photochemical mechanisms of 2-nitrofluorene (2-NF) in the gas phase and acetonitrile solution have been studied theoretically. Upon ∼330 nm irradiation to the first bright state (1ππ*), the 2-NF system can decay to triplet excited states via rapid intersystem crossing (ISC) processes through different surface crossing points or to the ground state via an ultrafast internal conversion (IC) process through the S1/S0 conical intersection. The 1nπ* dark state will serve as a bridge when the system leaves the Franck-Condon (FC) region and approaches to the S1 minimum. The molecule maintains a planar geometry during the excited-state relaxation processes. The differences on excitation properties such as electronic configurations and spin-orbit coupling (SOC) interactions between those in the gas phase and acetonitrile solution cannot be neglected, indicating possible changes on the efficiency of the related ISC processes for the 2-NF system in solution. Once arrived at the T1 state, it would further decay to the S0 state or photodegrade into the Ar-O˙ and NO˙ free radicals. During the intramolecular rearrangement process, the twisting of the nitro group out of the aromatic-ring plane is regarded as a critical structural variation for the photodegradation of the 2-NF system. The free radicals finally form through oxaziridine-type intermediate and transition state structures. The present work provides important mechanistic insights to the photochemistry of nitro-substituted polyaromatic compounds.

18.
ACS Omega ; 5(28): 17266-17274, 2020 Jul 21.
Article in English | MEDLINE | ID: mdl-32715212

ABSTRACT

To improve the efficacy of anti-tuberculosis (anti-TB) therapy, drug-drug co-crystallization stands for an alternative approach to settle the tuberculosis problem. Directly co-crystallizing two typical parent anti-TB drugs (pyrazinamide, PZA and isoniazid, INH) into a single binary co-crystal could not be obtained successfully. Multicomponent eutectic are highly effective and useful for enhancing the dissolution rate, bioavailability, and physical stability of the poorly water-soluble active pharmaceutical ingredient (API) drugs, when the attempts of forming a binary co-crystal have failed. Therefore, the ternary eutectic composition conception was proposed in this study, in which fumaric acid (FA) was chosen as the molecule to connect two first-line anti-tubercular drugs. First of all, three starting materials (including PZA, INH, and FA) were grinded at a 1:1:1 molar ratio, the eutectic composition was investigated through vibrational spectroscopic techniques, including terahertz time-domain spectroscopy (THz-TDS) and Raman spectroscopy. Additionally, the density functional theory (DFT) was utilized to simulate the optimized structures and vibrational modes of two possible theoretical eutectic composition forms. The THz absorption spectrum of the theoretical form I shows much more consistency with the experimental results than that of form II. Raman spectra also help to characterize the differences in vibrational modes between the eutectic composition and the starting parent compounds. The results provide us with both structural information and intermolecular hydrogen bonding interactions within specific multicomponent eutectic composition formulations based on Raman and terahertz vibrational spectroscopic techniques in combination with theoretical calculations.

19.
Analyst ; 145(17): 5826-5835, 2020 Aug 24.
Article in English | MEDLINE | ID: mdl-32648860

ABSTRACT

The development of inexpensive, selective and rapid-response chemosensors for detecting Cs+ in waste water is highly desirable in the nuclear power industry. Here we demonstrate an efficient Cs+ optical sensor based on the N-linked disalicylaldehyde H2Qj with excited state intramolecular proton transfer (ESIPT), and it will transform into the ligand-to-metal charge transfer (LMCT) process in the presence of Cs+, resulting in dramatically enhanced fluorescence together with a distinct change of color from light-green to green-yellow. Simultaneously, it is found that CH2Cl2 can serve as the quencher of LMCT-enhanced fluorescence, thus enabling selective CH2Cl2 detection in a turn-off fluorescence approach. Further detailed studies reveal that both Cs+ and CH2Cl2 sensing processes are rapid within 60 seconds. The corresponding limit of detection (LOD) values for sensing Cs+ and CH2Cl2 are as low as 0.37 mM and 0.37%. Moreover, it was also verified that Cs+ sensing is applicable in the range of pH = 7-11 and the reversibility of sensor H2Qj can be easily achieved by modulating pH values, and H2Qj is also assessed for its Cs+ sensing performces in real water samples. This H2Qj-Cs sensing system must provide a valuable reference for further Cs+ sensors.

20.
Curr Pharm Des ; 26(38): 4829-4846, 2020.
Article in English | MEDLINE | ID: mdl-32445442

ABSTRACT

Cocrystallization of specific active pharmaceutical ingredients (APIs) in the solid-state phase is becoming a feasible way to improve their corresponding physicochemical properties and ultimate bioavailability without making and breaking any covalent bonds within them. Many recent reports deal with the characterization and analysis topics of pharmaceutical APIs-based cocrystals. In this mini-review, we will focus on the recent steady-state and time-dependent spectroscopic investigation into the cocrystallization of specific APIs based on both Raman and emerging terahertz spectroscopy in pharmaceutical fields. Distinctive spectral, structural and also kinetic information of pharmaceutical APIs-based cocrystals are obtained and discussed, which would highlight the potential of vibrational spectroscopy as an attractive technique for various drug research and development during cocrystallization of specific APIs.


Subject(s)
Pharmaceutical Preparations , Terahertz Spectroscopy , Crystallization , Humans , Spectrum Analysis, Raman , Vibration
SELECTION OF CITATIONS
SEARCH DETAIL