Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 119
Filter
1.
Water Res ; 262: 122113, 2024 Jul 19.
Article in English | MEDLINE | ID: mdl-39032335

ABSTRACT

Mangrove aquatic ecosystems receive substantial nitrogen (N) inputs from both land and sea, playing critical roles in modulating coastal N fluxes. The microbially-mediated competition between denitrification and dissimilatory nitrate reduction to ammonium (DNRA) in mangrove sediments significantly impacts the N fate and transformation processes. Despite their recognized role in N loss or retention in surface sediments, how these two processes vary with sediment depths and their influential factors remain elusive. Here, we employed a comprehensive approach combining 15N isotope tracer, quantitative PCR (qPCR) and metagenomics to verify the vertical dynamics of denitrification and DNRA across five 100-cm mangrove sediment cores. Our results revealed a clear vertical partitioning, with denitrification dominated in 0-30 cm sediments, while DNRA played a greater role with increasing depths. Quantification of denitrification and DNRA functional genes further explained this phenomenon. Taxonomic analysis identified Pseudomonadota as the primary denitrification group, while Planctomycetota and Pseudomonadota exhibited high proportion in DNRA group. Furthermore, genome-resolved metagenomics revealed multiple salt-tolerance strategies and aromatic compound utilization potential in denitrification assemblages. This allowed denitrification to dominate in oxygen-fluctuating and higher-salinity surface sediments. However, the elevated C/N in anaerobic deep sediments favored DNRA, tending to generate biologically available NH4+. Together, our results uncover the depth-related variations in the microbially-mediated competition between denitrification and DNRA, regulating N dynamics in mangrove ecosystems.

2.
Sci Total Environ ; 944: 173961, 2024 Sep 20.
Article in English | MEDLINE | ID: mdl-38876338

ABSTRACT

The sulfur (S) cycle is an important biogeochemical cycle with profound implications for both cellular- and ecosystem-level processes by diverse microorganisms. Mangrove sediments are a hotspot of biogeochemical cycling, especially for the S cycle with high concentrations of S compounds. Previous studies have mainly focused on some specific inorganic S cycling processes without paying specific attention to the overall S-cycling communities and processes as well as organic S metabolism. In this study, we comprehensively analyzed the distribution, ecological network and assembly mechanisms of S cycling microbial communities and their changes with sediment depths using metagenome sequencing data. The results showed that the abundance of gene families involved in sulfur oxidation, assimilatory sulfate reduction, and dimethylsulfoniopropionate (DMSP) cleavage and demethylation decreased with sediment depths, while those involved in S reduction and dimethyl sulfide (DMS) transformation showed an opposite trend. Specifically, glpE, responsible for converting S2O32- to SO32-, showed the highest abundance in the surface sediment and decreased with sediment depths; in contrast, high abundances of dmsA, responsible for converting dimethyl sulfoxide (DMSO) to DMS, were identified and increased with sediment depths. We identified Pseudomonas and Streptomyces as the main S-cycling microorganisms, while Thermococcus could play an import role in microbial network connections in the S-cycling microbial community. Our statistical analysis showed that both taxonomical and functional compositions were generally shaped by stochastic processes, while the functional composition of organic S metabolism showed a transition from stochastic to deterministic processes. This study provides a novel perspective of diversity distribution of S-cycling functions and taxa as well as their potential assembly mechanisms, which has important implications for maintaining mangrove ecosystem functions.


Subject(s)
Geologic Sediments , Microbiota , Sulfur , Wetlands , Geologic Sediments/microbiology , Geologic Sediments/chemistry , Sulfur/metabolism , Bacteria/metabolism , Bacteria/classification , Bacteria/genetics
3.
Environ Res ; 257: 119272, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-38823613

