Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 140
Filter
1.
Anal Chem ; 2024 Oct 18.
Article in English | MEDLINE | ID: mdl-39420777

ABSTRACT

Sensitive and selective detection of trace aflatoxin B1 (AFB1) in foods is of great importance to guarantee food safety and quality but still challenging because of its trace amount and the interference from the complex food matrix. Here, we report the integration of aptamer (Apt) and an ordered 2D covalent organic framework (COF) to solid-state anodic aluminum oxide (AAO) nanochannels (Apt/COF/AAO) for selective and sensitive detection of trace AFB1. The high specificity of Apt for AFB1 led to a selective change in the surface charge of Apt/COF/AAO and in turn the current change of the nanochannel, permitting the selective and sensitive determination of trace AFB1 in complex food samples. The developed nanofluidic sensor gave a wide linear range (1-500 pg mL-1), low detection limit (0.11 pg mL-1), and good precision (relative standard deviation of 1.5% for 11 replicate determinations of 100 pg mL-1). In addition, the developed sensor was successfully used for the detection of AFB1 in food samples with the recovery of 86.9%-102.5%. The coupling of Apt-conjugated 2D COF with an AAO nanochannel provides a promising way for sensitive and selective determination of food contaminants in complex samples.

2.
Toxicol In Vitro ; 101: 105950, 2024 Sep 30.
Article in English | MEDLINE | ID: mdl-39357688

ABSTRACT

Tanshinone IIA (Tan IIA), a neuroprotective natural compound extracted from Salvia miltiorrhiza, is used in stroke treatment. However, elucidating Tan IIA's neuroprotective mechanisms remains challenging due to limitations in assessing drug efficacy and biochemical parameters in clinical studies. This study investigated Tan IIA's impact on neuroinflammatory responses and its neuroprotective mechanisms using HMGB1- or TNF-α-stimulated BV2 microglia in a co-culture system with primary neuron cells. The results indicated that Tan IIA significantly reduced microglial activation induced by TNF-α or HMGB1. Concurrently, Tan IIA disrupted the interactions between HMGB1 and toll-like receptor 4 (TLR4), and between TNF-α and TNF receptor 1 (TNFR1), modulating the HMGB1/TLR4/nuclear factor-kappa B (NF-κB) and TNF-α/TNFR1/NF-κB signaling pathways and related protein expressions. Moreover, co-culture experiments showed that neuronal apoptosis induced by microglial activation was reversed by Tan IIA. In conclusion, Tan IIA provides neuroprotection by modulating signaling pathways in microglia, thus preventing neuronal apoptosis. This study offers new insights into therapeutic targets for ischemic stroke.

3.
Discov Oncol ; 15(1): 483, 2024 Sep 27.
Article in English | MEDLINE | ID: mdl-39331201

ABSTRACT

BACKGROUND: Gastroparesis is a major complication following complete mesocolic excision (CME) and significantly impacts patient outcomes. This study aimed to create a machine learning model to pinpoint key risk factors before, during, and after surgery, effectively predicting the risk of gastroparesis after CME. METHODS: The study involved 1146 patients with colon cancer, out of which 95 developed gastroparesis. Data were collected on 34 variables, including demographics, chronic conditions, pre-surgery test results, types of surgery, and intraoperative details. Four machine learning techniques were employed: extreme gradient boosting (XGBoost), random forest (RF), support vector machine (SVM), and k-nearest neighbor (KNN). The evaluation involved k-fold cross-validation, receiver operating characteristic (ROC) analysis, calibration curves, decision curve analysis (DCA), and external validation. RESULTS: XGBoost excelled in its performance for predictive models. ROC analysis showed high accuracy for XGBoost, with area under the curve (AUC) scores of 0.976 for the training set and 0.906 for the validation set. K-fold cross-validation confirmed the model's stability, and calibration curves indicated high predictive accuracy. Additionally, DCA highlighted XGBoost's superior patient benefits for intervention treatments. An AUC of 0.77 in external validation demonstrated XGBoost's strong generalization ability. CONCLUSION: The XGBoost-fueled predictive model for post-surgery colon cancer patients proved highly effective. It underlined gastroparesis as a significant post-operative issue, associated with advanced age, prolonged surgeries, extensive intraoperative blood loss, surgical techniques, low serum protein levels, anemia, diabetes, and hypothyroidism.

