Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 58
Filter
1.
Sci Total Environ ; : 174537, 2024 Jul 06.
Article in English | MEDLINE | ID: mdl-38977088

ABSTRACT

Certain heavy metals have been correlated to an elevated risk of inflammation-related diseases and mortality. Nevertheless, the intricate relationships between metal exposure, inflammation and mortality remain unknown. We included 3741 adults with measurements of ten urinary heavy metals in the National Health and Nutritional Examination Survey (NHANES) 2005-2010, followed up to December 31, 2019. Low-grade systemic inflammation was evaluated by various markers, including C-reactive protein (CRP) and ratios derived from regular blood tests. We assessed associations between heavy metal and all-cause mortality using multivariate COX regressions. Then we assessed the mediation effect of low-grade systemic inflammation on the associations via Sobel Test. To gauge the systemic inflammatory potential of the multi-metal mixture and its correlation with all-cause mortality, a Metal Mixture Inflammatory Index (MMII) was developed using reduced rank regression (RRR) models. The association between MMII and all-cause mortality was explored via multivariate COX regressions. Cadmium, antimony and uranium displayed positive associations with mortality, with hazard ratios (HR) ranging from 1.18 to 1.46 (all P-FDR < 0.05). Mediation analyses revealed that the associations between specific heavy metals (cadmium and antimony) and mortality risk were slightly mediated by the low-grade systemic inflammation markers, with mediation proportions ranging from 3.11 % to 5.38 % (all P < 0.05). MMII, the weighted sum of 9 heavy metals, significantly predicted platelet-to-lymphocyte ratio (PLR) and CRP (ß = 0.10 and 1.16, all P < 0.05), was positively associated with mortality risk (HR 1.28, 95 % CI 1.14 to 1.43). Exposure to heavy metals might increase all-cause mortality, partly mediated by low-grade systemic inflammation. MMII, designed to assess the potential systemic inflammatory effects of exposure to multiple heavy metals, was closely related to the all-cause mortality risk. This study introduces MMII as an approach to evaluating co-exposure and its potential health effects comprehensively.

2.
Sci Total Environ ; 946: 174350, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38960203

ABSTRACT

There is limited evidence on the effects of intrauterine chromium (Cr) exposure on children's cognitive developmental delay (CDD). Further, little is known about the genetic factors in modifying the association between intrauterine Cr exposure and CDD. The present study involved 2361 mother-child pairs, in which maternal plasma Cr concentrations were assessed, a polygenic risk score for the child was constructed, and the child's cognitive development was evaluated using the Bayley Scales of Infant Development. The risks of CDD conferred by intrauterine Cr exposure in children with different genetic backgrounds were evaluated by logistic regression. The additive interaction between intrauterine Cr exposure and genetic factors was evaluated by calculating the relative excess risk due to interaction (RERI), attributable proportion due to interaction (AP), and synergy index (SI). According to present study, higher intrauterine Cr exposure was significantly associated with increased CDD risk [each unit increase in ln-transformed maternal plasma Cr concentration (ln-Cr): adjusted OR (95 % CI), 1.18 (1.04-1.35); highest vs lowest quartile: adjusted OR (95 % CI), 1.57 (1.10-2.23)]. The dose-response relationship of intrauterine Cr exposure and CDD for children with high genetic risk was more prominent [each unit increased ln-Cr: adjusted OR (95 % CI), 1.36 (1.09-1.70)]. Joint effects between intrauterine Cr exposure and genetic factors were found. Specifically, for high genetic risk carriers, the association between intrauterine Cr exposure and CDD was more evident [highest vs lowest quartile: adjusted OR (95 % CI), 2.33 (1.43-3.80)]. For those children with high intrauterine Cr exposure and high genetic risk, the adjusted AP was 0.39 (95 % CI, 0.07-0.72). Conclusively, intrauterine Cr exposure was a high-risk factor for CDD in children, particularly for those with high genetic risk. Intrauterine Cr exposure and one's adverse genetic background jointly contribute to an increased risk of CDD in children.

