Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 250
Filter
1.
Food Chem ; 462: 141006, 2025 Jan 01.
Article in English | MEDLINE | ID: mdl-39213974

ABSTRACT

Aquatic products are highly susceptible to spoilage, and preparing composite edible film with essential oil is an effective solution. In this study, composite edible films were prepared using perilla essential oil (PEO)-glycerol monolaurate emulsions incorporated with chitosan and nisin, and the film formulation was optimized by response surface methodology. These films were applied to ready-to-eat fish balls and evaluated over a period of 12 days. The films with the highest inhibition rate against Staphylococcus aureus were acquired using a polymer composition of 6 µL/mL PEO, 18.4 µg/mL glycerol monolaurate, 14.2 mg/mL chitosan, and 11.0 µg/mL nisin. The fish balls coated with the optimal edible film showed minimal changes in appearance during storage and significantly reduced total bacterial counts and total volatile basic nitrogen compared to the control groups. This work indicated that the composite edible films containing essential oils possess ideal properties as antimicrobial packaging materials for aquatic foods.


Subject(s)
Anti-Bacterial Agents , Chitosan , Edible Films , Emulsions , Food Packaging , Laurates , Monoglycerides , Nisin , Oils, Volatile , Staphylococcus aureus , Nisin/pharmacology , Nisin/chemistry , Oils, Volatile/chemistry , Oils, Volatile/pharmacology , Laurates/chemistry , Laurates/pharmacology , Food Packaging/instrumentation , Staphylococcus aureus/drug effects , Staphylococcus aureus/growth & development , Emulsions/chemistry , Chitosan/chemistry , Chitosan/pharmacology , Monoglycerides/chemistry , Monoglycerides/pharmacology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Plant Oils/chemistry , Plant Oils/pharmacology , Perilla/chemistry
3.
Heliyon ; 10(18): e38057, 2024 Sep 30.
Article in English | MEDLINE | ID: mdl-39381201

ABSTRACT

Although Zeolitic Imidazolate Framework-8 (ZIF-8) shows significant promise in chemodynamic therapy of bacterial infections due to its large specific surface area and enzyme-like activity, it still faces a considerable gap compared to natural enzymes. The dependency on low pH and high concentrations of hydrogen peroxide ((H2O2) is a major factor limiting the clinical progress of nanozymes. Single-atom nanozymes (SA-zyme), which exhibit superior catalytic performance, are expected to overcome this limitation. In this study, we used ZIF-8 as a template to prepare structurally regular molybdenum-based single-atom nanozymes (Mo-zyme) by coordinating molybdenum atoms with nitrogen atoms within the zeolitic imidazolate framework and evaporating the zinc element at high temperatures. The cascade catalytic performance of the nanodrugs was enhanced by loading glucose oxidase (GOx) and encapsulating it with a hyaluronic acid (HA) layer to form a composite (Mo/GOx@HA). Upon contact with hyaluronidase from bacteria in infected tissues, the cascade reaction is triggered, resulting in the degradation of the HA shell, and releasing the encapsulated GOx. Once exposed, GOx catalyzes the oxidation of glucose into gluconic acid, resulting in a localized decrease in pH and continuous production of H2O2. The combination of lowered pH and increased H2O2 concentration significantly amplifies the catalytic activity of the Mo-zyme. This enhanced activity facilitates the in situ generation of hydroxyl radicals (•OH) on the bacterial surface, leading to effective and efficient bacterial eradication. Wound infection treatment has demonstrated that the as-prepared Mo/GOx@HA exhibits excellent antibacterial and anti-inflammatory activity. This work provided a promising enzymatic cascade reaction nanoplatform for the treatment of bacteria infected wounds.