4.
Materials (Basel) ; 17(18)2024 Sep 21.
Article in English | MEDLINE | ID: mdl-39336384

ABSTRACT

This study investigated the microstructure, mechanical properties, and nucleation mechanism of acicular ferrite (AF) present in hot-rolled Ti deoxidized steel. In our experiments, the impact toughness of Ti deoxidized steel is significantly increased to 144 J at -20 °C, while those Mn and Al deoxidized steels are only 9 J and 18 J, respectively. Interlocked AF is the primary microstructure of Ti deoxidized steel. The second-phase particles of the core-shell-type structure, in which Ti2O3 is the nucleus and TiO is the outermost shell, act as effective nucleating agents to stimulate AF nucleation. The low lattice disregistry between TiO and AF is the main factor contributing to the production of AF. It is also revealed that Ti2O3 and MnS fulfill the particular orientation relationship, contributing to the formation of an Mn-depleted zone (MDZ) adjacent to MnS, proposed to be one of the possible mechanisms for promoting AF nucleation.

5.
Discov Oncol ; 15(1): 462, 2024 Sep 19.
Article in English | MEDLINE | ID: mdl-39298078

ABSTRACT

BACKGROUND: Anoikis and epithelial-mesenchymal transition (EMT) are pivotal in the distant metastasis of lung adenocarcinoma (LUAD). A detailed understanding of their interplay and the identification of key genes is vital for effective therapeutic strategies against LUAD metastasis. METHODS: Key prognostic genes related to anoikis and EMT were identified through univariate Cox regression analysis. We utilized ten machine learning algorithms to develop the Anoikis and EMT-Related Optimal Model (AEOM). The TCGA-LUAD dataset served as the training cohort, while six additional international multicenter LUAD datasets were employed as validation cohorts. The average concordance index (c-index) was used to evaluate model performance and identify the most effective model. Subsequent multi-omics analyses were conducted to explore differences in pathway enrichment, immune infiltration, and mutation landscapes between high and low AEOM groups. Experimental validation demonstrated that RHPN2, a key biomarker within the model, acts as an oncogene facilitating LUAD progression. RESULTS: The AEOM displayed superior prognostic predictive performance for LUAD patients, outperforming numerous previously published LUAD signatures. Biologically, the AEOM was notably associated with immune features; the high AEOM group exhibited decreased immune activity and a tendency towards immune-cold tumors, as well as a higher tumor mutational burden (TMB). Subgroup analysis revealed that the low AEOM + high TMB group had the most favorable prognosis. The high AEOM group was primarily enriched in cell cycle-related pathways, promoting cancer cell proliferation. RHPN2, a crucial gene within the AEOM (correlation = 0.85, P < 0.05), was linked to poorer prognosis in LUAD patients with elevated RHPN2 expression. Further in vitro experiments showed that RHPN2 modulates LUAD cell proliferation and invasion. CONCLUSION: The AEOM provides a robust prognostic model for LUAD, uncovering critical immune and biological pathways, with RHPN2 identified as a key oncogenic driver. These findings offer valuable insights for targeted therapies and enhanced patient outcomes.

6.
Discov Oncol ; 15(1): 445, 2024 Sep 14.
Article in English | MEDLINE | ID: mdl-39276278

ABSTRACT

Lower-grade gliomas (LGGs), despite their generally indolent clinical course, are characterized by invasive growth patterns and genetic heterogeneity, which can lead to malignant transformation, underscoring the need for improved prognostic markers and therapeutic strategies. This study utilized single-cell RNA sequencing (scRNA-seq) and bulk RNA-seq to identify a novel cell type, referred to as "Prol," characterized by increased proliferation and linked to a poor prognosis in patients with LGG, particularly under the context of immunotherapy interventions. A signature, termed the Prol signature, was constructed based on marker genes specific to the Prol cell type, utilizing an artificial intelligence (AI) network that integrates traditional regression, machine learning, and deep learning algorithms. This signature demonstrated enhanced predictive accuracy for LGG prognosis compared to existing models and showed pan-cancer prognostic potential. The mRNA expression of the key gene PTTG1 from the Prol signature was further validated through quantitative reverse transcription polymerase chain reaction (qRT-PCR). Our findings not only provide novel insights into the molecular and cellular mechanisms of LGG but also offer a promising avenue for the development of targeted biomarkers and therapeutic interventions.