ABSTRACT

Community coalescence related to bacterial mixing events regulates community characteristics and affects the health of estuary ecosystems. At present, bacterial coalescence and its driving factors are still unclear. The present study used a dataset from the Chesapeake Bay (2017) to address how bacterial community coalescence in response to variable hydrochemistry in estuarine ecosystems. We determined that variable hydrochemistry promoted the deterioration of water quality. Temperature, orthophosphate, dissolved oxygen, chlorophyll a, Secchi disk depth, and dissolved organic phosphorus were the key environmental factors driving community coalescence. Bacteria with high tolerance to environmental change were the primary taxa accumulated in community coalescence, and the significance of deterministic processes to communities was revealed. Community coalescence was significantly correlated with the pathways of metabolism and organismal systems, and promoted the co-occurrence of antibiotic resistance and virulence factor genes. Briefly, community coalescence under variable hydrochemical conditions shaped bacterial diversity and functional traits, to optimise strategies for energy acquisition and lay the foundation for alleviating environmental pressures. However, potential pathogenic bacteria in community coalescence may be harmful to human health and environmental safety. The present study provides a scientific reference for ecological management of estuaries.


Subject(s)
Bacteria , Bays , Bays/microbiology , Bacteria/genetics , Microbiota/drug effects , Biodiversity , Water Quality , Estuaries
4.
J Hazard Mater ; 476: 134958, 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-38905974

ABSTRACT

As emerging pollutants, microplastics have become pervasive on a global scale, inflicting significant harm upon ecosystems. However, the impact of these microplastics on the symbiotic relationship between protists and bacteria remains poorly understood. In this study, we investigated the mechanisms through which nano- and microplastics of varying sizes and concentrations influence the amoeba-bacterial symbiotic system. The findings reveal that nano- and microplastics exert deleterious effects on the adaptability of the amoeba host, with the magnitude of these effects contingent upon particle size and concentration. Furthermore, nano- and microplastics disrupt the initial equilibrium in the symbiotic relationship between amoeba and bacteria, with nano-plastics demonstrating a reduced ability to colonize symbiotic bacteria within the amoeba host when compared to their microplastic counterparts. Moreover, nano- and microplastics enhance the relative abundance of antibiotic resistance genes and heavy metal resistance genes in the bacteria residing within the amoeba host, which undoubtedly increases the potential transmission risk of both human pathogens and resistance genes within the environment. In sum, the results presented herein provide a novel perspective and theoretical foundation for the study of interactions between microplastics and microbial symbiotic systems, along with the establishment of risk assessment systems for ecological environments and human health.


Subject(s)
Bacteria , Drug Resistance, Microbial , Microplastics , Microplastics/toxicity , Bacteria/drug effects , Bacteria/genetics , Drug Resistance, Microbial/genetics , Symbiosis , Nanoparticles/toxicity , Nanoparticles/chemistry , Amoeba/drug effects , Genes, Bacterial , Water Pollutants, Chemical/toxicity , Drug Resistance, Bacterial/genetics , Metals, Heavy/toxicity
5.
J Hazard Mater ; 476: 134975, 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-38908177

ABSTRACT

Phosphate-solubilizing bacteria (PSB) are important but often overlooked regulators of uranium (U) cycling in soil. However, the impact of PSB on uranate fixation coupled with the decomposition of recalcitrant phosphorus (P) in mining land remains poorly understood. Here, we combined gene amplicon sequencing, metagenome and metatranscriptome sequencing analysis and strain isolation to explore the effects of PSB on the stabilization of uranate and P availability in U mining areas. We found that the content of available phosphorus (AP), carbonate-U and Fe-Mn-U oxides in tailings was significantly (P < 0.05) higher than their adjacent soils. Also, organic phosphate mineralizing (PhoD) bacteria (e.g., Streptomyces) and inorganic phosphate solubilizing (gcd) bacteria (e.g., Rhodococcus) were enriched in tailings and soils, but only organic phosphate mineralizing-bacteria substantially contributed to the AP. Notably, most genes involved in organophosphorus mineralization and uranate resistance were widely present in tailings rather than soil. Comparative genomics analyses supported that organophosphorus mineralizing-Streptomyces species could increase soil AP content and immobilize U(VI) through organophosphorus mineralization (e.g., PhoD, ugpBAEC) and U resistance related genes (e.g., petA). We further demonstrated that the isolated Streptomyces sp. PSBY1 could enhance the U(VI) immobilization mediated by the NADH-dependent ubiquinol-cytochrome c reductase (petA) through decomposing organophosphorous compounds. This study advances our understanding of the roles of PSB in regulating the fixation of uranate and P availability in U tailings.