3.
Front Endocrinol (Lausanne) ; 15: 1419566, 2024.
Article in English | MEDLINE | ID: mdl-38883609

ABSTRACT

Background: Postmenopausal osteoporosis is a prevalent disease that affects the bone health of middle-aged and elderly women. The link between gut microbiota and bone health, known as the gut-bone axis, has garnered widespread attention. Methods: We employed a two-sample Mendelian randomization approach to assess the associations between gut microbiota with osteoclasts and postmenopausal osteoporosis, respectively. Single nucleotide polymorphisms associated with the composition of gut microbiota were used as instrumental variables. By analyzing large-scale multi-ethnic GWAS data from the international MiBioGen consortium, and combining data from the eQTLGen consortium and the GEFOS consortium, we identified microbiota related to osteoclasts and postmenopausal osteoporosis. Key genes were further identified through MAGMA analysis, and validation was performed using single-cell data GSE147287. Results: The outcomes of this study have uncovered significant associations within the gut microbiome community, particularly with the Burkholderiales order, which correlates with both an increase in osteoclasts and a reduced risk of postmenopausal osteoporosis. with an odds ratio (OR) of 0.400, and a P-value of 0.011. Further analysis using single-cell data allowed us to identify two key genes, FMNL2 and SRBD1, that are closely linked to both osteoclasts and osteoporosis. Conclusion: This study utilizing Mendelian randomization and single-cell data analysis, provides new evidence of a causal relationship between gut microbiota and osteoclasts, as well as postmenopausal osteoporosis. It was discovered that the specific microbial group, the Burkholderiales order, significantly impacts both osteoporosis and osteoclasts. Additionally, key genes FMNL2 and SRBD1 were identified, offering new therapeutic strategies for the treatment of postmenopausal osteoporosis.


Subject(s)
Gastrointestinal Microbiome , Genome-Wide Association Study , Mendelian Randomization Analysis , Osteoclasts , Osteoporosis, Postmenopausal , Polymorphism, Single Nucleotide , Humans , Osteoporosis, Postmenopausal/genetics , Osteoporosis, Postmenopausal/microbiology , Female , Gastrointestinal Microbiome/genetics , Middle Aged , Bone and Bones/microbiology , Aged
4.
Nat Commun ; 15(1): 4194, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38760364

ABSTRACT

The role of tumor-resident intracellular microbiota (TRIM) in carcinogenesis has sparked enormous interest. Nevertheless, the impact of TRIM-targeted antibacteria on tumor inhibition and immune regulation in the tumor microenvironment (TME) remains unexplored. Herein, we report long-term relapse-free survival by coordinating antibacteria with antitumor treatment, addressing the aggravated immunosuppression and tumor overgrowth induced by TRIM using breast and prostate cancer models. Combining Ag+ release with a Fenton-like reaction and photothermal conversion, simultaneous bacteria killing and multimodal antitumor therapy are enabled by a single agent. Free of immune-stimulating drugs, the agent restores antitumor immune surveillance and activates immunological responses. Secondary inoculation and distal tumor analysis confirm lasting immunological memory and systemic immune responses. A relapse-free survival of >700 days is achieved. This work unravels the crucial role of TRIM-targeted antibacteria in tumor inhibition and unlocks an unconventional route for immune regulation in TME and a complete cure for cancer.


Subject(s)
Tumor Microenvironment , Female , Male , Humans , Animals , Mice , Tumor Microenvironment/immunology , Tumor Microenvironment/drug effects , Breast Neoplasms/immunology , Breast Neoplasms/drug therapy , Breast Neoplasms/therapy , Breast Neoplasms/pathology , Cell Line, Tumor , Prostatic Neoplasms/immunology , Prostatic Neoplasms/therapy , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/pathology , Microbiota/drug effects , Silver/chemistry , Disease-Free Survival , Antineoplastic Agents/therapeutic use , Antineoplastic Agents/pharmacology , Neoplasm Recurrence, Local/immunology
5.
BMJ Open ; 14(3): e078782, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38490656