5.
Int J Biol Macromol ; 280(Pt 3): 135969, 2024 Sep 24.
Article in English | MEDLINE | ID: mdl-39322144

ABSTRACT

Inappropriate treatment of chronic inflammation and infection can lead to serious consequences, with anemia being the most common secondary disease that often requires systematic treatment. However, the complex pathology and gastrointestinal irritation associated with oral iron supplements limit their effectiveness. To address this, a bioactive ingredient derived from natural herbs, Angelica sinensis polysaccharide (ASP), was utilized as an ideal adjuvant for regulating the size and stability of iron oxide nanoparticles (IONPs). Highly hydrophilic ASP-modified IONPs (IONPs@ASP) with a mesoporous structure were developed under the induction of microemulsion.The as-prepared IONPs@ASP exhibited enhanced stability, retention performance and controlled degradation in blood and lysosomal environments, respectively, which is beneficial for long-term intravenous iron maintenance in anemia treatment. After confirming the biosafety of IONPs@ASP, pharmacodynamic results showed that hemoglobin levels increased significantly and rapidly returned to normal levels in anemia model rats treated with IONPs@ASP, even surpassing the effects of IONPs or ASP monotherapy. Additionally, analysis of inflammatory factors in rat serum suggested that ASP effectively upregulated the expression of anti-inflammatory factors, indicating synergistic effects of iron-based nanomedicine and immune regulation in anemia treatment. These findings represent a significant advancement in anemia treatment and open new possibilities for developing versatile nanoparticles based on ASP.

6.
Metab Brain Dis ; 2024 Sep 18.
Article in English | MEDLINE | ID: mdl-39292432

ABSTRACT

The study examined curcumin's impart on relieving neuroinflammation of juvenile rats in kainic acid (KA) induced epileptic seizures by inhibiting the TLR4/MyD88/NF-κB pathway. There were five groups: control, KA, KA + curcumin (KC), KA + oxcarbazepine (OXC) (KO), KA + curcumin + OXC (KCO) groups. KA was stereotactically injected into right hippocampus following intraperitoneal injection of curcumin or (and) OXC for seven days. The rats in the above groups were randomly divided into three subgroups (at 6 h, 24 h, and 72 h of KA administration) following the seizure degree assessed. The number of NeuN (+) neurons and GFAP (+) astrocytes was counted. The gene and protein levels of TLR4, MyD88, and NF-κB were detected. Compared with the KA group, the seizure latency was longer, and the incidence of status epilepticus (SE) was lower in the KC, KO, and KCO groups. The most significant changes were in the KCO group. At 72 h following KA injected, the number of neurons was the least, and the number of astrocytes was the most in the KA group. The number of neurons was the most and the number of astrocytes was the least in the KCO group. At 24 h, the mRNA and protein levels of TLR4, MyD88, and NF-κB in the KA group were the most. The above valves were the least in the KCO group. Therefore, curcumin could enhance anti-epileptic effect of OXC, protect injured neurons and reduce proliferated glial cells of the hippocampus of epileptic rats by inhibiting inflammation via the TLR4/MyD88/NF-κB pathway.

7.
Genes (Basel) ; 15(8)2024 Aug 09.
Article in English | MEDLINE | ID: mdl-39202410

ABSTRACT

Histiocytic sarcoma (HS) is a rare and highly aggressive cancer in humans and dogs. In dogs, it has a high prevalence in certain breeds, such as Bernese mountain dogs (BMDs) and flat-coated retrievers. Hemophagocytic histiocytic sarcoma (HHS) is a unique form of HS that presents with erythrophagocytosis. Due to its rareness, the study of HHS is very limited, and mutations in canine HHS patients have not been studied to date. In previous work, our research group identified two major PTPN11/SHP2 driver mutations, E76K and G503V, in HS in dogs. Here, we report additional mutations located in exon 3 of PTPN11/SHP2 in both HS and HHS cases, further supporting that this area is a mutational hotspot in dogs and that mutations in tumors and liquid biopsies should be evaluated utilizing comprehensive methods such as Sanger and NextGen sequencing. The overall prevalence of PTPN11/SHP2 mutations was 55.8% in HS and 46.2% in HHS. In addition, we identified mutations in KRAS, in about 3% of HS and 4% of HHS cases. These findings point to the shared molecular pathology of activation of the MAPK pathway in HS and HHS cases. We evaluated the efficacy of the highly specific MEK inhibitor, cobimetinib, in canine HS and HHS cell lines. We found that the IC50 values ranged from 74 to 372 nM, which are within the achievable and tolerable ranges for cobimetinib. This finding positions cobimetinib as a promising potential candidate for future canine clinical trials and enhances our understanding of the molecular defects in these challenging cancers.