Subject(s)
Mining , Phosphorus , Streptomyces , Uranium , Phosphorus/metabolism , Phosphorus/chemistry , Uranium/metabolism , Streptomyces/metabolism , Streptomyces/genetics , Soil Microbiology , Soil Pollutants, Radioactive/metabolism , Organophosphorus Compounds/metabolism , Organophosphorus Compounds/chemistry
6.
Mol Cancer Ther ; 23(8): 1095-1108, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38691847

ABSTRACT

Many tumor types harbor alterations in the Hippo pathway, including mesothelioma, where a high percentage of cases are considered YAP1/TEAD dependent. Identification of autopalmitoylation sites in the hydrophobic palmitate pocket of TEADs, which may be necessary for YAP1 protein interactions, has enabled modern drug discovery platforms to generate compounds that allosterically inhibit YAP1/TEAD complex formation and transcriptional activity. We report the discovery and characterization of a novel YAP1/TEAD inhibitor MRK-A from an aryl ether chemical series demonstrating potent and specific inhibition of YAP1/TEAD activity. In vivo, MRK-A showed a favorable tolerability profile in mice and demonstrated pharmacokinetics suitable for twice daily oral dosing in preclinical efficacy studies. Importantly, monotherapeutic targeting of YAP1/TEAD in preclinical models generated regressions in a mesothelioma CDX model; however, rapid resistance to therapy was observed. RNA-sequencing of resistant tumors revealed mRNA expression changes correlated with the resistance state and a marked increase of hepatocyte growth factor (HGF) expression. In vitro, exogenous HGF was able to fully rescue cytostasis induced by MRK-A in mesothelioma cell lines. In addition, co-administration of small molecule inhibitors of the MET receptor tyrosine kinase suppressed the resistance generating effect of HGF on MRK-A induced growth inhibition. In this work, we report the structure and characterization of MRK-A, demonstrating potent and specific inhibition of YAP1/TAZ-TEAD-mediated transcriptional responses, with potential implications for treating malignancies driven by altered Hippo signaling, including factors resulting in acquired drug resistance.


Subject(s)
Adaptor Proteins, Signal Transducing , Drug Resistance, Neoplasm , Hepatocyte Growth Factor , Proto-Oncogene Proteins c-met , Signal Transduction , Transcription Factors , YAP-Signaling Proteins , Humans , Hepatocyte Growth Factor/metabolism , Animals , Transcription Factors/metabolism , Transcription Factors/antagonists & inhibitors , Proto-Oncogene Proteins c-met/antagonists & inhibitors , Proto-Oncogene Proteins c-met/metabolism , Mice , Signal Transduction/drug effects , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/antagonists & inhibitors , Drug Resistance, Neoplasm/drug effects , Cell Line, Tumor , Xenograft Model Antitumor Assays , Small Molecule Libraries/pharmacology , TEA Domain Transcription Factors , Cell Proliferation/drug effects
7.
Environ Pollut ; 356: 124206, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38795819

ABSTRACT

It is known that nanoplastics can cause membrane damage and production of reactive oxygen species (ROS) in cyanobacteria, negatively impacting their photosynthetic reactions and growth. However, the synergistic effect of light intensity on nanoplastics' toxicity to cyanobacteria is rarely investigated. Here, we investigated the impact of nano-polystyrene particles (PS) and amino-modified nano-polystyrene particles (PS-NH2) on cyanobacterium Microcystis aeruginosa cultivated under two light intensities. We discovered that PS-NH2 was more toxic to M. aeruginosa compared to PS with more damage of cell membranes by PS-NH2. The membrane damage was found by scanning electron microscope and atomic force microscopy. Under low light, PS-NH2 inhibited the photosynthesis of M. aeruginosa by decreasing the PSII quantum yield, photosynthetic electron transport rate and pigment content, but increasing non-photochemical quenching and Car/chl a ratio to cope with this stress condition. Moreover, high light appeared to increase the toxicity of PS-NH2 to M. aeruginosa by increasing its in vitro and intracellular ROS content. Specifically, on the one hand, high visible light (without UV) and PS-NH2 induced more in vitro singlet oxygen, hydroxyl radical and superoxide anion measured by electron paramagnetic resonance spectrometer in vitro, which could be another new toxic mechanism of PS-NH2 to M. aeruginosa. On the other hand, high light and PS-NH2 might increase intracellular ROS by inhibiting more photosynthetic electron transfer and accumulating more excess energy and electrons in M. aeruginosa. This research broadens our comprehension of the toxicity mechanisms of nanoplastics to cyanobacteria under varied light conditions and suggests a new toxic mechanism of nanoplastics involving in vitro ROS under visible light, providing vital information for assessing ecotoxicological effects of nanoplastics in the freshwater ecosystem.