7.
Front Immunol ; 15: 1415435, 2024.
Article in English | MEDLINE | ID: mdl-39247201

ABSTRACT

Background: Hepatocellular carcinoma (HCC) poses a significant health burden globally, with high mortality rates despite various treatment options. Immunotherapy, particularly immune-checkpoint inhibitors (ICIs), has shown promise, but resistance and metastasis remain major challenges. Understanding the intricacies of the tumor microenvironment (TME) is imperative for optimizing HCC management strategies and enhancing patient prognosis. Methods: This study employed a comprehensive approach integrating multi-omics approaches, including single-cell RNA sequencing (scRNA-seq), bulk RNA sequencing (Bulk RNA-seq), and validation in clinical samples using spatial transcriptomics (ST) and multiplex immunohistochemistry (mIHC). The analysis aimed to identify key factors influencing the immunosuppressive microenvironment associated with HCC metastasis and immunotherapy resistance. Results: HMGB2 is significantly upregulated in HCCTrans, a transitional subgroup associated with aggressive metastasis. Furthermore, HMGB2 expression positively correlates with an immunosuppressive microenvironment, particularly evident in exhausted T cells. Notably, HMGB2 expression correlated positively with immunosuppressive markers and poor prognosis in HCC patients across multiple cohorts. ST combined with mIHC validated the spatial expression patterns of HMGB2 within the TME, providing additional evidence of its role in HCC progression and immune evasion. Conclusion: HMGB2 emerges as a critical player of HCC progression, metastasis, and immunosuppression. Its elevated expression correlates with aggressive tumor behavior and poor patient outcomes, suggesting its potential as both a therapeutic target and a prognostic indicator in HCC management.


Subject(s)
Carcinoma, Hepatocellular , HMGB2 Protein , Liver Neoplasms , Tumor Microenvironment , Humans , Tumor Microenvironment/immunology , Carcinoma, Hepatocellular/immunology , Carcinoma, Hepatocellular/pathology , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/metabolism , Liver Neoplasms/immunology , Liver Neoplasms/pathology , Liver Neoplasms/metabolism , Liver Neoplasms/genetics , HMGB2 Protein/genetics , HMGB2 Protein/metabolism , Gene Expression Regulation, Neoplastic , Disease Progression , Biomarkers, Tumor/metabolism , Prognosis , Male , Female , Single-Cell Analysis , Multiomics
8.
Environ Pollut ; 360: 124672, 2024 Nov 01.
Article in English | MEDLINE | ID: mdl-39103034

ABSTRACT

Atrazine is a widely used herbicide in agricultural production. Previous studies have shown that atrazine affects hormone secretion and oocyte maturation in female reproduction. However, the specific mechanism by which atrazine affects ovarian function remains unclear. In this study, using a mouse gastric lavage model, we report that four weeks of atrazine exposure affects body growth, interferes with the estrous cycle, and increases the number of atretic follicles in mice. The expression levels of follicle development related factors StAR, BMP15, and AMH decreased. Metabolomic analysis revealed that atrazine activates an inflammatory response in ovarian tissue. Further studies confirmed that the expression levels of TNF-α, IL-6, and NF-κB increased in the ovaries of mice exposed to atrazine. Additionally, α-smooth muscle actin (α-SMA) accumulated in ovarian tissue, and transforming growth factor-ß (TGF-ß) signaling was activated, indicating the occurrence of tissue fibrosis. Moreover, mice exposed to atrazine produced fewer oocytes and exhibited reduced embryonic development. Furthermore, mice exposed to atrazine exhibited altered gut microbiota abundance and a disrupted colon barrier. Collectively, these findings suggest that atrazine exposure induces ovarian inflammation and fibrosis, disrupts ovarian homeostasis, and impairs follicle maturation, ultimately reducing oocyte quality.


Subject(s)
Atrazine , Fibrosis , Herbicides , Inflammation , Ovary , Animals , Atrazine/toxicity , Female , Mice , Ovary/drug effects , Ovary/metabolism , Herbicides/toxicity , Inflammation/chemically induced
9.
BMC Med Educ ; 24(1): 863, 2024 Aug 12.
Article in English | MEDLINE | ID: mdl-39135027

