Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 143
Filter
1.
Biomaterials ; 313: 122800, 2025 Feb.
Article in English | MEDLINE | ID: mdl-39241551

ABSTRACT

The (002) crystallographic plane-oriented hydroxyapatite (HA) and anatase TiO2 enable favorable hydrophilicity, osteogenesis, and biocorrosion resistance. Thus, the crystallographic plane control in HA coating and crystalline phase control in TiO2 is vital to affect the surface and interface bioactivity and biocorrosion resistance of titanium (Ti) implants. However, a corresponding facile and efficient fabrication method is absent to realize the HA(002) mineralization and anatase TiO2 formation on Ti. Herein, we utilized the predominant Ti(0002) plane of the fibrous-grained titanium (FG Ti) to naturally form anatase TiO2 and further achieve a (002) basal plane oriented nanoHA (nHA) film through an in situ mild hydrothermal growth strategy. The formed FG Ti-nHA(002) remarkably improved hydrophilicity, mineralization, and biocorrosion resistance. Moreover, the nHA(002) film reserved the microgroove-like topological structure on FG Ti. It could enhance osteogenic differentiation through promoted contact guidance, showing one order of magnitude higher expression of osteogenic-related genes. On the other hand, the nHA(002) film restrained the osteoclast activity by blocking actin ring formation. Based on these capacities, FG Ti-nHA(002) improved new bone growth and binding strength in rabbit femur implantation, achieving satisfactory osseointegration within 2 weeks.


Subject(s)
Durapatite , Osseointegration , Titanium , Titanium/chemistry , Durapatite/chemistry , Animals , Osseointegration/drug effects , Rabbits , Osteogenesis/drug effects , Corrosion , Mice , Coated Materials, Biocompatible/chemistry , Coated Materials, Biocompatible/pharmacology , Cell Differentiation/drug effects
2.
Materials (Basel) ; 17(18)2024 Sep 20.
Article in English | MEDLINE | ID: mdl-39336355

ABSTRACT

Seasonal frozen soil has significant impacts on changes in soil mechanical properties, settlement, and damage to foundations. In order to study variations in the temperature and horizontal freezing force of loess during three-dimensional freezing, a three-dimensional freezing model test of loess was carried out. This experiment analyzed and studied the soil temperature change distribution characteristics, horizontal freezing force distribution rules, and water migration phenomena caused by temperature. The research results show that the temperature change in soil samples exhibits a "ring-like" decrease from the outside to the inside. When the soil temperature reaches the supercooling point, the cooling curve jumps and rises, and this is accompanied by a stable section with constant temperature. In the late freezing period, the temperature rate drops slowly. Under the action of freezing, the horizontal freezing forces at different positions have similar change characteristics and can be divided into four change stages: stable stage, rapid freezing stage, "secondary" freezing stage, and freezing-shrinkage-rebound stable stage. At lower moisture contents, loess samples undergo freeze-thaw shrinkage during the freezing process. During the rapid freezing stage of soil samples, the water in the soil sample migrates and causes secondary freezing. After the rapid freezing stage, the soil temperature continues to decrease, and the horizontal freezing force no longer decreases.