Subject(s)
Light , Microcystis , Photosynthesis , Polystyrenes , Reactive Oxygen Species , Microcystis/drug effects , Photosynthesis/drug effects , Reactive Oxygen Species/metabolism , Polystyrenes/toxicity , Nanoparticles/toxicity , Nanoparticles/chemistry , Photosystem II Protein Complex/metabolism
8.
Sci Total Environ ; 928: 172518, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38631637

ABSTRACT

Microorganisms play important roles in the biogeochemical cycles of lake sediment. However, the integrated metabolic mechanisms governing nitrogen (N) and sulfur (S) cycling in eutrophic lakes remain poorly understood. Here, metagenomic analysis of field and bioreactor enriched sediment samples from a typical eutrophic lake were applied to elucidate the metabolic coupling of N and S cycling. Our results showed significant diverse genes involved in the pathways of dissimilatory sulfur metabolism, denitrification and dissimilatory nitrate reduction to ammonium (DNRA). The N and S associated functional genes and microbial groups generally showed significant correlation with the concentrations of NH4+, NO2- and SO42, while with relatively low effects from other environmental factors. The gene-based co-occurrence network indicated clear cooperative interactions between N and S cycling in the sediment. Additionally, our analysis identified key metabolic processes, including the coupled dissimilatory sulfur oxidation (DSO) and DNRA as well as the association of thiosulfate oxidation complex (SOX systems) with denitrification pathway. However, the enriched N removal microorganisms in the bioreactor ecosystem demonstrated an additional electron donor, incorporating both the SOX systems and DSO processes. Metagenome-assembled genomes-based ecological model indicated that carbohydrate metabolism is the key linking factor for the coupling of N and S cycling. Our findings uncover the coupling mechanisms of microbial N and S metabolism, involving both inorganic and organic respiration pathways in lake sediment. This study will enhance our understanding of coupled biogeochemical cycles in lake ecosystems.


Subject(s)
Geologic Sediments , Lakes , Microbiota , Nitrogen , Sulfur , Lakes/microbiology , Sulfur/metabolism , Geologic Sediments/microbiology , Nitrogen/metabolism , Eutrophication , Nitrogen Cycle , Denitrification
9.
J Hazard Mater ; 467: 133643, 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38330645

ABSTRACT

Mangrove sediments are unique ecosystems providing habitats for diverse organisms, especially microbial communities. However, little is known about the diversity and environmental risk of a critical group of microorganisms, the protists. To address this gap, we employed metagenome sequencing technologies to provide the first comprehensive view of the protistan community in the mangrove sediment. Our results surprisingly showed that parasitic protists dominated the protistan community in mangrove sediments, with an average abundance of 59.67%, one of the highest in all ecosystems on Earth. We also found that the relative abundance of protists decreased significantly (R = -0.21, p = 0.045) with latitude but increased with depths (R = 0.7099, p < 0.001). The parasitic communities were positively influenced by microbial (bacteria, fungi, and archaea) communities, including horizontal-scale and vertical-scale. In addition, sulfate and salinity had the most significant influence on the protistan community. Our findings provide new insights into our understanding of protistan variation in mangrove sediments, including abundance, composition, and possible functions, and indicate that mangrove sediments are hotspots for environmental pathogens, posing a potential risk to human health.