ABSTRACT

OBJECTIVE: To analyze the coupling and coordination level of medical education and health resource allocation in China, and to provide scientific basis for promoting the high-quality development of medical education and the efficient allocation of health resources. METHODS: Based on the panel data from 2011 to 2021, the coupling coordination degree model was used to measure the coupling coordination index of medical education and health resources in China. The spatial auto-correlation model was used to analyze the development status and distribution characteristics of the coupling coordination degree of the two systems. The kernel density estimation method was used to analyze the dynamic evolution trend of the coupling coordination of the two systems. The QR quantile regression model was used to explore the key factors affecting the coupling coordination degree of the two systems. RESULTS: During the observation period, the coupling coordination degree of the two systems increased from 0.393 to 0.465, with a growth rate of 18.3%. The coupling coordination degree between regions gradually decreased in the eastern-central and eastern-western regions, and there were still large differences between the central and western regions. The coupling coordination degree of the two systems in the region was significantly different in the eastern and western regions, and the central region was relatively similar. There is a positive spatial correlation between the provinces, and 25.81% of the provinces have transitions. Finally, the number of points in the first and third quadrants is higher than that in the second and fourth quadrants. In the process of dynamic distribution, the degree of polarization of the coupling coordination degree curve of the two systems is gradually weakened. Per capita GDP, residents ' income difference and population size are the positive and significant factors driving the coupling and coordinated development of the two systems. CONCLUSION: The coupling and coordination degree of the two systems of medical education and health resource allocation showed a stable upward trend during the observation period, and the global spatial positive correlation also gradually increased, showing the spatial agglomeration characteristics of ' high-high agglomeration ' and ' low-low agglomeration '. The spatial difference of coupling coordination degree shows a shrinking trend and develops towards equalization. The coupling coordination degree of the two systems is affected by social, economic and demographic factors to varying degrees. Therefore, it is necessary to innovate the coordinated development mechanism of the two systems, promote the two-way flow of medical education and health resource allocation in talents, technology and other elements, and then promote the coupling and coordinated development of the two systems.


Subject(s)
Education, Medical , Resource Allocation , China , Humans , Health Care Rationing , Health Resources
10.
J Ethnopharmacol ; 335: 118694, 2024 Dec 05.
Article in English | MEDLINE | ID: mdl-39147001

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Coix seed, the dry mature seed kernel of the gramineous plant coix (Coix lacryma-jobi L. var. ma-yuen Stapf), is widely consumed as a traditional Chinese medicine and functional food in China and South Korea. We have previously demonstrated the protective effect of coixol, a polyphenolic compound extracted from coix, against Toxoplasma gondii (T. gondii) infection-induced lung injury. However, the protective effect of coixol on hepatic injury induced by T. gondii infection have not yet been elucidated. AIM OF THE STUDY: This study explores the impact of coixol on T. gondii infection-induced liver injury and elucidates the underlying molecular mechanisms. MATERIALS AND METHODS: Female BALB/c mice and Kupffer cells (KCs) were employed to establish an acute T. gondii infection model in vivo and an inflammation model in vitro. The study examined coixol's influence on the T. gondii-derived heat shock protein 70 (T.g.HSP70)/toll-like receptor 4 (TLR4)/nuclear factor (NF)-κB signaling pathway in T. gondii-infected liver macrophages. Furthermore, a co-culture system of KCs and NCTC-1469 hepatocytes was developed to observe the impact of liver macrophages infected with T. gondii on hepatocyte injury. RESULTS: Coixol notably inhibited the proliferation of tachyzoites and the expression of T.g.HSP70 in mouse liver and KCs, and attenuated pathological liver injury. Moreover, coixol decreased the production of high mobility group box 1, tumor necrosis factor-α, and inducible nitric oxide synthase by suppressing the TLR4/NF-κB signaling pathway in vitro and in vivo. Coixol also mitigated KCs-mediated hepatocyte injury. CONCLUSIONS: Coixol protects against liver injury caused by T. gondii infection, potentially by diminishing hepatocyte injury through the suppression of the inflammatory cascade mediated by the T.g.HSP70/TLR4/NF-κB signaling pathway in KCs. These findings offer new perspectives for developing coixol as a lead compound for anti-T. gondii drugs.


Subject(s)
HSP70 Heat-Shock Proteins , Mice, Inbred BALB C , NF-kappa B , Signal Transduction , Toll-Like Receptor 4 , Toxoplasma , Animals , NF-kappa B/metabolism , Toll-Like Receptor 4/metabolism , Signal Transduction/drug effects , HSP70 Heat-Shock Proteins/metabolism , Toxoplasma/drug effects , Female , Mice , Kupffer Cells/drug effects , Kupffer Cells/metabolism , Liver/drug effects , Liver/parasitology , Liver/metabolism , Liver/pathology , Toxoplasmosis/drug therapy , Macrophages/drug effects , Macrophages/metabolism , Macrophages/parasitology , Coix/chemistry
11.
Environ Pollut ; 361: 124776, 2024 Aug 21.
Article in English | MEDLINE | ID: mdl-39173867