3.
Biomater Sci ; 2024 Sep 13.
Article in English | MEDLINE | ID: mdl-39267609

ABSTRACT

Chemodynamic therapy (CDT) utilizing the Fenton reaction to convert hydrogen peroxide (H2O2) into cytotoxic hydroxyl radicals (˙OH) has recently drawn extensive interest in tumor treatment. However, the therapeutic efficiency of CDT often suffers from high concentrations of glutathione (GSH), insufficient endogenous H2O2 and inefficient Fenton activity. Herein, a GSH-depleting and H2O2 self-providing nanosystem that can efficiently load copper ions and doxorubicin (DOX) (MSN-Cu2+-DOX) to induce enhanced CDT and chemotherapy is proposed. The results show that MSN-Cu2+-DOX could release Cu2+ and DOX under acidic conditions. Particularly, both the released Cu2+ and Cu2+ in MSN-Cu2+-DOX are available for ˙OH production via a Fenton-like reaction for CDT. Meanwhile, Cu2+ undergoes a reduction to Cu+ by depleting overexpressed GSH, thereby enhancing CDT. Moreover, the released DOX could not only be used for chemotherapy, but also promote the generation of endogenous H2O2 to improve the efficiency of a Cu-based Fenton-like reaction. Resultantly, this nanosystem featuring Fenton-like activity, GSH consumption, H2O2 self-sufficiency and chemotherapy exhibits a great antitumor effect with a tumor inhibition ratio of 93.05%. Overall, this study provides a promising strategy to enhance CDT for effective tumor therapy.

5.
Hum Cell ; 37(6): 1649-1662, 2024 Nov.
Article in English | MEDLINE | ID: mdl-39190266

ABSTRACT

As periodontal progenitor cells, human dental follicle stem cells (hDFCs) play an important role in regenerative medicine research. Mechanical stimuli exert different regulatory effects on various functions of stem cells. Mechanosensitive ion channels can perceive and transmit mechanical signals. Piezo1 is a novel mechanosensitive cation channel dominated by Ca2+ permeation. The yes-associated protein 1 (YAP1) and mitogen-activated protein kinase (MAPK) pathways can respond to mechanical stimuli and play important roles in cell growth, differentiation, apoptosis, and cell cycle regulation. In this study, we demonstrated that Piezo1 was able to transduce cyclic tension stress (CTS) and promote the osteogenic differentiation of hDFCs by applying CTS of 2000 µstrain to hDFCs. Further investigation of this mechanism revealed that CTS activated Piezo1 in hDFCs and resulted in increased levels of intracellular Ca2+, YAP1 nuclear translocation, and phosphorylated protein expression levels of extracellular signalling-associated kinase 1/2 (ERK 1/2) and Jun amino-terminal kinase 1/2/3 (JNK 1/3) of the MAPK pathway family. However, when Piezo1 was knocked down in the hDFCs, all these increases disappeared. We conclude that CTS activates Piezo1 expression and promotes its osteogenesis via Ca2+/YAP1/MAPK in hDFCs. Appropriate mechanical stimulation promotes the osteogenic differentiation of hDFCs via Piezo1. Targeting Piezo1 may be an effective strategy to regulate the osteogenic differentiation of hDFCs, contributing to MSC-based therapies in the field of bone tissue engineering.


Subject(s)
Cell Differentiation , Dental Sac , Ion Channels , Osteogenesis , Stem Cells , Up-Regulation , YAP-Signaling Proteins , Humans , Cell Differentiation/genetics , Osteogenesis/genetics , Osteogenesis/physiology , Ion Channels/genetics , Ion Channels/metabolism , Ion Channels/physiology , Stem Cells/physiology , Stem Cells/cytology , Stem Cells/metabolism , Dental Sac/cytology , Dental Sac/metabolism , YAP-Signaling Proteins/genetics , YAP-Signaling Proteins/physiology , Cells, Cultured , Stress, Mechanical , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/physiology , Transcription Factors/metabolism , Transcription Factors/genetics , Tensile Strength , Gene Expression/genetics , MAP Kinase Signaling System/genetics , MAP Kinase Signaling System/physiology , Calcium/metabolism
6.
ChemSusChem ; : e202401713, 2024 Aug 26.
Article in English | MEDLINE | ID: mdl-39187438

ABSTRACT

Deciphering the fine structure has always been a crucial approach to unlocking the distinct advantages of high activity, selectivity, and stability in single-atom catalysts (SACs). However, the complex system and unclear catalytic mechanism have obscured the significance of exploring the fine structure. Therefore, we endeavored to develop a three-component strategy to enhance oxygen reduction reaction (ORR), delving deep into the profound implications of the fine structure, focusing on central atoms, coordinating atoms, and environmental atoms. Firstly, the mechanism by which the chemical state and element type of central atoms influence catalytic performance is discussed. Secondly, the significance of coordinating atoms in SACs is analyzed, considering both the number and type. Lastly, the impact of environmental atoms in SACs is reviewed, encompassing existence state and atomic structure. Thorough analysis and summarization of how the fine structure of SACs influences the ORR have the potential to offer valuable insights for the accurate design and construction of SACs.

