Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters








Database
Language
Publication year range
1.
Theranostics ; 9(4): 1115-1124, 2019.
Article in English | MEDLINE | ID: mdl-30867819

ABSTRACT

Rationale: Epstein-Barr virus (EBV) is associated with multiple malignancies with expression of viral oncogenic proteins and chronic inflammation as major mechanisms contributing to tumor development. A less well-studied mechanism is the integration of EBV into the human genome possibly at sites which may disrupt gene expression or genome stability. Methods: We sequenced tumor DNA to profile the EBV sequences by hybridization-based enrichment. Bioinformatic analysis was used to detect the breakpoints of EBV integrations in the genome of cancer cells. Results: We identified 197 breakpoints in nasopharyngeal carcinomas and other EBV-associated malignancies. EBV integrations were enriched at vulnerable regions of the human genome and were close to tumor suppressor and inflammation-related genes. We found that EBV integrations into the introns could decrease the expression of the inflammation-related genes, TNFAIP3, PARK2, and CDK15, in NPC tumors. In the EBV genome, the breakpoints were frequently at oriP or terminal repeats. These breakpoints were surrounded by microhomology sequences, consistent with a mechanism for integration involving viral genome replication and microhomology-mediated recombination. Conclusion: Our finding provides insight into the potential of EBV integration as an additional mechanism mediating tumorigenesis in EBV associated malignancies.


Subject(s)
DNA, Viral/analysis , Epstein-Barr Virus Infections/complications , Genome, Human , Herpesvirus 4, Human/genetics , Neoplasms/virology , Virus Integration , DNA, Viral/genetics , Genetic Loci , Humans , Sequence Analysis, DNA
2.
Oncotarget ; 8(56): 95066-95074, 2017 Nov 10.
Article in English | MEDLINE | ID: mdl-29221111

ABSTRACT

Genetic susceptibility and Epstein-Barr virus (EBV) infection are important etiological factors in nasopharyngeal carcinoma (NPC). In this study, in southern China, where NPC is endemic, a single nucleotide polymorphism (SNP) in the EBV-encoded RPMS1 gene (locus 155391: G > A [G155391A]) and seven host SNPs (rs1412829, rs28421666, rs2860580, rs2894207, rs31489, rs6774494, and rs9510787) were confirmed to be significantly associated with NPC risk in 50 NPC cases versus 54 hospital-based controls with throat washing specimens and 1925 NPC cases versus 1947 hospital-based controls with buffy coat samples, respectively. We established a strategy to detect the NPC-associated EBV and host SNPs using saliva samples in a single test that is convenient, noninvasive, and cost-effective and displays good compliance. The potential utility of this strategy was tested by applying a risk prediction model integrating these EBV and host genetic variants to a population-based case-control study comprising 1026 incident NPC cases and 1148 controls. Receiver operating characteristic (ROC) curve analysis revealed an area under the curve of the NPC risk prediction model of 0.74 (95% CI: 0.71-0.76). Net reclassification improvement (NRI) analysis showed that inclusion of the EBV SNP significantly improved the discrimination ability of the model (NRI = 0.30, P < 0.001), suggesting the promising value of EBV characteristics for identifying high-risk NPC individuals in endemic areas. Taken together, we developed a promising NPC risk prediction model via noninvasive saliva sampling. This approach might serve as a convenient and effective method for screening the population with high-risk of NPC.

3.
Cancer Lett ; 381(1): 14-22, 2016 10 10.
Article in English | MEDLINE | ID: mdl-27424523

ABSTRACT

Despite advances in the development of radiation against nasopharyngeal carcinoma (NPC), the management of advanced NPC remains a challenge. Smac mimetics are designed to neutralize inhibitor of apoptosis (IAP) proteins, thus reactivating the apoptotic program in cancer cells. In this study, we investigated the effect of a novel bivalent Smac mimetic APG-1387 in NPC. In vitro, APG-1387 in combination with TNF-α potently decreased NPC cell viability by inducing apoptosis in majority of NPC cell lines. The in vitro antitumor effect was RIPK1-dependent, whereas it was independent on IAPs, USP11, or EBV. Of note, the inhibition of NF-κB or AKT pathway rendered resistant NPC cells responsive to the treatment of APG-1387/TNF-α. In vivo, APG-1387 displayed antitumor activity as a single agent at well-tolerated doses, even in an in vitro resistant cell line. In summary, our results demonstrate that APG-1387 exerts a potent antitumor effect on NPC. These findings support clinical evaluation of APG-1387 as a potential treatment for advanced NPC.