Subject(s)
Azetidines , Histiocytic Sarcoma , Mutation , Piperidines , Protein Tyrosine Phosphatase, Non-Receptor Type 11 , Proto-Oncogene Proteins p21(ras) , Protein Tyrosine Phosphatase, Non-Receptor Type 11/genetics , Piperidines/pharmacology , Dogs , Animals , Histiocytic Sarcoma/drug therapy , Histiocytic Sarcoma/genetics , Histiocytic Sarcoma/veterinary , Histiocytic Sarcoma/pathology , Proto-Oncogene Proteins p21(ras)/genetics , Azetidines/pharmacology , Dog Diseases/genetics , Dog Diseases/drug therapy , Dog Diseases/pathology , Protein Kinase Inhibitors/pharmacology , Cell Line, Tumor
8.
Plant Physiol Biochem ; 215: 109058, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39181086

ABSTRACT

Nitrogen (N) is essential for the physiological processes of plants. However, the specific mechanisms by which different nitrogen forms influence rice blast pathogenesis remain poorly understood. This study used hydroponic assays to explore how ammonium (NH4+) and nitrate (NO3-) affect rice after inoculation with Magnaporthe oryzae (M. oryzae). The results showed that NH4+, compared to NO3-, significantly reduced disease severity, fungal growth, fungal hyphae number, the expansion capacity of infectious hyphae, and disease-related loss of photosynthesis. Additionally, NH4+ enhanced the expression of defense-related genes, including OsPBZ1, OsCHT1, OsPR1a, and OsPR10. NH4+-treated rice also exhibited higher hydrogen peroxide (H2O2) accumulation and increased antioxidant enzyme activities. Moreover, susceptibility to rice blast disease increased when H2O2 was scavenged, while a reduction in susceptibility was observed with the application of exogenous H2O2. These results suggest that ammonium enhances rice resistance to M. oryzae, potentially through H2O2 accumulation. The findings provide valuable insights into how different nitrogen forms affect plant immunity in rice, which is crucial for controlling rice blast and ensuring stable food production.


Subject(s)
Ammonium Compounds , Disease Resistance , Hydrogen Peroxide , Oryza , Plant Diseases , Oryza/microbiology , Oryza/metabolism , Oryza/genetics , Oryza/immunology , Hydrogen Peroxide/metabolism , Plant Diseases/microbiology , Plant Diseases/immunology , Ammonium Compounds/metabolism , Ammonium Compounds/pharmacology , Disease Resistance/drug effects , Gene Expression Regulation, Plant/drug effects , Magnaporthe/physiology , Ascomycota/pathogenicity , Plant Proteins/metabolism , Plant Proteins/genetics
9.
Brain Res Bull ; 217: 111057, 2024 Oct 15.
Article in English | MEDLINE | ID: mdl-39209069

ABSTRACT

Epilepsy with recurrent seizures is characterized by neuronal damage and glial proliferation induced by brain inflammation. Recurrent seizures can lead to changes in the microRNA (miRNA) spectrum, significantly influencing the inflammatory response of microglia. MiR-155-5p, as a pro-inflammatory miRNA, is increased in the epileptic brain. However, its specific role in acute seizures remains unknown. The study aimed to develop a new strategy for treating epilepsy by investigating how silencing of miR-155-5p initiated its anticonvulsive mechanism. The level of miR-155-5p was up-regulated in the hippocampus of epileptic immature rats induced by kainic acid (KA). The use of antago-miR-155-5p exerted significant beneficial effects on the seizure scores, brain discharges and cognition in immature rats following KA-induced epilepsy. Antago-miR-155-5p also inhibited neuron damage and microglial activation. Moreover, the silencing of miR-155-5p significantly inhibited the Dual-specificity phosphatase 14 (Dusp14)/ mitogen-activated protein kinase (MAPK) axis in vivo. MiR-155-5p interacted with dusp14 to regulate MAPK signaling way expression, verified by a dual-luciferase reporter assay. The results suggested that the silencing of miR-155-5p might reduce hippocampal damage in epileptic immature rats induced by KA via Dusp14/MAPK signaling way. This implied that miR-155-5p could serve as a therapeutic tool to prevent the development of epilepsy.