7.
Front Immunol ; 15: 1416375, 2024.
Article in English | MEDLINE | ID: mdl-39131158

ABSTRACT

With the rapid global spread of COVID-19 and the continuous emergence of variants, there is an urgent need to develop safe and effective vaccines. Here, we developed a novel mRNA vaccine, HC009, based on new formulation by the QTsome delivery platform. Immunogenicity results showed that the prime-boost immunization strategy with HC009 was able to induce robust and durable humoral immunity, as well as Th1-biased cellular responses in rodents or non-human primates (NHPs). After further challenge with live SARS-CoV-2 virus, HC009 provided adequate protection against virus infection in hACE2 transgenic mice. Therefore, HC009 could provide significant immune protection against SARS-CoV-2.


Subject(s)
Antibodies, Viral , COVID-19 Vaccines , COVID-19 , Immunogenicity, Vaccine , Mice, Transgenic , SARS-CoV-2 , mRNA Vaccines , Animals , SARS-CoV-2/immunology , COVID-19 Vaccines/immunology , COVID-19/prevention & control , COVID-19/immunology , Mice , mRNA Vaccines/immunology , Antibodies, Viral/immunology , Antibodies, Viral/blood , Humans , Vaccines, Synthetic/immunology , Vaccines, Synthetic/administration & dosage , Immunity, Humoral , Female , Antibodies, Neutralizing/immunology , Antibodies, Neutralizing/blood , Mice, Inbred BALB C , Vaccine Efficacy
8.
ACS Appl Mater Interfaces ; 16(31): 40739-40752, 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-39047081

ABSTRACT

Oxidative stress (OS) is a major mediator of secondary brain injury following intracerebral hemorrhage (ICH). Thus, antioxidant therapy is emerging as an attractive strategy to combat ICH. To achieve both reactive oxygen species (ROS) scavenging ability and on-demand drug release ability, we constructed a novel polydopamine (PDA)-coated diselenide-bridged mesoporous silica nanoparticle (DSeMSN) drug delivery system (PDA-DSeMSN). Edaravone (Eda) was blocked in the pores of DSeMSN by covering the pores with PDA as a gatekeeper. The drug maintained nearly "zero release" before reaching the lesion site, while in the ROS-enriched circumstances, the PDA shell went through degradation and the doped diselenide bonds broke up, triggering the disintegration of nanoparticles and leading to Eda release. Interestingly, the ROS-degradable property of the PDA shell and diselenide bond endowed the system with enhanced ROS-eliminating capacity. The synergistic effect of ROS-responsive drug delivery and ROS-scavenging PDA-DSeMSN showed efficient antioxidative and mitochondria protective performance without apparent toxicity in vitro. Importantly, PDA-DSeMSN@Eda through intravenous administration specifically accumulated in perihematomal sites and demonstrated robust neuroprotection in an ICH mouse model through antioxidative and antiapoptotic effects with high biological safety. Thus, the PDA-DSeMSN platform holds tremendous potential as an excellent carrier for on-demand delivery of drugs and provides a new and effective strategy for the clinical treatment of ICH.