Subject(s)
Archaea , Microbiota , Humans , Metagenome , Salinity , Sulfates
10.
Proc Natl Acad Sci U S A ; 121(9): e2317394121, 2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38377212

ABSTRACT

Effectively managing sewage sludge from Fenton reactions in an eco-friendly way is vital for Fenton technology's viability in pollution treatment. This study focuses on sewage sludge across various treatment stages, including generation, concentration, dehydration, and landfill, and employs chemical composite MoS2 to facilitate green resource utilization of all types of sludge. MoS2, with exposed Mo4+ and low-coordination sulfur, enhances iron cycling and creates an acidic microenvironment on the sludge surface. The MoS2-modified iron sludge exhibits outstanding (>95%) phenol and pollutant degradation in hydrogen peroxide and peroxymonosulfate-based Fenton systems, unlike unmodified sludge. This modified sludge maintains excellent Fenton activity in various water conditions and with multiple anions, allowing extended phenol degradation for over 14 d. Notably, the generated chemical oxygen demand (COD) in sludge modification process can be efficiently eliminated through the Fenton reaction, ensuring effluent COD compliance and enabling eco-friendly sewage sludge resource utilization.

11.
Water Res ; 253: 121253, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38350193

ABSTRACT

Human activities have long impacted the health of Earth's rivers and lakes. These inland waters, crucial for our survival and productivity, have suffered from contamination which allows the formation and spread of antibiotic-resistant genes (ARGs) and consequently, ARG-carrying pathogens (APs). Yet, our global understanding of waterborne pathogen antibiotic resistance remains in its infancy. To shed light on this, our study examined 1240 metagenomic samples from both open and closed inland waters. We identified 22 types of ARGs, 19 types of mobile genetic elements (MGEs), and 14 types of virulence factors (VFs). Our findings showed that open waters have a higher average abundance and richness of ARGs, MGEs, and VFs, with more robust co-occurrence network compared to closed waters. Out of the samples studied, 321 APs were detected, representing a 43 % detection rate. Of these, the resistance gene 'bacA' was the most predominant. Notably, AP hotspots were identified in regions including East Asia, India, Western Europe, the eastern United States, and Brazil. Our research underscores how human activities profoundly influence the diversity and spread of resistome. It also emphasizes that both abiotic and biotic factors play pivotal roles in the emergence of ARG-carrying pathogens.


Subject(s)
Anti-Bacterial Agents , Genes, Bacterial , Humans , Drug Resistance, Microbial/genetics , Anti-Bacterial Agents/pharmacology , Metagenomics , Metagenome
12.
Adv Sci (Weinh) ; 10(26): e2301980, 2023 09.
Article in English | MEDLINE | ID: mdl-37424042

ABSTRACT

Antibiotic overuse and the subsequent environmental contamination of residual antibiotics poses a public health crisis via an acceleration in the spread of antibiotic resistance genes (ARGs) through horizontal gene transfer. Although the occurrence, distribution, and driving factors of ARGs in soils have been widely investigated, little is known about the antibiotic resistance of soilborne pathogens at a global scale. To explore this gap, contigs from 1643 globally sourced metagnomes are assembled, yielding 407 ARG-carrying pathogens (APs) with at least one ARG; APs are detected in 1443 samples (sample detection rate of 87.8%). The richness of APs is greater in agricultural soils (with a median of 20) than in non-agricultural ecosystems. Agricultural soils possess a high prevalence of clinical APs affiliated with Escherichia, Enterobacter, Streptococcus, and Enterococcus. The APs detected in agricultural soils tend to coexist with multidrug resistance genes and bacA. A global map of soil AP richness is generated, where anthropogenic and climatic factors explained AP hot spots in East Asia, South Asia, and the eastern United States. The results herein advance this understanding of the global distribution of soil APs and determine regions prioritized to control soilborne APs worldwide.


