Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters








Database
Language
Publication year range
1.
J Agric Food Chem ; 72(22): 12630-12640, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38779919

ABSTRACT

Tartary buckwheat is highly valued for its abundant rutin (quercetin 3-O-rutinoside). As a flavonoid glycoside, rutin is synthesized with the crucial involvement of UDP-dependent glycosyltransferases (UGTs). However, the functions and transcriptional regulation of the UGT-encoded genes remain poorly understood. This study identified a key gene, FtUFGT163, potentially encoding flavonol 3-O-glucoside (1 → 6) rhamnosyltransferase in Tartary buckwheat through omics analysis and molecular docking methods. The recombinant FtUFGT163 expressed in Escherichia coli demonstrated the capacity to glycosylate isoquercetin into rutin. Overexpression of FtUFGT163 significantly enhanced the rutin content in Tartary buckwheat. Further investigation identified a novel bZIP transcription factor, FtGBF1, that enhances FtUFGT163 expression by binding to the G-box element within its promoter, thereby augmenting rutin biosynthesis. Additional molecular biology experiments indicated that the specific positive regulator of rutin, FtMYB5/6, could directly activate the FtGBF1 promoter. Collectively, this study elucidates a novel regulatory module, termed "FtMYB5/6-FtGBF1-FtUFGT163", which effectively coordinates the biosynthesis of rutin in Tartary buckwheat, offering insights into the genetic enhancement of nutraceutical components in crops.


Subject(s)
Fagopyrum , Gene Expression Regulation, Plant , Plant Proteins , Rutin , Fagopyrum/genetics , Fagopyrum/metabolism , Fagopyrum/chemistry , Rutin/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Promoter Regions, Genetic , Molecular Docking Simulation
2.
J Integr Plant Biol ; 66(6): 1052-1067, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38501444

ABSTRACT

ACYL-CoA-BINDING PROTEINs (ACBPs) play crucial regulatory roles during plant response to hypoxia, but their molecular mechanisms remain poorly understood. Our study reveals that ACBP4 serves as a positive regulator of the plant hypoxia response by interacting with WRKY70, influencing its nucleocytoplasmic shuttling in Arabidopsis thaliana. Furthermore, we demonstrate the direct binding of WRKY70 to the ACBP4 promoter, resulting in its upregulation and suggesting a positive feedback loop. Additionally, we pinpointed a phosphorylation site at Ser638 of ACBP4, which enhances submergence tolerance, potentially by facilitating WRKY70's nuclear shuttling. Surprisingly, a natural variation in this phosphorylation site of ACBP4 allowed A. thaliana to adapt to humid conditions during its historical demographic expansion. We further observed that both phosphorylated ACBP4 and oleoyl-CoA can impede the interaction between ACBP4 and WRKY70, thus promoting WRKY70's nuclear translocation. Finally, we found that the overexpression of orthologous BnaC5.ACBP4 and BnaA7.WRKY70 in Brassica napus increases submergence tolerance, indicating their functional similarity across genera. In summary, our research not only sheds light on the functional significance of the ACBP4 gene in hypoxia response, but also underscores its potential utility in breeding flooding-tolerant oilseed rape varieties.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Gene Expression Regulation, Plant , Transcription Factors , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis Proteins/metabolism , Arabidopsis Proteins/genetics , DNA-Binding Proteins , Phosphorylation , Promoter Regions, Genetic/genetics , Transcription Factors/metabolism , Transcription Factors/genetics
3.
J Genet Genomics ; 50(12): 993-1003, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37633338

ABSTRACT

Coordinated plant adaptation involves the interplay of multiple traits driven by habitat-specific selection pressures. Pleiotropic effects, wherein genetic variants of a single gene control multiple traits, can expedite such adaptations. Until present, only a limited number of genes have been reported to exhibit pleiotropy. Here, we create a recombinant inbred line (RIL) population derived from two Arabidopsis thaliana (A. thaliana) ecotypes originating from divergent habitats. Using this RIL population, we identify an allelic variation in a MADS-box transcription factor, SHORT VEGETATIVE PHASE (SVP), which exerts a pleiotropic effect on leaf size and drought-versus-humidity tolerance. Further investigation reveals that a natural null variant of the SVP protein disrupts its normal regulatory interactions with target genes, including GRF3, CYP707A1/3, and AtBG1, leading to increased leaf size, enhanced tolerance to humid conditions, and changes in flowering time of humid conditions in A. thaliana. Remarkably, polymorphic variations in this gene have been traced back to early A. thaliana populations, providing a genetic foundation and plasticity for subsequent colonization of diverse habitats by influencing multiple traits. These findings advance our understanding of how plants rapidly adapt to changing environments by virtue of the pleiotropic effects of individual genes on multiple trait alterations.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Ecosystem , Flowers/genetics , Gene Expression Regulation, Plant/genetics , Transcription Factors/genetics
4.
BMC Biol ; 21(1): 87, 2023 04 17.
Article in English | MEDLINE | ID: mdl-37069628