Subject(s)
Cerebral Hemorrhage , Edaravone , Indoles , Nanoparticles , Reactive Oxygen Species , Silicon Dioxide , Animals , Silicon Dioxide/chemistry , Cerebral Hemorrhage/drug therapy , Cerebral Hemorrhage/pathology , Reactive Oxygen Species/metabolism , Mice , Nanoparticles/chemistry , Edaravone/chemistry , Edaravone/pharmacology , Indoles/chemistry , Indoles/pharmacology , Porosity , Polymers/chemistry , Polymers/pharmacology , Free Radical Scavengers/chemistry , Free Radical Scavengers/pharmacology , Male , Antioxidants/chemistry , Antioxidants/pharmacology , Oxidative Stress/drug effects
9.
Am J Transl Res ; 16(6): 2699-2710, 2024.
Article in English | MEDLINE | ID: mdl-39006281

ABSTRACT

BACKGROUND: Evidence indicates that the risk of developing a secondary ovarian cancer (OC) is correlated with estrogen receptor (ER) status. However, the clinical significance of the relationship between ER-associated breast cancer (BC) and clear cell ovarian cancer (CCOC) remains elusive. METHODS: Independent single nucleotide polymorphisms (SNPs) strongly correlated with exposure were extracted, and those associated with confounders and outcomes were removed using the PhenoScanner database. SNP effects were extracted from the outcome datasets with minor allele frequency > 0.01 as the filtration criterion. Next, valid instrumental variables (IVs) were obtained by harmonizing exposure and outcome effects and further filtered based on F-statistics (> 10). Mendelian randomization (MR) assessment of valid IVs was carried out using inverse variance weighted (IVW), MR Egger (ME), weighted median (WM), and multiplicative random effects-inverse variance weighted (MRE-IVW) methods. For sensitivity analysis and visualization of MR findings, a heterogeneity test, a pleiotropy test, a leave-one-out test, scatter plots, forest plots, and funnel plots were employed. RESULTS: MR analyses with all four methods revealed that CCOC was not causally associated with ER-negative BC (IVW results: odds ratio (OR) = 0.89, 95% confidence interval (CI) = 0.66-1.20, P = 0.431) or ER-positive BC (IVW results: OR = 0.99, 95% CI = 0.88-1.12, P = 0.901). F-statistics were computed for each valid IV, all of which exceeded 10. The stability and reliability of the results were confirmed by sensitivity analysis. CONCLUSIONS: Our findings indicated that CCOC dids not have a causal association with ER-associated BC. The absence of a definitive causal link between ER-associated BC and CCOC suggested a minimal true causal influence of ER-associated BC exposure factors on CCOC. These results indicated that individuals afflicted by ER-associated BC could alleviate concerns regarding the developing of CCOC, thereby aiding in preserving their mental well-being stability and optimizing the efficacy of primary disease treatment.

10.
Sci Rep ; 14(1): 14641, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38918422

ABSTRACT

Underground coal seam mining significantly alters the stress and energy distribution within the overlying rock, leading to eventual structural degradation. Therefore, it is imperative to quantitatively identify the temporal and spatial characteristics of stress evolution of overlying rock caused by mining. This paper introduces a novel rock stress model integrating entropy and a spatial-temporal cube. Similar material model tests are used to identify the abrupt entropy changes within the mining rock, and the trend analysis is carried out to describe the spatial-temporal evolution law of stress during mining. Experimental findings indicate elevated stress levels in the unmined rock preceding and following the panel, as well as within specific rock strata above it. Definitively, dynamic stress arches within the surrounding rock of the stope predominantly bear and distribute the load and pressure from the overlying rock, and each stress mutation is accompanied by a sudden stress entropy change. Over time, z-score shows that the noticeable reduction in mining-induced overburden stress becomes increasingly pronounced, especially in the water-conducting fracture zone. The model's bifurcation set serves as the comprehensive criterion for the entropy-induced sudden changes in the rock system, signifying overall failure.