Subject(s)
Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Azepines/pharmacology , Carcinoma/drug therapy , Intracellular Signaling Peptides and Proteins/metabolism , Mitochondrial Proteins/metabolism , Molecular Mimicry , Nasopharyngeal Neoplasms/drug therapy , Sulfonamides/pharmacology , Animals , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Apoptosis Regulatory Proteins , Carcinoma/genetics , Carcinoma/metabolism , Carcinoma/pathology , Cell Line, Tumor , Cell Survival/drug effects , Dose-Response Relationship, Drug , Drug Resistance, Neoplasm , Female , Humans , Inhibitor of Apoptosis Proteins/antagonists & inhibitors , Inhibitor of Apoptosis Proteins/metabolism , Inhibitory Concentration 50 , Mice, Inbred BALB C , Mice, Nude , NF-kappa B/metabolism , Nasopharyngeal Carcinoma , Nasopharyngeal Neoplasms/genetics , Nasopharyngeal Neoplasms/metabolism , Nasopharyngeal Neoplasms/pathology , Proto-Oncogene Proteins c-akt/metabolism , RNA Interference , Receptor-Interacting Protein Serine-Threonine Kinases/genetics , Receptor-Interacting Protein Serine-Threonine Kinases/metabolism , Signal Transduction/drug effects , Time Factors , Transfection , Tumor Burden/drug effects , Tumor Necrosis Factor-alpha/pharmacology , Xenograft Model Antitumor Assays
4.
Molecules ; 20(5): 9155-69, 2015 May 19.
Article in English | MEDLINE | ID: mdl-25996217

ABSTRACT

The anthocyanin extract from a domestic Perilla cultivar (Perilla frutescens var. acuta) were isolated and characterized with high mass accuracy and multi-dimensional fragmentation by means of ultra-performance liquid chromatography (UPLC) and electrospray ionization-ion trap-time of flight mass spectrometry analysis (ESI-IT-TOF-MSn). The new developed and applied LC-MS method focused on in-depth screening of anthocyanin compounds with similar structures which also provided a new approach of anthocyanin characterization without the use of external standards. Selective detection of interested anthocyanins was achieved utilizing extracted ion chromatogram (EIC) analysis, while MSn spectra were recorded to allow identification of the anthocyanin based on characteristic fragmentation patterns. Seven anthocyanins including one feruloyl (Cyanidin 3-O-feruloylglucoside-5-O-glucoside), two caffeoyl (Cyanidin 3-O-caffeoylglucoside-5-O-glucoside, Cyanidin 3-O-caffeoylglucoside-5-O-malonylglucoside) and four coumaroyl substituted anthocyanins (Cis-shisonin, Malonyl-cis-shisonin, Shisonin, and Malonyl-shisonin) were identified. Annexin-V FITC/PI flow cytometric assay was performed to analyze the influence of anthocyanin extract of P. frutescens var. acuta on cell apoptosis. The results suggested that Perilla anthocyanins can induce Hela cell apoptosis by a dose dependent manner.


Subject(s)
Anthocyanins/chemistry , Anthocyanins/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Perilla frutescens/chemistry , Chromatography, High Pressure Liquid/methods , Drugs, Chinese Herbal/chemistry , Drugs, Chinese Herbal/isolation & purification , Drugs, Chinese Herbal/pharmacology , HeLa Cells , Humans , Spectrometry, Mass, Electrospray Ionization/methods
SELECTION OF CITATIONS
SEARCH DETAIL