ABSTRACT

Acrolein is a widespread contaminant found in both diet and environment, entering the human body through food, alcohol, smoking, and exposure to fuel combustion fumes. While prior studies have highlighted acrolein's harmful impact on oocyte quality and early embryonic development in vitro, the specific mechanisms by which acrolein affects the female reproductive system in vivo remain poorly understood. This study first confirmed that in vitro acrolein exposure disrupts spindle morphology and chromosome alignment during the mid-MI stage of oocyte development, thus hindering oocyte maturation. Besides, exposure to acrolein not only stunts growth in mice but also impairs ovarian development, decreases the ovarian coefficient, disrupts follicular development, and increases the count of atretic follicles in vivo. Additional research has shown that acrolein exposure reduces the activity of key enzymes in glycolysis, pyruvate metabolism, and the tricarboxylic acid cycle within the ovaries. It also suppresses mitochondrial complex expression and disturbs the balance between mitochondrial fission and fusion, as confirmed by metabolomic analyses. Moreover, acrolein exposure in vivo induced granulosa cell apoptosis and reduced oocyte number. In summary, acrolein exposure impairs glucose metabolism and induces mitochondrial dysfunction in the ovaries.

12.
Inflammation ; 2024 Aug 17.
Article in English | MEDLINE | ID: mdl-39154088

ABSTRACT

Depression, recognized globally as a primary cause of disability, has its pathogenesis closely related to neuroinflammation and neuronal damage. Arctiin (ARC), the major bioactive component of Fructus arctii, has various pharmacological activities, such as anti-inflammatory and neuroprotective effects. Building on previous findings that highlighted ARC's capability to mitigate depression by dampening microglial hyperactivation and thereby reducing neuroinflammatory responses and cortical neuronal damage in mice, the current study delves deeper into ARC's therapeutic potential by examining its impact on hippocampal neuronal damage in depression. Utilizing both chronic unpredictable mild stress (CUMS)-induced depression model in mice and corticosterone (CORT)-stimulated PC12 cell model of neuronal damage, the techniques including Nissl staining, immunohistochemistry, western blotting, ELISA, lactate dehydrogenase assays, colony formation assays, immunofluorescence staining and molecular docking were employed to unravel the mechanisms behind ARC's neuroprotective effects. The findings revealed that ARC not only mitigates hippocampal neuropathological damage and reduces serum CORT levels in CUMS-exposed mice but also enhances cell activity while reducing lactate dehydrogenase release in CORT-stimulated PC12 cells. ARC attenuated neuroinflammatory responses and neuronal apoptosis by inhibiting the overactivation of the P2X7 receptor (P2X7R)/NOD-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome signaling pathway, similar to the effect of A438079 (P2X7R antagonist). Interestingly, pretreatment with A438079 blocked the neuroprotective effect of ARC. Computer modeling predicted that both ARC and A438079 have strong binding with P2X7R and they have the same binding site. These results suggested that ARC may exert a neuroprotective role by binding to P2X7R, thereby inhibiting the P2X7R/NLRP3 inflammasome signaling pathway.

13.
J Asian Nat Prod Res ; : 1-28, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38958647

ABSTRACT

The SwissTargetPrediction was employed to predict the potential drug targets of the active component of Si-Miao-Yong-An decoction (SMYAD). The therapeutic targets for HF were searched in the Genecard database, and Cytoscape3.9.1 software was used to construct the "drug-component-target-disease network" diagram. In addition, the String platform was used to construct Protein-Protein Interaction (PPI) network, and the DAVID database was used for GO and KEGG analysis. AutoDockTools-1.5.6 software was used for molecular docking verification. Network pharmacology studies have shown that AKT 1, ALB, and CASP 3 are the key targets of action of SMYAD against heart failure. The active compounds are quercetin and kaempferol.

14.
Environ Toxicol ; 39(11): 5074-5085, 2024 Nov.
Article in English | MEDLINE | ID: mdl-39082229

ABSTRACT

Acrylamide (AAM), a compound extensively utilized in various industrial applications, has been reported to induce toxic effects across multiple tissues in living organisms. Despite its widespread use, the impact of AAM on ovarian function and the mechanisms underlying these effects remain poorly understood. Here, we established an AAM-exposed mouse toxicological model using 21 days of intragastric AAM administration. AAM exposure decreased ovarian coefficient and impaired follicle development. Further investigations revealed AAM would trigger apoptosis and disturb tricarboxylic acid cycle in ovarian tissue, thus affecting mitochondrial electron transport function. Moreover, AAM exposure decreased oocyte and embryo development potential, mechanically associated with pericentrin and phosphorylated Aurora A cluster failure, leading to meiotic spindle assembly defects. Collectively, these results suggest that AAM exposure may lead to apoptosis, glucose metabolic disorders, and mitochondrial dysfunction in ovary tissue, ultimately compromising oocyte quality.