Subject(s)
Dual-Specificity Phosphatases , Epilepsy , Hippocampus , Kainic Acid , MicroRNAs , Animals , MicroRNAs/metabolism , MicroRNAs/genetics , Hippocampus/metabolism , Hippocampus/pathology , Hippocampus/drug effects , Epilepsy/chemically induced , Epilepsy/metabolism , Epilepsy/genetics , Rats , Male , Dual-Specificity Phosphatases/metabolism , Dual-Specificity Phosphatases/genetics , Rats, Sprague-Dawley , MAP Kinase Signaling System/drug effects , MAP Kinase Signaling System/physiology , Microglia/metabolism , Neurons/metabolism , Neurons/pathology , Neurons/drug effects , Gene Silencing
10.
J Proteomics ; 309: 105282, 2024 Aug 22.
Article in English | MEDLINE | ID: mdl-39181531

ABSTRACT

PURPOSE: This research aimed to identify the function of fat mass- and obesity-associated protein (FTO), an eraser of N6-methyladenosine (m6A), and explore its possible mechanisms in uveal melanoma (UVM). METHODS: We performed quantitative real-time PCR (qPCR), Western blotting and gene correlation analysis with GEPIA2 to assess FTO expression and identify its potential targets in UVM. CCK-8, colony formation, cell cycle, cell apoptosis, wound healing and Transwell invasion assays were utilized to assess cell viability, cell cycle distribution, apoptosis, migration and invasion. Western blotting, qPCR and methylated RNA immunoprecipitation-qPCR (MeRIP-qPCR) were carried out to explore the underlying mechanism of FTO in 2 UVM cell lines. RESULTS: FTO, a key m6A demethylase, was found to be upregulated in human UVM tissues compared with normal choroid tissues. Knockdown of FTO in Mel270 and OMM2.3 cells significantly promoted proliferation and migration and suppressed apoptosis. Mechanistically, knockdown of FTO decreased the expression of ATG5, an autophagy-related gene, leading to attenuation of autophagosome formation, thereby inhibiting autophagy. Upon FTO knockdown, increased levels of methylated ATG5 and decreased ATG5 stability were detected. Furthermore, ATG5 dramatically alleviated FTO downregulation-induced tumor growth and metastasis. CONCLUSIONS: Our research highlights the importance of the m6A demethylase FTO in UVM by demonstrating that it direct regulates ATG5-induced autophagy in an m6A-dependent manner. These findings suggest that FTO may serve as a potential therapeutic target for UVM.

11.
J Affect Disord ; 365: 80-86, 2024 Nov 15.
Article in English | MEDLINE | ID: mdl-39147157

ABSTRACT

OBJECTIVE: Metformin is a medication that is widely used for lowering blood sugar in patients with type 2 diabetes. Metformin was shown to have significant antidepressant effects; however, it is not clear whether metformin treatment improves outcomes in patients with type 2 diabetes who have concomitant depressive symptoms. METHODS: A total of 475 patients with type 2 diabetes mellitus with depressive symptoms were included in this study and divided into metformin and nonmetformin groups according to whether they were taking metformin. The DASS-21 was used to assess patients' depression and anxiety scores before and after a 24-week intervention. In addition, general information about whether the patients had developed complications from diabetes and whether they had been diagnosed with other diseases was assessed. RESULTS: (1) After 24 weeks, anxiety and depression scores were significantly lower in the metformin group than in the nonmetformin group. (2) The prevalence of depressive symptoms was significantly greater in female type 2 diabetic patients than in male patients (OR = 2.039, 95 % CI = 1.160-3.568). (3) People with type 2 diabetes who develop complications from diabetes (OR = 1.794, 95 % CI = 1.015-3.171) and those diagnosed with other conditions are more likely to experience depressive symptoms. CONCLUSION: Metformin has an ameliorative effect on type 2 diabetes. However, women, those with diabetes complications, and those with type 2 diabetes who are also diagnosed with other conditions are more likely to experience depressive symptoms.