11.
Adv Mater ; 36(27): e2403078, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38583072

ABSTRACT

Composite polymer solid electrolytes (CPEs), possessing good rigid flexible, are expected to be used in solid-state lithium-metal batteries. The integration of fillers into polymer matrices emerges as a dominant strategy to improve Li+ transport and form a Li+-conducting electrode-electrolyte interface. However, challenges arise as traditional fillers: 1) inorganic fillers, characterized by high interfacial energy, induce agglomeration; 2) organic fillers, with elevated crystallinity, impede intrinsic ionic conductivity, both severely hindering Li+ migration. Here, a concept of super-ionic conductor soft filler, utilizing a Li+ conductivity nanocellulose (Li-NC) as a model, is introduced which exhibits super-ionic conductivity. Li-NC anchors anions, and enhances Li+ transport speed, and assists in the integration of cathode-electrolyte electrodes for room temperature solid-state batteries. The tough dual-channel Li+ transport electrolyte (TDCT) with Li-NC and polyvinylidene fluoride (PVDF) demonstrates a high Li+ transfer number (0.79) due to the synergistic coordination mechanism in Li+ transport. Integrated electrodes' design enables stable performance in LiNi0.5Co0.2Mn0.3O2|Li cells, with 720 cycles at 0.5 C, and 88.8% capacity retention. Furthermore, the lifespan of Li|TDCT|Li cells over 4000 h and Li-rich Li1.2Ni0.13Co0.13Mn0.54O2|Li cells exhibits excellent performance, proving the practical application potential of soft filler for high energy density solid-state lithium-metal batteries at room temperature.

13.
Lupus ; 33(4): 365-374, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38320572

ABSTRACT

BACKGROUND: Systemic lupus erythematosus is an immunologically dysregulated disease characterized by the presence of multiple autoantibodies. In SLE, B lymphocytes contribute to the dysregulated production of autoantibodies and cytokines. Recently, we discovered that miR-99a-3p binds to both EIF4EBP1 and NCAPG mRNA and that lowering miR-99a-3p can promote B cell autophagy in SLE by increasing EIF4EBP1 expression. However, the functions of miR-99a-3p and NCAPG in SLE have not been extensively investigated. OBJECTIVE: This work aims to evaluate the levels of miR-99a-3p and NCAPG expression in SLE B cells and to determine whether the aberrant expression of miR-99a-3p and NCAPG contributes to the pathological mechanisms in SLE. METHODS: B lymphocytes were obtained through immunomagnetic negative selection. Using RT-qPCR, miR-99a-3p and NCAPG mRNA expressions in B lymphocytes and in the BALL-1 cell line were measured. To determine the relative abundance of NCAPG, PI3K, p-PI3K, AKT, and p-AKT, we normalize them to the level of ß-actin using Western blotting. Evaluation of miR-99a-3p and NCAPG's impact on cell proliferation was done utilizing CCK-8 assay. Using flow cytometry, the cell cycle and apoptosis were both measured. RESULTS: Comparing SLE B cells to healthy controls, miR-99a-3p expression was significantly downregulated. Additionally, it was observed that SLE B cells had significantly higher NCAPG mRNA expression. Blocking miR-99a-3p expression in BALL-1 cells with an antagomir elevated NCAPG expression, facilitated PI3K/AKT pathway activation, improved cell proliferation, raised the fraction of S-phase cells, and prevented cell apoptosis. The opposite effects of upregulated miR-99a-3p levels on BALL-1 cells were observed by using an agomir. Furthermore, the effect of decreased miR-99a-3p expression on cell proliferation was partially mediated by elevating NCAPG levels and activating the PI3K/AKT pathway. CONCLUSION: Our research indicates that lower miR-99a-3p expression in SLE B cells appears to boost B cell number via the NCAPG and PI3K/AKT pathways.


Subject(s)
Lupus Erythematosus, Systemic , MicroRNAs , Humans , Autoantibodies/pharmacology , Cell Cycle Proteins/metabolism , Cell Cycle Proteins/pharmacology , Cell Proliferation/genetics , MicroRNAs/genetics , MicroRNAs/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/genetics , RNA, Messenger , Signal Transduction
14.
Angew Chem Int Ed Engl ; 63(17): e202400619, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38403860