ABSTRACT

OBJECTIVES: This study aimed to investigate the impact of adjuvant chemotherapy (ACT) on survival outcomes in older women with hormone receptor-positive and human epidermal growth factor receptor 2-negative (HR+/HER2-) breast cancer (BC). DESIGN: A retrospective cohort study using data from the Surveillance, Epidemiology, and End Results database, which contains publicly available information from US cancer registries. SETTING AND PARTICIPANTS: The study included 45 762 older patients with BC aged over 65 years diagnosed between 2010 and 2015. METHODS: Patients were divided into two groups based on age: 65-79 years and ≥80 years. Propensity score matching (PSM) was employed to balance clinicopathological characteristics between patients who received ACT and those who did not. Data analysis used the χ2 test and Kaplan-Meier method, with a subgroup analysis conducted to identify potential beneficiaries of ACT. OUTCOME MEASURES: Overall survival (OS) and cancer-specific survival (CSS). RESULTS: Due to clinicopathological characteristic imbalances between patients with BC aged 65-79 years and those aged ≥80 years, PSM was used to categorise the population into two groups for analysis: the 65-79 years age group (n=38 128) and the ≥80 years age group (n=7634). Among patients aged 65-79 years, Kaplan-Meier analysis post-PSM indicated that ACT was effective in improving OS (p<0.05, HR=0.80, 95% CI 0.73 to 0.88), particularly in those with advanced disease stages, but did not show a significant benefit in CSS (p=0.09, HR=1.13, 95% CI 0.98 to 1.31). Conversely, for patients aged ≥80 years, ACT did not demonstrate any improvement in OS (p=0.79, HR=1.04, 95% CI 0.79 to 1.36) or CSS (p=0.09, HR=1.46, 95% CI 0.69 to 2.26) after matching. Subgroup analysis also revealed no positive impact on OS and CSS. CONCLUSIONS: Patients with HR+/HER2- BC ≥80 years of age may be considered exempt from ACT because no benefits were found in terms of OS and CSS.


Subject(s)
Breast Neoplasms , Humans , Female , Aged , Aged, 80 and over , Retrospective Studies , Propensity Score , SEER Program , Chemotherapy, Adjuvant/methods
6.
Biomolecules ; 14(3)2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38540712

ABSTRACT

Osteoarthritis (OA) is a debilitating joint disorder that affects millions of people worldwide. Despite its prevalence, our understanding of the underlying mechanisms remains incomplete. In recent years, transient receptor potential vanilloid (TRPV) channels have emerged as key players in OA pathogenesis. This review provides an in-depth exploration of the role of the TRPV pathway in OA, encompassing its involvement in pain perception, inflammation, and mechanotransduction. Furthermore, we discuss the latest research findings, potential therapeutic strategies, and future directions in the field, shedding light on the multifaceted nature of TRPV channels in OA.


Subject(s)
Osteoarthritis , Transient Receptor Potential Channels , Humans , Transient Receptor Potential Channels/metabolism , Mechanotransduction, Cellular , TRPV Cation Channels/genetics , TRPV Cation Channels/metabolism , Osteoarthritis/pathology , Inflammation
7.
Virol Sin ; 39(2): 177-193, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38272237

ABSTRACT

The persistent epidemic of human mpox, caused by mpox virus (MPXV), raises concerns about the future spread of MPXV and other poxviruses. MPXV is a typical zoonotic virus which can infect human and cause smallpox-like symptoms. MPXV belongs to the Poxviridae family, which has a relatively broad host range from arthropods to vertebrates. Cross-species transmission of poxviruses among different hosts has been frequently reported and resulted in numerous epidemics. Poxviruses have a complex linear double-strand DNA genome that encodes hundreds of proteins. Genes related to the host range of poxvirus are called host range genes (HRGs). This review briefly introduces the taxonomy, phylogeny and hosts of poxviruses, and then comprehensively summarizes the current knowledge about the cross-species transmission of poxviruses. In particular, the HRGs of poxvirus are described and their impacts on viral host range are discussed in depth. We hope that this review will provide a comprehensive perspective about the current progress of researches on cross-species transmission and HRG variation of poxviruses, serving as a valuable reference for academic studies and disease control in the future.