Subject(s)
Metagenomics , Soil , Ecosystem , Soil Microbiology , Anti-Bacterial Agents
13.
J Hazard Mater ; 458: 131974, 2023 09 15.
Article in English | MEDLINE | ID: mdl-37406521

ABSTRACT

Early evidence has elucidated that the spread of antibiotic (ARGs) and metal resistance genes (MRGs) are mainly attributed to the selection pressure in human-influenced environments. However, whether and how biotic and abiotic factors mediate the distribution of ARGs and MRGs in mangrove sediments under natural sedimentation is largely unclear. Here, we profiled the abundance and diversity of ARGs and MRGs and their relationships with sedimental microbiomes in 0-100 cm mangrove sediments. Our results identified multidrug-resistance and multimetal-resistance as the most abundant ARG and MRG classes, and their abundances generally decreased with the sediment depth. Instead of abiotic factors such as nutrients and antibiotics, the bacterial diversity was significantly negatively correlated with the abundance and diversity of resistomes. Also, the majority of resistance classes (e.g., multidrug and arsenic) were carried by more diverse bacterial hosts in deep layers with low abundances of resistance genes. Together, our results indicated that bacterial diversity was the most important biotic factor driving the vertical profile of ARGs and MRGs in the mangrove sediment. Given that there is a foreseeable increasing human impact on natural environments, this study emphasizes the important role of biodiversity in driving the abundance and diversity of ARGs and MRGs.


Subject(s)
Genes, Bacterial , Microbiota , Humans , Bacteria/genetics , Anti-Bacterial Agents
14.
Front Microbiol ; 14: 1195137, 2023.
Article in English | MEDLINE | ID: mdl-37389343

ABSTRACT

Clarifying mechanisms underlying the selective adhesion of probiotics and competitive exclusion of pathogens in the intestine is a central theme for shrimp health. Under experimental manipulation of probiotic strain (i.e., Lactiplantibacillus plantarum HC-2) adhesion to the shrimp mucus, this study tested the core hypothesis that homologous genes shared between probiotic and pathogen would affect the adhesion of probiotics and exclusion of pathogens by regulating the membrane proteins of probiotics. Results indicated that the reduction of FtsH protease activity, which significantly correlated with the increase of membrane proteins, could increase the adhesion ability of L. plantarum HC-2 to the mucus. These membrane proteins mainly involved in transport (glycine betaine/carnitine/choline ABC transporter choS, ABC transporter, ATP synthase subunit a atpB, amino acid permease) and regulation of cellular processes (histidine kinase). The genes encoding the membrane proteins were significantly (p < 0.05) up-regulated except those encoding ABC transporters and histidine kinases in L. plantarum HC-2 when co-cultured with Vibrio parahaemolyticus E1, indicating that these genes could help L. plantarum HC-2 to competitively exclude pathogens. Moreover, an arsenal of genes predicted to be involved in carbohydrate metabolism and bacteria-host interactions were identified in L. plantarum HC-2, indicating a clear strain adaption to host's gastrointestinal tract. This study advances our mechanistic understanding of the selective adhesion of probiotics and competitive exclusion of pathogens in the intestine, and has important implications for screening and applying new probiotics for maintaining gut stability and host health.

15.
ISME J ; 17(8): 1278-1289, 2023 08.
Article in English | MEDLINE | ID: mdl-37270585

ABSTRACT

Microorganisms play crucial roles in phosphorus (P) turnover and P bioavailability increases in heavy metal-contaminated soils. However, microbially driven P-cycling processes and mechanisms of their resistance to heavy metal contaminants remain poorly understood. Here, we examined the possible survival strategies of P-cycling microorganisms in horizontal and vertical soil samples from the world's largest antimony (Sb) mining site, which is located in Xikuangshan, China. We found that total soil Sb and pH were the primary factors affecting bacterial community diversity, structure and P-cycling traits. Bacteria with the gcd gene, encoding an enzyme responsible for gluconic acid production, largely correlated with inorganic phosphate (Pi) solubilization and significantly enhanced soil P bioavailability. Among the 106 nearly complete bacterial metagenome-assembled genomes (MAGs) recovered, 60.4% carried the gcd gene. Pi transportation systems encoded by pit or pstSCAB were widely present in gcd-harboring bacteria, and 43.8% of the gcd-harboring bacteria also carried the acr3 gene encoding an Sb efflux pump. Phylogenetic and potential horizontal gene transfer (HGT) analyses of acr3 indicated that Sb efflux could be a dominant resistance mechanism, and two gcd-harboring MAGs appeared to acquire acr3 through HGT. The results indicated that Sb efflux could enhance P cycling and heavy metal resistance in Pi-solubilizing bacteria in mining soils. This study provides novel strategies for managing and remediating heavy metal-contaminated ecosystems.