Subject(s)
Diabetes Mellitus, Type 2 , Hypoglycemic Agents , Metformin , Humans , Metformin/therapeutic use , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/psychology , Male , Female , Middle Aged , Hypoglycemic Agents/therapeutic use , Longitudinal Studies , Aged , Depression/drug therapy , Comorbidity , Sex Factors , Depressive Disorder/drug therapy , Adult , Treatment Outcome
12.
Biosens Bioelectron ; 262: 116573, 2024 Oct 15.
Article in English | MEDLINE | ID: mdl-39018976

ABSTRACT

Drug-induced liver injury (DILI) poses a severe threat to public health. Endoplasmic reticulum (ER) stress contributes significantly to DILI pathogenesis, with peroxynitrite (ONOO-) identified as a pivotal indicator. However, the temporal and spatial fluctuations of ONOO- associated with ER stress in the pathogenesis of DILI remain unclear. Herein, a novel ER-specific near-infrared (NIR) probe (QM-ONOO) with aggregation-induced emission (AIE) features for monitoring ONOO- fluctuations in DILI was elaborately constructed. QM-ONOO exhibited excellent ER-targeting specificity, a large Stoke's shift, and a low detection limit (26.9 nM) toward ONOO-. QM-ONOO performed well in imaging both exogenous and endogenous ONOO- in HepG2 cells. Furthermore, molecular docking calculations validated the ER-targeting mechanism of QM-ONOO. Most importantly, using this probe allowed us to intuitively observe the dynamic fluctuations of ONOO- during the formation and remediation processes of DILI in the acetaminophen (APAP)-induced mouse model. Consequently, this work provides a promising tool for in-depth research of ONOO- associated pathological processes in DILI.


Subject(s)
Acetaminophen , Chemical and Drug Induced Liver Injury , Endoplasmic Reticulum , Fluorescent Dyes , Peroxynitrous Acid , Peroxynitrous Acid/metabolism , Peroxynitrous Acid/chemistry , Humans , Animals , Chemical and Drug Induced Liver Injury/pathology , Chemical and Drug Induced Liver Injury/metabolism , Fluorescent Dyes/chemistry , Endoplasmic Reticulum/metabolism , Mice , Hep G2 Cells , Acetaminophen/toxicity , Acetaminophen/adverse effects , Biosensing Techniques/methods , Endoplasmic Reticulum Stress/drug effects , Molecular Docking Simulation , Optical Imaging/methods
13.
Front Nutr ; 11: 1430768, 2024.
Article in English | MEDLINE | ID: mdl-39045282

ABSTRACT

Sea buckthorn (Hippophae Fructus), as a homologous species of medicine and food, is widely used by Mongolians and Tibetans for its anti-tumor, antioxidant and liver-protecting properties. In this review, the excellent anti-tumor effect of sea buckthorn was first found through network pharmacology, and its active components such as isorhamnetin, quercetin, gallic acid and protocatechuic acid were found to have significant anti-tumor effects. The research progress and application prospect of sea buckthorn and its active components in anti-tumor types, mechanism of action, liver protection, anti-radiation and toxicology were reviewed, providing theoretical basis for the development of sea buckthorn products in the field of anti-tumor research and clinical application.