ABSTRACT

BACKGROUND: Two widely cultivated annual buckwheat crops, Fagopyrum esculentum and F. tataricum, differ from each other in both rutin concentration and reproductive system. However, the underlying genetic mechanisms remain poorly elucidated. RESULTS: Here, we report the first haplotype-resolved chromosome-level genome assemblies of the two species. Two haplotype genomes of F. esculentum were assembled as 1.23 and 1.19 Gb with N50 = 9.8 and 12.4 Mb, respectively; the two haplotype genomes of F. tataricum were 453.7 and 446.2 Mb with N50 = 50 and 30 Mb, respectively. We further annotated protein-coding genes of each haplotype genome based on available gene sets and 48 newly sequenced transcriptomes. We found that more repetitive sequences, especially expansion of long terminal repeat retrotransposons (LTR-RTs), contributed to the large genome size of F. esculentum. Based on the well-annotated sequences, gene expressions, and luciferase experiments, we identified the sequence mutations of the promoter regions of two key genes that are likely to have greatly contributed to the high rutin concentration and selfing reproduction in F. tartaricum. CONCLUSIONS: Our results highlight the importance of high-quality genomes to identify genetic mutations underlying phenotypic differences between closely related species. F. tataricum may have been experienced stronger selection than F. esculentum through choosing these two non-coding alleles for the desired cultivation traits. These findings further suggest that genetic manipulation of the non-coding promoter regions could be widely employed for breeding buckwheat and other crops.


Subject(s)
Fagopyrum , Rutin , Rutin/genetics , Rutin/metabolism , Fagopyrum/genetics , Fagopyrum/metabolism , Haplotypes , Plant Breeding , Genitalia/metabolism
5.
BMC Genomics ; 23(1): 96, 2022 Feb 03.
Article in English | MEDLINE | ID: mdl-35114949

ABSTRACT

BACKGROUND: Mitogen-activated protein kinases (MAPKs) plays essential roles in the development, hormone regulation and abiotic stress response of plants. Nevertheless, a comprehensive study on MAPK family members has thus far not been performed in Tartary buckwheat. RESULTS: Here, we identified 16 FtMAPKs in the Fagopyrum tataricum genome. Phylogenetic analysis showed that the FtMAPK family members could be classified into Groups A, B, C and D, in which A, B and C members contain a Thr-Glu-Tyr (TEY) signature motif and Group D members contain a Thr-Asp-Tyr (TDY) signature motif. Promoter cis-acting elements showed that most ProFtMAPks contain light response elements, hormone response elements and abiotic stress response elements, and several ProFtMAPks have MYB-binding sites, which may be involved in the regulation of flavonoid biosynthesis-related enzyme gene expression. Synteny analysis indicated that FtMAPKs have a variety of biological functions. Protein interaction prediction suggested that MAPKs can interact with proteins involved in development and stress resistance. Correlation analysis further confirmed that most of the FtMAPK genes and transcription factors involved in the stress response have the same expression pattern. The transient transformation of FtMAPK1 significantly increased the antioxidant enzymes activity in Tartary buckwheat leaves. In addition, we also found that FtMAPK1 can respond to salt stress by up-regulating the transcription abundance of downstream genes. CONCLUSIONS: A total of 16 MAPKs were identified in Tartary buckwheat, and the members of the MAPK family containing the TDY motif were found to have expanded. The same subfamily members have relatively conserved gene structures and similar protein motifs. Tissue-specific expression indicated that the expression of all FtMAPK genes varied widely in the roots, stems, leaves and flowers. Most FtMAPKs can regulate the expression of other transcription factors and participate in the abiotic stress response. Our findings comprehensively revealed the FtMAPK gene family and laid a theoretical foundation for the functional characterization of FtMAPKs.