Subject(s)
Metals, Heavy , Microbiota , Soil Pollutants , Antimony/analysis , Antimony/chemistry , Soil/chemistry , Phosphates/analysis , Phosphorus/analysis , Phylogeny , Environmental Monitoring , Soil Pollutants/analysis , Metals, Heavy/analysis , Bacteria/genetics , China , Soil Microbiology
16.
Environ Res ; 231(Pt 2): 116184, 2023 08 15.
Article in English | MEDLINE | ID: mdl-37207729

ABSTRACT

Denitrification is an important process of the global nitrogen cycle as some of its intermediates are environmentally important or related to global warming. However, how the phylogenetic diversity of denitrifying communities affects their denitrification rates and temporal stability remains unclear. Here we selected denitrifiers based on their phylogenetic distance to construct two groups of synthetic denitrifying communities: one closely related (CR) group with all strains from the genus Shewanella and the other distantly related (DR) group with all constituents from different genera. All synthetic denitrifying communities (SDCs) were experimentally evolved for 200 generations. The results showed that high phylogenetic diversity followed by experimental evolution promoted the function and stability of synthetic denitrifying communities. Specifically, the productivity and denitrification rates were significantly (P < 0.05) higher with Paracocus denitrificans as the dominant species (since the 50th generation) in the DR community than those in the CR community. The DR community also showed significantly (t = 7.119, df = 10, P < 0.001) higher stability through overyielding and asynchrony of species fluctuations, and showed more complementarity than the CR group during the experimental evolution. This study has important implications for applying synthetic communities to remediate environmental problems and mitigate greenhouse gas emissions.


Subject(s)
Denitrification , Phylogeny
17.
Microbiol Spectr ; 11(3): e0452822, 2023 06 15.
Article in English | MEDLINE | ID: mdl-37154752

ABSTRACT

Biodiversity is vital for ecosystem functions and services, and many studies have reported positive, negative, or neutral biodiversity-ecosystem functioning (BEF) relationships in plant and animal systems. However, if the BEF relationship exists and how it evolves remains elusive in microbial systems. Here, we selected 12 Shewanella denitrifiers to construct synthetic denitrifying communities (SDCs) with a richness gradient spanning 1 to 12 species, which were subjected to approximately 180 days (with 60 transfers) of experimental evolution with generational changes in community functions continuously tracked. A significant positive correlation was observed between community richness and functions, represented by productivity (biomass) and denitrification rate, however, such a positive correlation was transient, only significant in earlier days (0 to 60) during the evolution experiment (180 days). Also, we found that community functions generally increased throughout the evolution experiment. Furthermore, microbial community functions with lower richness exhibited greater increases than those with higher richness. Biodiversity effect analysis revealed positive BEF relationships largely attributable to complementary effects, which were more pronounced in communities with lower richness than those with higher richness. This study is one of the first studies that advances our understanding of BEF relationships and their evolutionary mechanisms in microbial systems, highlighting the crucial role of evolution in predicting the BEF relationship in microbial systems. IMPORTANCE Despite the consensus that biodiversity supports ecosystem functioning, not all experimental models of macro-organisms support this notion with positive, negative, or neutral biodiversity-ecosystem functioning (BEF) relationships reported. The fast-growing, metabolically versatile, and easy manipulation nature of microbial communities allows us to explore well the BEF relationship and further interrogate if the BEF relationship remains constant during long-term community evolution. Here, we constructed multiple synthetic denitrifying communities (SDCs) by randomly selecting species from a candidate pool of 12 Shewanella denitrifiers. These SDCs differ in species richness, spanning 1 to 12 species, and were monitored continuously for community functional shifts during approximately 180-day parallel cultivation. We demonstrated that the BEF relationship was dynamic with initially (day 0 to 60) greater productivity and denitrification among SDCs of higher richness. However, such pattern was reversed thereafter with greater productivity and denitrification increments in lower-richness SDCs, likely due to a greater accumulation of beneficial mutations during the experimental evolution.