14.
Front Cell Dev Biol ; 12: 1416780, 2024.
Article in English | MEDLINE | ID: mdl-38887517

ABSTRACT

Introduction: Nail stem cell (NSC) differentiation plays a vital role in maintaining nail homeostasis and facilitating digit regeneration. Recently, onychofibroblasts (OFs), specialized mesenchymal cells beneath the nail matrix, have emerged as potential regulators of NSC differentiation. However, limited understanding of OFs' cellular properties and transcriptomic profiles hinders our comprehension of their role. This study aims to characterize human OFs and investigate their involvement in NSC differentiation. Methods: Human OFs were isolated and characterized for their mesenchymal stem cell (MSC)-like phenotype through flow cytometry and multilineage differentiation assays. Bulk RNA-seq analysis was conducted on three samples of OFs and control fibroblasts from human nail units to delineate their molecular features. Integrated analysis with scRNA-seq data was performed to identify key signaling pathways involved in OF-induced NSC differentiation. Co-culture experiments, siRNA transfection, RT-qPCR, and immunocytochemistry were employed to investigate the effect of OF-derived soluble proteins on NSC differentiation. Drug treatments, RT-qPCR, western blotting, and immunocytochemistry were used to verify the regulation of candidate signaling pathways on NSC differentiation in vitro. Results: Human OFs exhibited slow cell cycle kinetics, expressed typical MSC markers, and demonstrated multilineage differentiation potential. Bulk RNA-seq analysis revealed differential gene expression in OFs compared to control fibroblasts, highlighting their role in coordinating nail development. Integrated analysis identified BMP4 as a pivotal signal for OFs to participate in NSC differentiation through mesenchymal-epithelial interactions, with the TGF-beta pathway possibly mediating this signal. OFs synthesized and secreted more BMP4 than control fibroblasts, and BMP4 derived from OFs induced NSC differentiation in a co-culture model. Recombinant human BMP4 activated the TGF-beta pathway in NSCs, leading to cell differentiation, while the BMP type I receptor inhibitor LDN193189 attenuated this effect. Discussion: This study characterizes the cellular and molecular features of human OFs, demonstrating their ability to regulate NSC differentiation via the TGF-beta signaling pathway. These findings establish a connection between the dermal microenvironment and NSC differentiation, suggesting the potential of OFs, in conjunction with NSCs, for developing novel therapies targeting nail and digit defects, even severe limb amputation.

15.
Hortic Res ; 11(6): uhae112, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38919556

ABSTRACT

Plants primarily incorporate nitrate (NO3 -) and ammonium (NH4 +) as the primary source of inorganic nitrogen (N); the physiological mechanisms of photosynthesis (A) dropdown under NH4 + nutrition has been investigated in many studies. Leaf anatomy is a major determinant to mesophyll conductance (g m) and photosynthesis; however, it remains unclear whether the photosynthesis variations of plants exposed to different N forms is related to leaf anatomical variation. In this work, a common shrub, Lonicera japonica was hydroponically grown under NH4 +, NO3 - and 50% NH4 +/NO3 -. We found that leaf N significantly accumulated under NH4 +, whereas the photosynthesis was significantly decreased, which was mainly caused by a reduced g m. The reduced g m under NH4 + was related to the decreased intercellular air space, the reduced chloroplast number and especially the thicker cell walls. Among the cell wall components, lignin and hemicellulose contents under NH4 + nutrition were significantly higher than those in the other two N forms and were scaled negatively correlated with g m; while pectin content was independent from N forms. Pathway analysis further revealed that the cell wall components might indirectly regulate g m by influencing the thickness of the cell wall. These results highlight the importance of leaf anatomical variation characterized by modifications of chloroplasts number and cell wall thickness and compositions, in the regulation of photosynthesis in response to varied N sources.

16.
bioRxiv ; 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38895456

ABSTRACT

Multiple system atrophy (MSA) is rare, fast progressing, and fatal synucleinopathy with alpha-synuclein (α-syn) inclusions located within oligodendroglia called glial cytoplasmic inclusions (GCI). Along with GCI pathology there is severe demyelination, neurodegeneration, and neuroinflammation. In post-mortem tissue, there is significant infiltration of CD8+ T cells into the brain parenchyma, however their role in disease progression is unknown. To determine the role of CD8+ T cells, a modified AAV, Olig001-SYN, was used to selectively overexpress α-syn in oligodendrocytes modeling MSA in mice. Four weeks post transduction, we observed significant CD8+ T cell infiltration into the striatum of Olig001-SYN transduced mice recapitulating the CD8+ T cell infiltration observed in post-mortem tissue. To understand the role of CD8+ T cells, a CD8 knockout mice were transduced with Olig001-SYN. Six months post transduction into a mouse lacking CD8+ T cells, demyelination and neurodegeneration were unchanged. Four weeks post transduction, neuroinflammation and demyelination were enhanced in CD8 knockout mice compared to wild type controls. Applying unbiased spectral flow cytometry, CD103+, CD69+, CD44+, CXCR6+, CD8+ T cells were identified when α-syn was present in oligodendrocytes, suggesting the presence of tissue resident memory CD8+ T (Trm) cells during MSA disease progression. This study indicates that CD8+ T cells are not critical in driving MSA pathology but are needed to modulate the neuroinflammation and demyelination response.