Subject(s)
Host Specificity , Phylogeny , Poxviridae Infections , Poxviridae , Animals , Humans , Poxviridae Infections/virology , Poxviridae Infections/transmission , Poxviridae/genetics , Poxviridae/classification , Poxviridae/physiology , Genome, Viral
8.
BMC Bioinformatics ; 25(1): 29, 2024 Jan 17.
Article in English | MEDLINE | ID: mdl-38233783

ABSTRACT

The impairment of sperm maturation is one of the major pathogenic factors in male subfertility, a serious medical and social problem affecting millions of global couples. Regrettably, the existing research on sperm maturation is slow, limited, and fragmented, largely attributable to the lack of a global molecular view. To fill the data gap, we newly established a database, namely the Sperm Maturation Database (SperMD, http://bio-add.org/SperMD ). SperMD integrates heterogeneous multi-omics data (170 transcriptomes, 91 proteomes, and five human metabolomes) to illustrate the transcriptional, translational, and metabolic manifestations during the entire lifespan of sperm maturation. These data involve almost all crucial scenarios related to sperm maturation, including the tissue components of the epididymal microenvironment, cell constituents of tissues, different pathological states, and so on. To the best of our knowledge, SperMD could be one of the limited repositories that provide focused and comprehensive information on sperm maturation. Easy-to-use web services are also implemented to enhance the experience of data retrieval and molecular comparison between humans and mice. Furthermore, the manuscript illustrates an example application demonstrated to systematically characterize novel gene functions in sperm maturation. Nevertheless, SperMD undertakes the endeavor to integrate the islanding omics data, offering a panoramic molecular view of how the spermatozoa gain full reproductive abilities. It will serve as a valuable resource for the systematic exploration of sperm maturation and for prioritizing the biomarkers and targets for precise diagnosis and therapy of male subfertility.


Subject(s)
Infertility, Male , Sperm Maturation , Male , Humans , Animals , Mice , Sperm Maturation/genetics , Semen , Spermatozoa/metabolism , Epididymis/metabolism , Infertility, Male/metabolism
9.
J Clin Transl Hepatol ; 12(1): 91-99, 2024 Jan 28.
Article in English | MEDLINE | ID: mdl-38250469

ABSTRACT

Nonalcoholic fatty liver disease (NAFLD) is a prevalent chronic liver condition with limited treatment options. Inflammation caused by metabolic disturbances plays a significant role in NAFLD development. Stimulator of interferon gene (STING), a critical regulator of innate immunity, induces the production of interferons and other pro-inflammatory factors by recognizing cytoplasmic DNA to defend against pathogen infection. The STING-mediated signaling pathway appears to play a vital role in hepatic inflammation, metabolic disorders, and even carcinogenesis. Promisingly, pharmacological interventions targeting STING have shown improvements in the pathological state of NAFLD. Macrophages, dendritic cells, natural killer cells, and T cell pathways regulated by STING present potential novel druggable targets for NAFLD treatment. Further research and development in this area may offer new therapeutic options for managing NAFLD effectively.

10.
Small ; 20(12): e2307408, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37940624

ABSTRACT

Nitrogen-doped titanium carbides (MXene) films exhibit extraordinary volumetric capacitance when high-concentration sulfuric acid electrolyte is utilized owing to the enhancement of pseudocapacitance. However, the energy storage mechanism of nitrogen-doped MXene is unclear due to the complex electrode structure and electrolyte ions' behavior. Here, based on pristine MXene (Ti3C2O2), three different MXene structures are constructed by introducing metal vacancy sites and doped nitrogen atoms, namely, defective MXene (Ti2.9C2O2), nitrogen-doped MXene (Ti3C2O1.9N0.1), and nitrogen-doped MXene with metal vacancy sites (Ti2.9C2O1.9N0.1). Then, the density functional theory (DFT)-based calculations coupled with the effective screening medium reference interaction site method (ESM-RISM) are applied to reveal the electrochemical behavior at the electrode/electrolyte interfacial area. Through analyzing the electronic structure, electrical double-layer capacitance (EDLC), and equilibrium potential of the pseudocapacitance reaction, the specific effect of structural changes on their performance can be clarified: metal vacancy sites can reduce the potential difference of gap layer (Outer Helmholtz plane) at charged state and increase the electronic capacity of Ti, which can be used to explain the high pseudocapacitance, low charge transfer resistance and high-rate capacity properties of nitrogen-doped MXene observed in experiments.