Subject(s)
Fagopyrum , Fagopyrum/genetics , Fagopyrum/metabolism , Gene Expression Regulation, Plant , Phylogeny , Plant Proteins/genetics , Plant Proteins/metabolism
6.
J Mol Evol ; 89(4-5): 269-286, 2021 06.
Article in English | MEDLINE | ID: mdl-33760965

ABSTRACT

Key enzymes play a vital role in plant growth and development. However, the evolutionary relationships between genes encoding key enzymes in the metabolic pathway of Tartary buckwheat flavonoids are poorly understood. Based on the published Tartary buckwheat genome sequence and related Tartary buckwheat transcriptome data, 48 key enzyme-encoding genes involved in flavonoid metabolism were screened from the Tartary buckwheat genome in this study; the chromosome localization, gene structure and promoter elements of these enzyme-encoding gene were also investigated. Gene structure analysis revealed relatively conserved 5' exon sequences among the 48 genes, indicating that the structural diversity of key enzyme-encoding genes is low in Tartary buckwheat. Through promoter analysis, these key enzyme-encoding genes were found to contain a large number of light-response elements and hormone-response elements. In addition, some genes could bind MYB transcription factors, participating in the regulation of flavonoid biosynthesis. The transcription level of the 48 key enzyme-encoding gene varied greatly among tissues. In this study, we identified 48 key enzyme-encoding genes involved in flavonoid metabolic pathways, and elucidated the structure, evolution and tissue-specific expression patterns of these genes. These results lay a foundation for further understanding the functional characteristics and evolutionary relationships of key enzyme-encoding genes involved in the flavonoid metabolic pathway in Tartary buckwheat.


Subject(s)
Fagopyrum , Fagopyrum/genetics , Fagopyrum/metabolism , Flavonoids , Gene Expression Regulation, Plant , Metabolic Networks and Pathways/genetics , Phylogeny , Plant Proteins/genetics , Plant Proteins/metabolism
7.
Plant Physiol Biochem ; 144: 312-323, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31606716

ABSTRACT

Plants are subjected to a variety of abiotic stresses during their lifetime, and drought and salt stress are some of the main causes of reduced crop yields. Previous studies have shown that AREB/ABFs within bZIP transcription factors are involved in plant drought and salt stress responses in an ABA-dependent manner. However, the properties and functions of AREB/ABFs in Fagopyrum tataricum, a cereal with good resistance to abiotic stresses, are poorly understood. In this study, a gene encoding an AREB/ABF, designated FtbZIP83, was first isolated from Tartary buckwheat. Expression analysis in Tartary buckwheat indicated that FtbZIP83 was significantly induced by abscisic acid (ABA), NaCl and polyethylene glycol (PEG). The overexpression of FtbZIP83 in Arabidopsis resulted in increased drought/salt tolerance, which was attributed not only to higher proline (Pro) contents and antioxidant enzyme activity in transgenic lines compared with controls but also to the lower reactive oxygen species (ROS) accumulation and malondialdehyde (MDA) content. In addition, we found that FtbZIP83 was able to respond to drought and salt stress by upregulating the transcript abundance of downstream ABA-inducible gene. Furthermore, promoter sequence analysis showed that ABREs were present, and the activity of the FtbZIP83 promoter in transgenic Arabidopsis after drought stress was significantly higher than that under normal conditions. Based on the potential signalling pathways involved in AREB/ABFs, we also screened for the interaction protein FtSnRK2.6/2.3, which may phosphorylate FtbZIP83. Collectively, these results provide evidence that FtbZIP83, as a positive regulator, responds to drought/salt stress via an ABA-dependent signalling pathway composed of SnRK2-AREB/ABF.


Subject(s)
Droughts , Fagopyrum/metabolism , Transcription Factors/metabolism , Abscisic Acid/metabolism , Fagopyrum/genetics , Gene Expression Regulation, Plant/genetics , Gene Expression Regulation, Plant/physiology , Plant Proteins/genetics , Plant Proteins/metabolism , Plants, Genetically Modified/drug effects , Plants, Genetically Modified/genetics , Salt Tolerance/genetics , Salt Tolerance/physiology , Signal Transduction/drug effects , Signal Transduction/genetics , Transcription Factors/genetics
SELECTION OF CITATIONS
SEARCH DETAIL