17.
Phys Chem Chem Phys ; 26(27): 18584-18591, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38932640

ABSTRACT

A simple aqueous complexing system of UO22+ with F- is selected to systematically illustrate the application of Raman spectroscopy in exploring uranyl(VI) chemistry. Five successive complexes, UO2F+, UO2F2(aq), UO2F3-, UO2F42-, and UO2F53-, are identified, as well as the formation constants except for the 1 : 5 species UO2F53-, which was experimentally observed here for the first time. The standard relative molar Raman scattering intensity for each species is obtained by deconvolution of the spectra collected during titrations. The results of relativistic quantum chemical first-principles and ab initio calculations are presented for the complete set of [UO2(H2O)mFn]2-n complexes (n = 0-5), both for the gas phase as well as for aqueous solution modelling bulk water using the conductor-like screening model. Electronic structure calculations at the Møller-Plesset second-order perturbation theory level provide accurate geometrical parameters and in particular reveal that k water molecules in the second coordination sphere coordinating to the F- ligands in the resulting [UO2(H2O)mFn]2-n(H2O)k complexes need to be treated explicitly in order to obtain vibrational frequencies in very good agreement with experimental data. The thermodynamics and structural information obtained in this work and the developed methodology could be instructive for the future experimental and computational research on the complexation of the uranyl ion.

18.
Antibiotics (Basel) ; 13(6)2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38927232

ABSTRACT

Previous studies have demonstrated the association between antibiotic use and severe COVID-19 outcomes. This study aimed to explore detailed antibiotic exposure characteristics among COVID-19 patients. Using the OpenSAFELY platform, which integrates extensive health data and covers 40% of the population in England, the study analysed 3.16 million COVID-19 patients with at least two prior antibiotic prescriptions. These patients were compared to up to six matched controls without hospitalisation records. A machine learning model categorised patients into ten groups based on their antibiotic exposure history over the three years before their COVID-19 diagnosis. The study found that for COVID-19 patients, the total number of prior antibiotic prescriptions, diversity of antibiotic types, broad-spectrum antibiotic prescriptions, time between first and last antibiotics, and recent antibiotic use were associated with an increased risk of severe COVID-19 outcomes. Patients in the highest decile of antibiotic exposure had an adjusted odds ratio of 4.8 for severe outcomes compared to those in the lowest decile. These findings suggest a potential link between extensive antibiotic use and the risk of severe COVID-19. This highlights the need for more judicious antibiotic prescribing in primary care, primarily for patients with higher risks of infection-related complications, which may better offset the potential adverse effects of repeated antibiotic use.