11.
Angew Chem Int Ed Engl ; 63(18): e202316431, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38012084

ABSTRACT

Carbon nanomaterials, specifically carbon dots and carbon nitrides, play a crucial role as heterogeneous photoinitiators in both radical and cationic polymerization processes. These recently introduced materials offer promising solutions to the limitations of current homogeneous systems, presenting a novel approach to photopolymerization. This review highlights the preparation and photocatalytic performance of these nanomaterials, emphasizing their application in various polymerization techniques, including photoinduced i) free radical, ii) RAFT, iii) ATRP, and iv) cationic photopolymerization. Additionally, it discusses their potential in addressing contemporary challenges and explores prospects in this field. Moreover, carbon nitrides, in particular, exhibit exceptional oxygen tolerance, underscoring their significance in radical polymerization processes and allowing their applications such as 3D printing, surface modification of coatings, and hydrogel engineering.

12.
Chemosphere ; 345: 140550, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37890792

ABSTRACT

Both insufficient and excessive manganese exposure are associated with adverse pregnancy outcomes. However, no systematic research has established a standardized reference range for manganese levels with the consideration of the associated health risks during pregnancy. To verify the associations of prenatal manganese exposure with adverse outcomes and to identify a proper reference range for manganese based on health risks, we designed three nested case-control studies on three adverse outcomes including hypertensive disorders of pregnancy (HDP), preterm birth (PTB), and low birth weight (LBW) to investigate the associations with manganese levels. Plasma manganese concentrations in early pregnancy were measured. Conditional logistic regression analyses were used to estimate the associations of manganese levels with adverse outcomes. Restricted cubic spline (RCS) models were used to characterize the dose-response relationship of manganese and each outcome. Nonlinear associations were observed for manganese and adverse outcomes. Compared with women in the middle tertile of plasma manganese, we found that those in the highest tertile had a significantly higher risk of HDP (OR = 1.72, 95% CI: 1.02 to 2.89), that women in the lowest tertile had almost a tripled risk of delivering LBW infants (OR = 2.93, 95% CI: 1.67 to 5.17), and that women both in the lowest and the highest tertiles had significantly higher risks of PTB [OR = 1.83 (95% CI: 1.14 to 2.95); OR = 1.70 (95% CI: 1.05 to 2.76)]. U-shaped associations were found between plasma manganese and risk of PTB and infant LBW. Based on the results of RCS models, we identified a proper plasma manganese range of 1.72-3.18 µg/L, with relatively lower risks of adverse pregnancy outcomes. In conclusion, our study found U-shaped associations between manganese exposure and adverse pregnancy outcomes, and provided an optimal range of manganese concentration for pregnant women, based on health risk considerations.


Subject(s)
Manganese , Pregnancy Outcome , Female , Humans , Infant , Infant, Newborn , Pregnancy , Birth Cohort , Case-Control Studies , East Asian People , Manganese/blood , Pregnancy Outcome/epidemiology , Premature Birth/epidemiology
13.
Environ Sci Pollut Res Int ; 30(49): 108319-108329, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37752390

ABSTRACT

Air pollution exposure was known to result in body impairments by inducing inflammation and oxidation. But little is known about the associations of air pollutants with plasma fatty acid profile which may play important roles in the impairment of air pollutants based on the related mechanism, especially in pregnant women. This study aimed to explore the relationships of air pollution exposure with plasma fatty acid profile and the potential effect modification by pre-pregnancy body mass index (BMI). Based on a cohort in Wuhan, China, we measured concentrations of plasma fatty acids of 519 pregnant women enrolled from 2013 to 2016 by gas chromatography-mass spectrometry (GC-MS). Levels of exposure to air pollutants (fine particulate matter (PM2.5), inhalable particles (PM10), nitrogen dioxide (NO2), sulfur dioxide (SO2), and carbon monoxide (CO)) were estimated by using spatial-temporal land use regression models and calculated in three periods (average concentrations during 1 day, 1 week, and 1 month before the phlebotomizing day in the first trimester). Per interquartile range increment of the levels of air pollution exposure 1 day before phlebotomizing was related to 1.21-2.01% increment of omega-6 polyunsaturated fatty acids (n-6PUFA) and 0.63-1.74% decrement of omega-3 polyunsaturated fatty acids (n-3PUFA). Besides, relationships above were kept robust in the analysis during 1 week and 1 month before phlebotomizing. In women with normal BMI, plasma fatty acid profile was observed to be more sensitive to air pollutants. Our study demonstrated that increment of exposure to air pollutants was associated with higher plasma n-6PUFA known to be pro-inflammatory and lower plasma n-3PUFA known to be anti-inflammatory, which was more sensitive in pregnant women with normal BMI. Our findings suggested that changes in plasma fatty acid profile should cause concerns and may serve as biomarkers in the further studies. Future studies are needed to validate our findings and elucidate the underlying mechanisms.