ABSTRACT

The unstable interface between Li metal and ethylene carbonate (EC)-based electrolytes triggers continuous side reactions and uncontrolled dendrite growth, significantly impacting the lifespan of Li metal batteries (LMBs). Herein, a bipolar polymeric protective layer (BPPL) is developed using cyanoethyl (-CH2CH2C≡N) and hydroxyl (-OH) polar groups, aiming to prevent EC-induced corrosion and facilitating rapid, uniform Li+ ion transport. Hydrogen-bonding interactions between -OH and EC facilitates the Li+ desolvation process and effectively traps free EC molecules, thereby eliminating parasitic reactions. Meanwhile, the -CH2CH2C≡N group anchors TFSI- anions through ion-dipole interactions, enhancing Li+ transport and eliminating concentration polarization, ultimately suppressing the growth of Li dendrite. This BPPL enabling Li|Li cell stable cycling over 750 cycles at 10 mA cm-2 for 2 mAh cm-2. The Li|LiNi0.8Mn0.1Co0.1O2 and Li|LiFePO4 full cells display superior electrochemical performance. The BPPL provides a practical strategy to enhanced stability and performance in LMBs application.

15.
Polymers (Basel) ; 16(1)2024 Jan 04.
Article in English | MEDLINE | ID: mdl-38201822

ABSTRACT

In the pursuit of advancing materials for methane storage, a critical consideration arises given the prominence of natural gas (NG) as a clean transportation fuel, which holds substantial potential for alleviating the strain on both energy resources and the environment in the forthcoming decade. In this context, a novel approach is undertaken, employing the rigid triptycene as a foundational building block. This strategy is coupled with the incorporation of dichloromethane and 1,3-dichloropropane, serving as rigid and flexible linkers, respectively. This combination not only enables cost-effective fabrication but also expedites the creation of two distinct triptycene-based hypercrosslinked polymers (HCPs), identified as PTN-70 and PTN-71. Surprisingly, despite PTN-71 manifesting an inferior Brunauer-Emmett-Teller (BET) surface area when compared to the rigidly linked PTN-70, it showcases remarkably enhanced methane adsorption capabilities, particularly under high-pressure conditions. At a temperature of 275 K and a pressure of 95 bars, PTN-71 demonstrates an impressive methane adsorption capacity of 329 cm3 g-1. This exceptional performance is attributed to the unique flexible network structure of PTN-71, which exhibits a pronounced swelling response when subjected to elevated pressure conditions, thus elucidating its superior methane adsorption characteristics. The development of these advanced materials not only signifies a significant stride in the realm of methane storage but also underscores the importance of tailoring the structural attributes of hypercrosslinked polymers for optimized gas adsorption performance.

16.
Regen Biomater ; 11: rbad111, 2024.
Article in English | MEDLINE | ID: mdl-38173764

ABSTRACT

Titanium (Ti) implants have been extensively used after surgical operations. Its surface bioactivity is of importance to facilitate integration with surrounding bone tissue, and ultimately ensure stability and long-term functionality of the implant. The plasmid DNA-activated matrix (DAM) coating on the surface could benefit osseointegration but is still trapped by poor transfection for further application, especially on the bone marrow mesenchymal stem cells (BMSCs) in vivo practical conditions. Herein, we constructed a DAM on the surface of fibrous-grained titanium (FG Ti) composed of phase-transition lysozyme (P) as adhesive, cationic arginine-rich lipid (RLS) as the transfection agent and plasmid DNA (pDNA) for bone morphology protein 2 (BMP2) expression. The cationic lipid RLS improved up to 30-fold higher transfection than that of commercial reagents (Lipofectamine 2000 and polyethyleneimine) on MSC. And importantly, Ti surface topology not only promotes the DAM to achieve high transfection efficiency (∼75.7% positive cells) on MSC due to the favorable combination but also reserves its contact induction effect for osteoblasts. Upon further exploration, the fibrous topology on FG Ti could boost pDNA uptake for gene transfection, and cell migration in MSC through cytoskeleton remodeling and induce contact guidance for enhanced osteointegration. At the same time, the cationic RLS together with adhesive P were both antibacterial, showing up to 90% inhibition rate against Escherichia coli and Staphylococcus aureus with reduced adherent microorganisms and disrupted bacteria. Finally, the FG Ti-P/pBMP2 implant achieved accelerated bone healing capacities through highly efficient gene delivery, aligned surface topological structure and increased antimicrobial properties in a rat femoral condylar defect model.

