Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters








Database
Language
Publication year range
1.
Front Plant Sci ; 15: 1374228, 2024.
Article in English | MEDLINE | ID: mdl-38803599

ABSTRACT

Environmental stresses are the main constraints on agricultural productivity and food security worldwide. This issue is worsened by abrupt and severe changes in global climate. The formation of sugarcane yield and the accumulation of sucrose are significantly influenced by biotic and abiotic stresses. Understanding the biochemical, physiological, and environmental phenomena associated with these stresses is essential to increase crop production. This review explores the effect of environmental factors on sucrose content and sugarcane yield and highlights the negative effects of insufficient water supply, temperature fluctuations, insect pests, and diseases. This article also explains the mechanism of reactive oxygen species (ROS), the role of different metabolites under environmental stresses, and highlights the function of environmental stress-related resistance genes in sugarcane. This review further discusses sugarcane crop improvement approaches, with a focus on endophytic mechanism and consortium endophyte application in sugarcane plants. Endophytes are vital in plant defense; they produce bioactive molecules that act as biocontrol agents to enhance plant immune systems and modify environmental responses through interaction with plants. This review provides an overview of internal mechanisms to enhance sugarcane plant growth and environmental resistance and offers new ideas for improving sugarcane plant fitness and crop productivity.

2.
Crit Rev Biotechnol ; : 1-9, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38719539

ABSTRACT

Climate change-related environmental stresses can negatively impact crop productivity and pose a threat to sustainable agriculture. Plants have a remarkable innate ability to detect a broad array of environmental cues, including stresses that trigger stress-induced regulatory networks and signaling pathways. Transcriptional activation of plant pathogenesis related-1 (PR-1) proteins was first identified as an integral component of systemic acquired resistance in response to stress. Consistent with their central role in immune defense, overexpression of PR-1s in diverse plant species is frequently used as a marker for salicylic acid (SA)-mediated defense responses. Recent advances demonstrated how virulence effectors, SA signaling cascades, and epigenetic modifications modulate PR-1 expression in response to environmental stresses. We and others showed that transcriptional regulatory networks involving PR-1s could be used to improve plant resilience to stress. Together, the results of these studies have re-energized the field and provided long-awaited insights into a possible function of PR-1s under extreme environmental stress.

3.
Plants (Basel) ; 13(6)2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38592870

ABSTRACT

Sugarcane (Saccharum spp.), a major cash crop that is an important source of sugar and bioethanol, is strongly influenced by the impacts of biotic and abiotic stresses. The intricate polyploid and aneuploid genome of sugarcane has shown various limits for conventional breeding strategies. Nonetheless, biotechnological engineering currently offers the best chance of introducing commercially significant agronomic features. In this study, an efficient Agrobacterium-mediated transformation system that uses the herbicide-resistant CP4-EPSPS gene as a selection marker was developed. Notably, all of the plants that were identified by PCR as transformants showed significant herbicide resistance. Additionally, this transformation protocol also highlighted: (i) the high yield of transgenic lines from calli (each gram of calli generated six transgenic lines); (ii) improved selection; and (iii) a higher transformation efficiency. This protocol provides a reliable tool for a routine procedure for the generation of resilient sugarcane plants.

4.
Front Plant Sci ; 11: 596918, 2020.
Article in English | MEDLINE | ID: mdl-33324438

ABSTRACT

This study aimed to prepare the sugar industry for the possible introduction of genetically modified (GM) sugarcane and derived retail sugar products and to address several potential public concerns regarding the characteristics and safety of these products. GM sugarcane lines with integrated Cry1Ab and EPSPS foreign genes were used for GM sugar production. Traditional PCR, real-time fluorescent quantitative PCR (RT-qPCR), and enzyme-linked immunosorbent assay (ELISA) were performed in analyzing leaves, stems, and other derived materials during sugar production, such as fibers, clarified juices, filter mud, syrups, molasses, and final GM sugar product. The toxicity of GM sugar was examined with a feeding bioassay using Helicoverpa armigera larvae. PCR and RT-qPCR results showed that the leaves, stems, fibers, juices, syrups, filter mud, molasses, and white granulated sugar from GM sugarcane can be distinguished from those derived from non-GM sugarcane. The RT-qPCR detection method using short amplified product primers was more accurate than the traditional PCR method. Molecular analysis results indicated that trace amounts of DNA residues remain in GM sugar, and thus it can be accurately characterized using molecular analysis methods. ELISA results showed that only the leaves, stems, fibers, and juices sampled from the GM sugarcane differed from those derived from the non-GM sugarcane, indicating that filter mud, syrup, molasses, and white sugar did not contain detectable Cry1Ab and EPSPS proteins. Toxicity analysis showed that the GM sugar was not toxic to the H. armigera larvae. The final results showed that the GM sugar had no active proteins despite containing trace amounts of DNA residues. This finding will help to pave the way for the commercialization of GM sugarcane and production of GM sugar.

SELECTION OF CITATIONS
SEARCH DETAIL