Subject(s)
Acrylamide , Citric Acid Cycle , Oocytes , Ovary , Animals , Acrylamide/toxicity , Oocytes/drug effects , Female , Citric Acid Cycle/drug effects , Mice , Ovary/drug effects , Apoptosis/drug effects , Mitochondria/drug effects
15.
Anal Chem ; 96(26): 10662-10668, 2024 07 02.
Article in English | MEDLINE | ID: mdl-38875183

ABSTRACT

The uptake of plastic particles by plants and their transport through the food chain make great risks to biota and human health. Therefore, it is important to trace plastic particles in the plant. Traditional fluorescence imaging in plants usually suffers significant autofluorescence background. Here, we report a persistent luminescence nanoplatform for autofluorescence-free imaging and quantitation of submicrometer plastic particles in plant. The nanoplatform was fabricated by doping persistent luminescence nanoparticles (PLNPs) onto polystyrene (PS) nanoparticles. Cr3+-doped zinc gallate PLNP was employed as the dopant for autofluorescence-free imaging due to its persistent luminescence nature. In addition, the Ga element in PLNP was used as a proxy to quantify the PS in the plant by inductively coupled plasma mass spectrometry (ICP-MS). Thus, the developed nanoplatform allows not only dual-mode autofluorescence-free imaging (persistent luminescence and laser-ablation ICP-MS) but also ICP-MS quantitation for tracking PS in plant. Application of this nanoplatform in a typical plant model Arabidopsis thaliana revealed that PS mainly distributed in the root (>99.45%) and translocated very limited (<0.55%) to the shoot. The developed nanoplatform has great potential for quantitative tracing of submicrometer plastic particles to investigate the environmental process and impact of plastic particles.


Subject(s)
Arabidopsis , Nanoparticles , Arabidopsis/chemistry , Nanoparticles/chemistry , Luminescence , Plastics/chemistry , Particle Size , Polystyrenes/chemistry , Optical Imaging
16.
Clin Exp Med ; 24(1): 135, 2024 Jun 22.
Article in English | MEDLINE | ID: mdl-38907744

ABSTRACT

Ferroptosis and cuproptosis are recently discovered forms of cell death that have gained interest as potential cancer treatments, particularly for hepatocellular carcinoma. Long non-coding RNAs (lncRNAs) influence cancer cell activity by interacting with various nucleic acids and proteins. However, the role of ferroptosis and cuproptosis-related lncRNAs (FCRLs) in cancer remains underexplored. Ferroptosis and cuproptosis scores for each sample were assessed using Gene Set Variation Analysis (GSVA). Weighted correlation network analysis identified the FCRLs most relevant to our study. A risk model based on FCRLs was developed to categorize patients into high-risk and low-risk groups. We then compared overall survival (OS), tumor immune microenvironment, and clinical characteristics between these groups. The IPS score and ImmuCellAI webpage were used to predict the association between FCRL-related signatures and immunotherapy response. Finally, we validated the accuracy of FCRLs in hepatocellular carcinoma cell lines using induction agents (elesclomol and erastin). Patients in different risk subgroups showed significant differences in OS, immune cell infiltration, pathway activity, and clinical characteristics. Cellular assays revealed significant changes in the expression of AC019080.5, AC145207.5, MIR210HG, and LINC01063 in HCC cell lines following the addition of ferroptosis and cuproptosis inducers. We created a signature of four FCRLs that accurately predicted survival in HCC patients, laid the foundation for basic research related to ferroptosis and cuproptosis in hepatocellular carcinoma, and provided therapeutic recommendations for HCC patients.