Subject(s)
Air Pollutants , Air Pollution , Humans , Female , Pregnancy , Pregnant Women , Cohort Studies , Air Pollution/analysis , Air Pollutants/analysis , Particulate Matter/analysis , Fatty Acids/analysis , Fatty Acids, Unsaturated , China , Nitrogen Dioxide/analysis
14.
ACS Nano ; 17(19): 19323-19337, 2023 Oct 10.
Article in English | MEDLINE | ID: mdl-37769163

ABSTRACT

Insulating thermally conductive polymer composites are in great demand in integrated-circuit packages, for efficient heat dissipation and to alleviative short-circuit risk. Herein, the continuous oriented hexagonal boron nitride (h-BN) frameworks (o-BN@SiC) were prepared via self-assembly and in situ chemical vapor infiltration (CVI) interface welding. The insulating o-BN@SiC/epoxy (o-BN@SiC/EP) composites exhibited enhanced thermal conductivity benefited from the CVI-SiC-welded BN-BN interface. Further, multiscale simulation, combining first-principles calculation, Monte Carlo simulation, and finite-element simulation, was performed to quantitatively reveal the effect of the welded BN-BN interface on the heat transfer of o-BN@SiC/EP composites. Phonon transmission in solders and phonon-phonon coupling of filler-solder interfaces enhanced the interfacial heat transfer between adjacent h-BN microplatelets, and the interfacial thermal resistance of the dominant BN-BN interface was decreased to only 3.83 nK·m2/W from 400 nK·m2/W, plunging by over 99%. This highly weakened interfacial thermal resistance greatly improved the heat transfer along thermal pathways and resulted in a 26% thermal conductivity enhancement of o-BN@SiC/EP composites, compared with physically contacted oriented h-BN/EP composites, at 15 vol % h-BN. This systematic multiscale simulation broke through the barrier of revealing the heat transfer mechanism of polymer composites from the nanoscale to the macroscale, which provided rational cognition about the effect of the interfacial thermal resistance between fillers on the thermal conductivity of polymer composites.

15.
Front Cardiovasc Med ; 10: 1153926, 2023.
Article in English | MEDLINE | ID: mdl-37456815

ABSTRACT

Background: An accurate assessment of current trends in cardiovascular risks could inform public health policy. This study aims to determine 20-year trends in the prevalence of elevated cardiovascular risk and its risk factors' control among US adults. Methods: In this serial cross-sectional analysis of 23,594 adults, aged 40-79 years, without clinical atherosclerotic cardiovascular disease (ASCVD) in the National Health and Nutrition Examination Survey from 2001 to 2020, we calculated the prevalence of elevated cardiovascular risk (10-year ASCVD risk ≥ 7.5%) for all participants and subgroups with their risk factors controlled for diabetes, hypertension, or dyslipidemia. Results: The age- and sex-adjusted prevalence of elevated cardiovascular risk slightly decreased from 41.5% (95% CI, 39.7-43.3%) in 2001-2004 to 38.6% (95% CI, 36.1-41.1%) in 2017-2020 (P for trend = 0.169) while the respective sex-adjusted prevalence significantly increased from 34.4% (95% CI, 32.8-36.0%) to 39.5% (95% CI, 37.0-42.0%; P for trend <0.001). Sex and race continued to show disparities in cardiovascular risk. Furthermore, a worsening disparity in age- and sex-adjusted prevalence of elevated cardiovascular risk between young and old and a narrowing gap among different education and poverty index levels (all P trend for interaction <0.05). Differential decomposition analysis found that demographic changes (primarily population aging) led to an 8.8% increase in the prevalence of elevated cardiovascular risk from 2001 to 2004 to 2017-2020, while risk factor control led to a 3.8% decrease. The rate of individuals receiving treatment for diabetes, hypertension, or dyslipidemia increased significantly between 2001 and 2020 (all P for trend <0.05). The rate of participants with hypertension who achieved blood pressure under 130/80 mmHg and those with dyslipidemia who achieved a non-high-density lipoprotein cholesterol level under 130 mg/dl increased significantly (all P for trend <0.001). Conclusions: There is a slight reduction in the prevalence of age- and sex-adjusted elevated cardiovascular risk among US adults without clinical ASCVD between 2001 and 2020, while the sex-adjusted prevalence significantly increased. The decrease in elevated cardiovascular risk prevalence was mainly attributed to risk factor control, while demographic changes contributed to an increase.