Subject(s)
Biodiversity , Ecosystem , Animals , Biomass , Plants
19.
Microbiome ; 11(1): 82, 2023 04 20.
Article in English | MEDLINE | ID: mdl-37081531

ABSTRACT

BACKGROUND: Increasing attention has recently been devoted to the anaerobic ammonium oxidation (anammox) in eutrophic lakes due to its potential key functions in nitrogen (N) removal for eutrophication control. However, successful enrichment of anammox bacteria from lake sediments is still challenging, partly due to the ecological interactions between anammox and denitrifying bacteria across such enrichment with lake sediments remain unclear. RESULTS: This study thus designed to fill such knowledge gaps using bioreactors to enrich anammox bacteria with eutrophic lake sediments for more than 365 days. We continuously monitored the influent and effluent water, measured the anammox and denitrification efficiencies, quantified the anammox and denitrifying bacteria, as well as the related N cycling genes. We found that the maximum removal efficiencies of NH4+ and NO2- reached up to 85.92% and 95.34%, respectively. Accordingly, the diversity of anammox and denitrifying bacteria decreased significantly across the enrichment, and the relative dominant anammox (e.g., Candidatus Jettenia) and denitrifying bacteria (e.g., Thauera, Afipia) shifted considerably. The ecological cooperation between anammox and denitrifying bacteria tended to increase the microbial community stability, indicating a potential coupling between anammox and denitrifying bacteria. Moreover, the nirS-type denitrifiers showed stronger coupling with anammox bacteria than that of nirK-type denitrifiers during the enrichment. Functional potentials as depicted by metagenome sequencing confirmed the ecological interactions between anammox and denitrification. Metagenome-assembled genomes-based ecological model indicated that the most dominant denitrifiers could provide various materials such as amino acid, cofactors, and vitamin for anammox bacteria. Cross-feeding in anammox and denitrifying bacteria highlights the importance of microbial interactions for increasing the anammox N removal in eutrophic lakes. CONCLUSIONS: This study greatly expands our understanding of cooperation mechanisms among anammox and denitrifying bacteria during the anammox enrichment with eutrophic lake sediments, which sheds new insights into N removal for controlling lake eutrophication. Video Abstract.


Subject(s)
Denitrification , Lakes , Lakes/microbiology , Anaerobic Ammonia Oxidation , Oxidation-Reduction , Bacteria/genetics , Bacteria/metabolism , Bioreactors/microbiology
20.
Mar Life Sci Technol ; 5(1): 44-55, 2023 Feb.
Article in English | MEDLINE | ID: mdl-37073331

ABSTRACT

Microeukaryotes and bacteria are key drivers of primary productivity and nutrient cycling in aquaculture ecosystems. Although their diversity and composition have been widely investigated in aquaculture systems, the co-occurrence bipartite network between microeukaryotes and bacteria remains poorly understood. This study used the bipartite network analysis of high-throughput sequencing datasets to detect the co-occurrence relationships between microeukaryotes and bacteria in water and sediment from coastal aquaculture ponds. Chlorophyta and fungi were dominant phyla in the microeukaryotic-bacterial bipartite networks in water and sediment, respectively. Chlorophyta also had overrepresented links with bacteria in water. Most microeukaryotes and bacteria were classified as generalists, and tended to have symmetric positive and negative links with bacteria in both water and sediment. However, some microeukaryotes with high density of links showed asymmetric links with bacteria in water. Modularity detection in the bipartite network indicated that four microeukaryotes and twelve uncultured bacteria might be potential keystone taxa among the module connections. Moreover, the microeukaryotic-bacterial bipartite network in sediment harbored significantly more nestedness than that in water. The loss of microeukaryotes and generalists will more likely lead to the collapse of positive co-occurrence relationships between microeukaryotes and bacteria in both water and sediment. This study unveils the topology, dominant taxa, keystone species, and robustness in the microeukaryotic-bacterial bipartite networks in coastal aquaculture ecosystems. These species herein can be applied for further management of ecological services, and such knowledge may also be very useful for the regulation of other eutrophic ecosystems. Supplementary Information: The online version contains supplementary material available at 10.1007/s42995-022-00159-6.

SELECTION OF CITATIONS
SEARCH DETAIL