Subject(s)
Carcinoma, Hepatocellular , Ferroptosis , Liver Neoplasms , RNA, Long Noncoding , Humans , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/pathology , Ferroptosis/genetics , Liver Neoplasms/genetics , Liver Neoplasms/pathology , RNA, Long Noncoding/genetics , Prognosis , Gene Expression Regulation, Neoplastic , Cell Line, Tumor , Tumor Microenvironment/genetics , Male , Female , Biomarkers, Tumor/genetics , Middle Aged
17.
Phytomedicine ; 131: 155765, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38851105

ABSTRACT

BACKGROUND: Infection by Toxoplasma gondii can lead to severe pneumonia, with current treatments being highly inadequate. The NLRP3 inflammasome is one member of the NOD-like receptor family with a pyrin domain, which is crucial in the innate immune defense against T. gondii. Research has shown that resveratrol (RSV) prevents lung damage caused by this infection by inhibiting the T. gondii-derived heat shock protein 70/TLR4/NF-κB pathway, thus reducing the macrophage-driven inflammatory response. However, it should be mentioned that the participation of NLRP3 inflammasome in the immune response to the lung injuries caused by T. gondii infections is not entirely clear. PURPOSE: This study aims to clarify how RSV ameliorates lung damage triggered by Toxoplasma gondii infection, with a particular focus on the pathway involving TLR4, NF-κB, and the NLRP3 inflammasome. METHODS: Both in vitro and in vivo models of infection were developed by employing the RH strain of T. gondii in BALB/c mice and RAW 264.7 macrophage cell lines. The action mechanism of RSV was explored using techniques such as molecular docking, surface plasmon resonance, ELISA, Western blot, co-immunoprecipitation, and immunofluorescence staining. RESULTS: Findings indicate that the suppression of TLR4 or NF-κB impacts the levels of proteins associated with the NLRP3 inflammasome pathway. Additionally, a significant affinity for binding between RSV and NLRP3 was observed. Treatment with RSV led to a marked reduction in the activation and formation of the NLRP3 inflammasome within lung tissues and RAW 264.7 cells, alongside a decrease in IL-1ß concentrations in the bronchoalveolar lavage fluid. These outcomes align with those seen when using the NLRP3 inhibitor CY-09. Moreover, the application of CY-09 prior to RSV negated the latter's anti-inflammatory properties. CONCLUSION: Considering insights from previous research alongside the outcomes of the current investigation, it appears that the TLR4/NF-κB/NLRP3 signaling pathway emerges as a promising target for immunomodulation to alleviate lung injury from T. gondii infection. The evidence gathered in this study lays the groundwork for the continued exploration and potential future clinical deployment of RSV as a therapeutic agent with anti-Toxoplasma properties and the capability to modulate the inflammatory response.


Subject(s)
Inflammasomes , Mice, Inbred BALB C , NF-kappa B , NLR Family, Pyrin Domain-Containing 3 Protein , Pneumonia , Resveratrol , Toll-Like Receptor 4 , Toxoplasma , Resveratrol/pharmacology , Animals , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Mice , Inflammasomes/drug effects , Inflammasomes/metabolism , RAW 264.7 Cells , Toll-Like Receptor 4/metabolism , Pneumonia/drug therapy , Pneumonia/parasitology , Toxoplasma/drug effects , NF-kappa B/metabolism , Toxoplasmosis/drug therapy , Lung/drug effects , Lung/parasitology , Molecular Docking Simulation , Female , Signal Transduction/drug effects , Macrophages/drug effects
18.
Eur J Neurosci ; 59(10): 2535-2548, 2024 May.
Article in English | MEDLINE | ID: mdl-38720367

ABSTRACT

The maturation of forebrain dopamine circuitry occurs over multiple developmental periods, extending from early postnatal life until adulthood, with the precise timing of maturation defined by the target region. We recently demonstrated in the adult mouse brain that axon terminals arising from midbrain dopamine neurons innervate the anterior corpus callosum and that oligodendrocyte lineage cells in this white matter tract express dopamine receptor transcripts. Whether corpus callosal dopamine circuitry undergoes maturational changes between early adolescence and adulthood is unknown but may be relevant to understanding the dramatic micro- and macro-anatomical changes that occur in the corpus callosum of multiple species during early adolescence, including in the degree of myelination. Using quantitative neuroanatomy, we show that dopamine innervation in the forceps minor, but not the rostral genu, of the corpus callosum, is greater during early adolescence (P21) compared to adulthood (>P90) in wild-type mice. We further demonstrate with RNAscope that, as in the adult, Drd1 and Drd2 transcripts are expressed at higher levels in oligodendrocyte precursor cells (OPCs) and decline as these cells differentiate into oligodendrocytes. In addition, the number of OPCs that express Drd1 transcripts during early adolescence is double the number of those expressing the transcript during early adulthood. These data further implicate dopamine in axon myelination and myelin regulation. Moreover, because developmental (activity-independent) myelination peaks during early adolescence, with experience-dependent (activity-dependent) myelination greatest during early adulthood, our data suggest that potential roles of dopamine on callosal myelination shift between early adolescence and adulthood, from a developmental role to an experience-dependent role.