16.
Small ; 19(42): e2303642, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37323120

ABSTRACT

Nickel sulfides with high theoretical capacity are considered as promising anode materials for sodium-ion batteries (SIBs); however, their intrinsic poor electric conductivity, large volume change during charging/discharging, and easy sulfur dissolution result in inferior electrochemical performance for sodium storage. Herein, a hierarchical hollow microsphere is assembled from heterostructured NiS/NiS2 nanoparticles confined by in situ carbon layer (H-NiS/NiS2 @C) via regulating the sulfidation temperature of the precursor Ni-MOFs. The morphology of ultrathin hollow spherical shells and confinement of in situ carbon layer to active materials provide rich channels for ion/electron transfer and alleviate the effects of volume change and agglomeration of the material. Consequently, the as-prepared H-NiS/NiS2 @C exhibit superb electrochemical properties, satisfactory initial specific capacity of 953.0 mA h g-1 at 0.1 A g-1 , excellent rate capability of 509.9 mA h g-1 at 2 A g-1 , and superior longtime cycling life with 433.4 mA h g-1 after 4500 cycles at 10 A g-1 . Density functional theory calculation shows that heterogenous interfaces with electron redistribution lead to charge transfer from NiS to NiS2 , and thus favor interfacial electron transport and reduce ion-diffusion barrier. This work provides an innovative idea for the synthesis of homologous heterostructures for high-efficiency SIB electrode materials.

17.
Arch Osteoporos ; 18(1): 67, 2023 05 11.
Article in English | MEDLINE | ID: mdl-37169994

ABSTRACT

PURPOSE: Osteoporosis is a metabolic bone disease that commonly results in middle-aged and elderly people following fractures. Odanacatib (ODN), a potential osteoporosis medication, was stopped in the Long-term Odanacatib Fracture Trial (LOFT) phase III study because it increased the risk of stroke. Herein, we conducted a systematic review and meta-analysis to further assess the efficacy and safety of ODN in osteoporosis treatment. METHODS: We searched the PubMed, EMBASE, Cochrane Library, and Web of Science, using the core search terms "osteoporosis" and "odanacatib." The primary outcomes were the percentage change in markers of bone turnover and bone formation as well as that in the bone mineral density (BMD) of the lumbar spine, hip, femoral neck, and greater trochanter. The secondary outcome was the risk of adverse events (AEs), used to explore the safety of ODN. RESULTS: Ten articles-all double-blinded, randomized, placebo-controlled trials-were included. All trials were considered to be of high quality if they met the inclusion and exclusion criteria. We found that ODN increases BMD in the lumbar spine, total hip, and femoral neck, whereas it decreases the concentration of serum C-telopeptides of type I collagen (sCTx) and urinary N-telopeptide/creatinine ratio (uNTx/Cr). We found no significant differences in total, drug-related, serious, or skin AEs between the ODN and control groups. However, significant differences in fracture and stroke AEs were found between the ODN and control groups. CONCLUSION: ODN is an appealing long-term osteoporosis treatment method; however, further research should focus on the potential increased risk of fracture and stroke.