17.
Fluids Barriers CNS ; 21(1): 8, 2024 Jan 19.
Article in English | MEDLINE | ID: mdl-38243347

ABSTRACT

BACKGROUND: Blood brain barrier (BBB) breakdown is one of the key mechanisms of secondary brain injury following intracerebral hemorrhage (ICH). Astrocytes interact with endothelial and regulate BBB integrity via paracrine signaling factors. More and more studies reveal astrocyte-derived extracellular vesicles (ADEVs) as an important way of intercellular communication. However, the role of ADEV in BBB integrity after ICH remains unclear. METHODS: ADEVs were obtained from astrocytes with or without oxygen and glucose deprivation (OGD) pre-stimulation and the role of ADEVs in ICH was investigated using ICH mice model and ICH cell model. The potential regulatory effect of ADEVs on endothelial barrier integrity was identified by TEER, western blot and immunofluorescence in vitro. In vivo, functional evaluation, Evans-blue leakage and tight junction proteins (TJPs) expression were analyzed. MiRNA sequencing revealed that microRNA-27a-3p (miR-27a-3p) was differentially expressed miRNA in the EVs from OGD-pretreated astrocytes compared with normal control. The regulatory mechanism of miR-27a-3p was assessed using Luciferase assay, RT-PCR, western blot and immunofluorescence. RESULTS: OGD-activated astrocytes reduced hemin-induced endothelial hyper-permeability through secreting EVs. OGD-activated ADEVs alleviated BBB dysfunction after ICH in vivo and in vitro. MicroRNA microarray analysis indicated that miR-27a-3p is a major component that was highly expressed miRNA in OGD pretreated-ADEVs. OGD-ADEVs mitigated BBB injury through transferring miR-27a-3p into bEnd.3 cells and regulating ARHGAP25/Wnt/ß-catenin pathway. CONCLUSION: Taken together, these findings firstly revealed that miR-27a-3p, as one of the main components of OGD-pretreated ADEVs, attenuated BBB destruction and improved neurological deficits following ICH by regulating endothelial ARHGAP25/Wnt/ß-catenin axis. OGD-ADEVs might be a novel strategy for the treatment of ICH. this study implicates that EVs from OGD pre-stimulated astrocytes.


Subject(s)
Exosomes , MicroRNAs , Animals , Mice , Blood-Brain Barrier/metabolism , Astrocytes/metabolism , beta Catenin/metabolism , Endothelial Cells/metabolism , Exosomes/metabolism , Oxygen/metabolism , Glucose , MicroRNAs/genetics , MicroRNAs/metabolism , MicroRNAs/pharmacology , Cerebral Hemorrhage/metabolism
18.
Skin Res Technol ; 30(1): e13578, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38221782

ABSTRACT

BACKGROUND: There are no standards for evaluating skin photoaging. Dermoscopy is a non-invasive detection method that might be useful for evaluating photoaging. OBJECTIVE: To assess the correlation between the dermoscopic evaluation of photoaging and clinical and pathological evaluations. METHODS: The age, clinical evaluation (Fitzpatrick classification, Glogau Photoaging Classification, and Chung's standardized image ruler), histopathology (Masson staining and MMP-1 immunohistochemistry), and dermoscopy (Hu's and Isik's) of 40 donor skin samples were analyzed statistically, and Spearman rank correlation analysis was performed. RESULTS: There was a robust correlation between the total Hu scores and Isik dermoscopy. The correlation of dermoscopy with histopathology was higher than that of clinical evaluation methods. There is a strong correlation between telangiectases and lentigo. Xerosis, superficial wrinkle, diffuse erythema, telangiectases, and reticular pigmentation were significantly correlated with the three clinical evaluation methods. Superficial wrinkles were correlated with Masson, MMP-1, various clinical indicators, and other dermoscopic items. CONCLUSION: There is a good correlation between dermoscopy and clinical and histopathological examination. Dermoscopy might help evaluate skin photoaging.