19.
Drug Dev Res ; 85(4): e22225, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38879781

ABSTRACT

Schizophrenia (SZ) is a serious, destructive neurodevelopmental disorder. Antipsychotic medications are the primary therapy approach for this illness, but it's important to pay attention to the adverse effects as well. Clinical studies for SZ are currently in phase ΙΙΙ for SEP-363856 (SEP-856)-a new antipsychotic that doesn't work on dopamine D2 receptors. However, the underlying action mechanism of SEP-856 remains unknown. This study aimed to evaluate the impact and underlying mechanisms of SEP-856 on SZ-like behavior in a perinatal MK-801 treatment combined with social isolation from the weaning to adulthood model (MK-SI). First, we created an animal model that resembles SZ that combines the perinatal MK-801 with social isolation from weaning to adulthood. Then, different classical behavioral tests were used to evaluate the antipsychotic properties of SEP-856. The levels of proinflammatory cytokines (tumor necrosis factor-α, interleukin-6, and interleukin-1ß), apoptosis-related genes (Bax and Bcl-2), and synaptic plasticity-related genes (brain-derived neurotrophic factor [BDNF] and PSD-95) in the hippocampus were analyzed by quantitative real-time PCR. Hematoxylin and eosin staining were used to observe the morphology of neurons in the hippocampal DG subregions. Western blot was performed to detect the protein expression levels of BDNF, PSD-95, Bax, Bcl-2, PI3K, p-PI3K, AKT, p-AKT, GSK-3ß, p-GSK-3ß in the hippocampus. MK-SI neurodevelopmental disease model studies have shown that compared with sham group, MK-SI group exhibit higher levels of autonomic activity, stereotyped behaviors, withdrawal from social interactions, dysregulated sensorimotor gating, and impaired recognition and spatial memory. These findings imply that the MK-SI model can mimic symptoms similar to those of SZ. Compared with the MK-SI model, high doses of SEP-856 all significantly reduced increased activity, improved social interaction, reduced stereotyping behavior, reversed sensorimotor gating dysregulation, and improved recognition memory and spatial memory impairment in MK-SI mice. In addition, SEP-856 can reduce the release of proinflammatory factors in the MK-SI model, promote the expression of BDNF and PSD-95 in the hippocampus, correct the Bax/Bcl-2 imbalance, turn on the PI3K/AKT/GSK-3ß signaling pathway, and ultimately help the MK-SI mice's behavioral abnormalities. SEP-856 may play an antipsychotic role in MK-SI "dual-hit" model-induced SZ-like behavior mice by promoting synaptic plasticity recovery, decreasing death of hippocampal neurons, lowering the production of pro-inflammatory substances in the hippocampal region, and subsequently initiating the PI3K/AKT/GSK-3ß signaling cascade.


Subject(s)
Glycogen Synthase Kinase 3 beta , Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , Schizophrenia , Signal Transduction , Animals , Female , Male , Mice , Antipsychotic Agents/pharmacology , Behavior, Animal/drug effects , Disease Models, Animal , Dizocilpine Maleate/pharmacology , Glycogen Synthase Kinase 3 beta/metabolism , Hippocampus/drug effects , Hippocampus/metabolism , Mice, Inbred C57BL , Neuroprotective Agents/pharmacology , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Schizophrenia/drug therapy , Schizophrenia/metabolism , Signal Transduction/drug effects , Social Isolation
20.
Innov Aging ; 8(6): igae047, 2024.
Article in English | MEDLINE | ID: mdl-38854854

ABSTRACT

Background and Objectives: Hearing loss is common and undertreated, and the impact of blood pressure variability (BPV) on the development of hearing loss remains unclear. We aimed to examine the age-specific association between visit-to-visit BPV and hearing loss. Research Design and Methods: This nationally representative cohort study included 3,939 adults over 50 years from the Health and Retirement Study in the United States. Variabilities of systolic blood pressure (SBP) and diastolic blood pressure (DBP) were assessed by standard deviation (SD), coefficient of variation, and variability independent of the mean (VIM), using SBP and DBP from 3 visits. Hearing loss was assessed by self-rated questions. Cox proportional risk models were used to evaluate age-specific associations (50-64, 65-79, and ≥80 years) between BPV and hearing loss. The generalized additive Cox models were further used to visualize the combined effect of age and BPV. Results: During the follow-up up to 7.0 years, 700 participants developed hearing loss. Among people aged under 65 years, we observed a 36% increased risk of hearing loss with per-SD increment in VIM of SBP (hazard ratio [HR] per SD 1.36, 95% confidence interval [CI] 1.13-1.63) and a slightly significant association between VIM of DBP (HR per SD 1.21, 95% CI 1.01-1.45) and hearing loss. We did not observe significant associations among groups aged over 65 years (p > .05). The generalized additive Cox models also showed younger participants had stronger associations between BPV and hearing loss. Discussion and Implications: Higher visit-to-visit variabilities of SBP were associated with an increased risk of hearing loss in middle-aged adults (50-65 years). Intervention in early BPV may help decrease hearing loss in adults aged over 50 years.

SELECTION OF CITATIONS
SEARCH DETAIL