Subject(s)
Bone Density Conservation Agents , Fractures, Bone , Osteoporosis, Postmenopausal , Osteoporosis , Stroke , Aged , Female , Middle Aged , Humans , Bone Density Conservation Agents/adverse effects , Osteoporosis, Postmenopausal/drug therapy , Double-Blind Method , Osteoporosis/complications , Bone Density , Fractures, Bone/complications , Stroke/drug therapy , Stroke/complications
18.
Front Bioeng Biotechnol ; 11: 1118468, 2023.
Article in English | MEDLINE | ID: mdl-36777256

ABSTRACT

Tendon-bone insertion (TBI) injuries are common, primarily involving the rotator cuff (RC) and anterior cruciate ligament (ACL). At present, repair surgery and reconstructive surgery are the main treatments, and the main factor determining the curative effect of surgery is postoperative tendon-bone healing, which requires the stable combination of the transplanted tendon and the bone tunnel to ensure the stability of the joint. Fibrocartilage and bone formation are the main physiological processes in the bone marrow tract. Therefore, therapeutic measures conducive to these processes are likely to be applied clinically to promote tendon-bone healing. In recent years, biomaterials and compounds, stem cells, cell factors, platelet-rich plasma, exosomes, physical therapy, and other technologies have been widely used in the study of promoting tendon-bone healing. This review provides a comprehensive summary of strategies used to promote tendon-bone healing and analyses relevant preclinical and clinical studies. The potential application value of these strategies in promoting tendon-bone healing was also discussed.

19.
J Med Virol ; 95(1): e28407, 2023 01.
Article in English | MEDLINE | ID: mdl-36519597

ABSTRACT

To control the ongoing COVID-19 pandemic, a variety of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccines have been developed. However, the rapid mutations of SARS-CoV-2 spike (S) protein may reduce the protective efficacy of the existing vaccines which is mainly determined by the level of neutralizing antibodies targeting S. In this study, we screened prevalent S mutations and constructed 124 pseudotyped lentiviral particles carrying these mutants. We challenged these pseudoviruses with sera vaccinated by Sinovac CoronaVac and ZF2001 vaccines, two popular vaccines designed for the initial strain of SARS-CoV-2, and then systematically assessed the susceptivity of these SARS-CoV-2 variants to the immune sera of vaccines. As a result, 14 S mutants (H146Y, V320I + S477N, V382L, K444R, L455F + S477N, L452M + F486L, F486L, Y508H, P521R, A626S, S477N + S698L, A701V, S477N + T778I, E1144Q) were found to be significantly resistant to neutralization, indicating reduced protective efficacy of the vaccines against these SARS-CoV-2 variants. In addition, F486L and Y508H significantly enhanced the utilization of human angiotensin-converting enzyme 2, suggesting a potentially elevated infectivity of these two mutants. In conclusion, our results show that some prevalent S mutations of SARS-CoV-2 reduced the protective efficacy of current vaccines and enhance the infectivity of the virus, indicating the necessity of vaccine renewal and providing direction for the development of new vaccines.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , COVID-19/prevention & control , Antibodies, Viral , Neutralization Tests , Spike Glycoprotein, Coronavirus , Virus Internalization , Pandemics , Antibodies, Neutralizing , Mutation
20.
Genomics ; 115(1): 110542, 2023 01.
Article in English | MEDLINE | ID: mdl-36535337

ABSTRACT

N6-methyladenosine (m6A) modification is essential for plant growth and development. Exploring m6A methylation patterns in rice tissues is fundamental to understanding the regulatory effects of this modification. Here, we profiled the transcriptome-wide m6A landscapes of rice panicles at the booting stage (PB) and flowering stage (PF), and of flag leaves at the flowering stage (LF). The global m6A level differed significantly among the three tissues and was closely associated with the expression of writer and eraser genes. The methylated gene ratio was higher in the flag leaves than in the panicles. Compared with commonly methylated genes, tissue-specific methylated genes showed lower levels of both m6A modification and expression, and a preference for m6A deposition in the coding sequence region. The m6A profiles of the two organs had more distinct differences than the profiles of the same organ at different stages. A negative correlation between m6A levels and gene expression was observed in PF vs. PB but not in PF vs. LF, indicting the complicated regulatory effect of m6A on gene expression. The distinct expression patterns of m6A reader genes in different tissues indicate that readers may affect gene stability through binding. Overall, our findings demonstrated that m6A modification influences tissue function by regulating gene expression. Our findings provide valuable insights on the regulation and biological functions of m6A modifications in rice.


Subject(s)
Oryza , Transcriptome , Oryza/genetics , RNA, Messenger , Gene Expression Profiling , Plant Leaves/genetics , Gene Expression Regulation, Plant
SELECTION OF CITATIONS
SEARCH DETAIL