Subject(s)
Lentigo , Skin Aging , Skin Neoplasms , Telangiectasis , Humans , Matrix Metalloproteinase 1 , Dermoscopy/methods , Telangiectasis/diagnostic imaging , Skin Neoplasms/pathology
19.
Small ; 20(8): e2305576, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37821400

ABSTRACT

Garnet solid electrolyte Li6.4 La3 Zr1.4 Ta0.6 O12 (LLZTO) is an excellent inorganic ceramic-type solid electrolyte; however, the presence of Li2 CO3 impurities on its surface hinders Li-ion transport and increases the interface impedance. In contrast to traditional methods of mechanical polishing, acid corrosion, and high-temperature reduction for removing Li2 CO3 , herein, a straightforward "waste-to-treasure" strategy is proposed to transform Li2 CO3 into Li3 PO4 and LiF in LiPF6 solution under 60 °C. It is found that the formation of Li3 PO4 during LLZTO pretreatment facilitates rapid Li-ion transport and enhances ionic conductivity, and the LLZTO/PAN composite polymer electrolyte shows the highest Li-ion transference number of 0.63. Additionally, the dense LiF layer serves to safeguard the internal garnet solid electrolyte against solvent decomposition-induced chemical adsorption. Symmetric Li/Li cells assembled with treated LLZTO/PAN composite electrolyte exhibit a critical current density of 1.1 mA cm-2 and a long lifespan of up to 700 h at a current density of 0.2 mA cm-2 . The Li/LiFePO4 solid-state cells demonstrate stable cycling performances for 141 mAh g-1 at 0.5 C, with capacity retention of 93.6% after 190 cycles. This work presents a novel approach to converting waste into valuable resources, offering the advantages of simple processes, and minimal side reactions.

20.
Genomics ; 116(1): 110770, 2024 01.
Article in English | MEDLINE | ID: mdl-38128704

ABSTRACT

Systemic Lupus Erythematosus (SLE) is an autoimmune sickness with unclear pathogenesis. The goal of this research was to reveal the heterogeneity of immune cells in SLE patients of Han and Zang nationality by single-cell RNA sequencing (scRNA-seq) and bioinformatics profiling. METHODS: A total of 94,102 peripheral blood mononuclear cells (PBMCs) from six volunteers with SLE (3 Zang, 3 Han) and six healthy controls were first conducted through scRNA-seq analysis. The immune cell subsets in the pathogenesis of SLE were analyzed as well. Real-time quantitative PCR (RT-qPCR) was applied to confirm the results of sc-RNA seq analysis. RESULTS: For the Tibetan samples, the ratios of Naïve CD4 RPS4Y1 cells, Naïve CD4 cells, Memory BC CD24 and Memory BC differed significantly between the SLE and control samples, while that of CD8 CTL MAL cells was significantly different between the two groups in Han nationality samples. Variable differentiation states of CD8 CTL MAL cells, CD8 CTL GZMK cells, and Naïve CD4 cells were detected through pseudotime analysis. Moreover, T-cell receptor (TCR) abundance was notably higher in Tibetan SLE specimens than that in controls, while B-cell receptor (BCR) abundance in Tibetan and Han samples was higher than in control groups. CONCLUSIONS: In summary, the immune cellular heterogeneity of SLE patients both Han and Zang nationality was explored based on various bioinformatics approaches, providing new perspectives for immunological characteristics of SLE among different ethnic groups.


Subject(s)
Leukocytes, Mononuclear , Lupus Erythematosus, Systemic , Humans , Cell Differentiation , Ethnicity , Lupus Erythematosus, Systemic/genetics , Sequence Analysis, RNA
SELECTION OF CITATIONS
SEARCH DETAIL