Subject(s)
Corpus Callosum , Mice, Inbred C57BL , Receptors, Dopamine D1 , Receptors, Dopamine D2 , Animals , Mice , Corpus Callosum/metabolism , Corpus Callosum/growth & development , Receptors, Dopamine D1/metabolism , Receptors, Dopamine D2/metabolism , Receptors, Dopamine D2/genetics , Male , Dopaminergic Neurons/metabolism , Dopamine/metabolism , Oligodendrocyte Precursor Cells/metabolism , Female
19.
J Colloid Interface Sci ; 662: 11-18, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38335735

ABSTRACT

Near-infrared (NIR)-emitting persistent luminescence nanoparticles (PLNPs) are ideal optical imaging contrast reagents characterized by autofluorescence-free optical imaging for their frontier applications in long-term bioimaging. Preparation of uniform small-sized PLNPs with excellent luminescence performance is crucial for biomedical applications, but challenging. Here, we report a facile magnesium doping strategy to achieve size-independent boost of NIR persistent luminescence in typical and most concerned ZnGa2O4:Cr3+ PLNPs. This strategy relies on the doping of Mg2+ ions that with similar size of Zn2+ ions in the host lattice matrix, and concomitant to the electron traps tailoring tuned by varying the feed ratio of Mg2+. The optimum Mg2+-doped PLNPs give a long afterglow time (signal-to-noise ratio (SNR) = 31.6 at 30 d) without changing the desirable uniform sub-10 nm size of the original nanocrystals. The appropriate increase of the depth and concentration of electron trap contribute jointly to the enhancement of lifetime (488 % longer, 20.57 s) and afterglow time for 700 nm persistent luminescence. Meanwhile, these PLNPs keep the original excellent rechargeability and promote over 60 times increase of SNR in renewable in vivo imaging. This simple strategy provides a basis for new opportunities to address the critical challenge of effective optical performance boost in small-sized PLNPs.

20.
Insects ; 14(12)2023 Nov 28.
Article in English | MEDLINE | ID: mdl-38132588

ABSTRACT

Aerosol insecticides are widely used in stored product insect management programs in food facilities. Previous research has shown spatial variation in aerosol efficacy within facilities, but information on how spatial patterns of aerosol droplet concentration, size distribution, dispersal, and deposition contribute to this variation in efficacy is limited. This study involved two aerosol application systems: a high-pressure cylinder containing TurboCide Py-75® with pyriproxyfen IGR (ChemTech Ltd., Des Moines, IA, USA) and a hand-held fogger containing Pyrocide 100® (MGK, Minneapolis, MN, USA) with Diacon II which contains methoprene IGR (Wellmark, Schaumburg, IL, USA). These systems were used at single or multiple application locations. The spray trials were conducted in a small-scale flour mill, Hall Ross Flour Mill (Kansas State University, Manhattan, KS, USA). The droplet size distributions were monitored at multiple positions within the room using nine aerodynamic particle sizing (APS, TSI Incorp, Shoreview, MN, USA) instruments. The APS data collected over the treatment period were summarized into a mass concentration index (MCI), which ranged from 155 to 2549 mg/m3 for Turbocide and 235-5658 mg/m3 for Pyrocide. A second parameter called the Deposition Index (Dep.Idx) was derived to estimate potential insecticide depositions on the floor and has units of g/m2. The Dep.Idx was below 5.3 g/m2 for most Turbocide applications, while the Dep.Idx was below 8.4 g/m2 for most Pyrocide applications. The MCI and Dep.Idx values varied with APS position and spray application location, with proximity to the aerosol application location and degree of obstruction between the release point and APS position contributing to this variation. We assessed the relationship between aerosol droplet parameters and insect efficacy using Tribolium confusum Jacqueline DuVal, the confused flour beetle. The adults were treated directly, while the larvae were treated two weeks later during the residual test (previously published). For Turbocide, efficacy against adults increased with MCI and Dep.Idx values, but for residual efficacy of the IGR, efficacy was high at all aerosol droplet values, so no relationship was apparent. In contrast, the relationship between Pyrocide deposition and adult insect efficacy was highly variable. But with larval insect efficacy, residual larvae control was directly related to increases in Pyrocide MCI and Dep.Idx. Contour plots of Dep.Idx values were developed, which could be used to predict areas of the mill that are not receiving an adequate application rate, and this could be used to develop more effective application strategies for aerosol insecticides in food facilities.

SELECTION OF CITATIONS
SEARCH DETAIL