Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 126
Filter
Add more filters








Publication year range
1.
Article in English | MEDLINE | ID: mdl-39241802

ABSTRACT

The two-dimensional magnet has been an emerging and rapidly growing field. The nontrivial topological phenomenon in these materials is an attracting subject. Yet, the realization of such magnets exhibiting topological magnons remains a challenge. Here, employing the linear spin-wave theory and the first-principles calculations, we propose that variety of topological phases exist in the trian gular ferromagnet. These include magnon Chern insulators and high-order topological insulators. Interestingly, these topological states can coexist within a certain parameter space, leading to a hybrid topological state. We propose that these novel topological phases can be realized via atomic substitutions in MnSe2or MnTe2single-layers. The following detailed analysis suggests that non-uniform Dzyaloshinsky-Moriya interactions are crucial in achieving topological magnons. Our work unveil a novel approach to obtaining non-trivial topological magnons in two-dimensional materials.

2.
Phys Rev Lett ; 133(5): 056401, 2024 Aug 02.
Article in English | MEDLINE | ID: mdl-39159119

ABSTRACT

Spintronics, a technology harnessing electron spin for information transmission, offers a promising avenue to surpass the limitations of conventional electronic devices. While the spin directly interacts with the magnetic field, its control through the electric field is generally more practical, and has become a focal point in the field. Here, we propose a mechanism to realize static and almost uniform effective magnetic field by gate-electric field. Our method employs two-dimensional altermagnets with valley-mediated spin-layer coupling (SLC), in which electronic states display valley-contrasted spin and layer polarization. For the low-energy valley electrons, a uniform gate field is approximately identical to a uniform magnetic field, leading to predictable control of spin. Through symmetry analysis and ab initio calculations, we predict altermagnetic monolayer Ca(CoN)_{2} and its family materials as potential candidates hosting SLC. We show that an almost uniform magnetic field (B_{z}) indeed is generated by gate field (E_{z}) in Ca(CoN)_{2} with B_{z}∝E_{z} in a wide range, and B_{z} reaches as high as about 10^{3} T when E_{z}=0.2 eV/Å. Furthermore, owing to the clean band structure and SLC, one can achieve perfect and switchable spin and valley currents and significant tunneling magnetoresistance in Ca(CoN)_{2} solely using the gate field. Our work provides new opportunities to generate predictable control of spin and design spintronic devices that can be controlled by purely electric means.

3.
Nano Lett ; 24(33): 10237-10243, 2024 Aug 21.
Article in English | MEDLINE | ID: mdl-39092903

ABSTRACT

The Weyl semimetals represent a distinct category of topological materials wherein the low-energy excitations appear as the long-sought Weyl Fermions. Exotic transport and optical properties are expected because of the chiral anomaly and linear energy-momentum dispersion. While three-dimensional Weyl semimetals have been successfully realized, the quest for their two-dimensional (2D) counterparts is ongoing. Here, we report the realization of 2D Weyl Fermions in monolayer PtTe1.75, which has strong spin-orbit coupling and lacks inversion symmetry, by combined angle-resolved photoemission spectroscopy, scanning tunneling microscopy, second harmonic generation, X-ray photoelectron spectroscopy measurements, and first-principles calculations. The giant Rashba splitting and band inversion lead to the emergence of three pairs of critical Weyl cones. Moreover, monolayer PtTe1.75 exhibits excellent chemical stability in ambient conditions, which is critical for future device applications. The discovery of 2D Weyl Fermions in monolayer PtTe1.75 opens up new possibilities for designing and fabricating novel spintronic devices.

4.
Nano Lett ; 24(33): 10402-10407, 2024 Aug 21.
Article in English | MEDLINE | ID: mdl-39115228

ABSTRACT

The helical edge states (ESs) protected by underlying Z2 topology in two-dimensional topological insulators (TIs) arouse upsurges in saturable absorptions thanks to the strong photon-electron coupling in ESs. However, limited TIs demonstrate clear signatures of topological ESs at liquid nitrogen temperatures, hindering the applications of such exotic quantum states. Here, we demonstrate the existence of one-dimensional (1D) ESs at the step edge of the quasi-1D material Ta2NiSe7 at 78 K by scanning tunneling microscopy. Such ESs are rather robust against the irregularity of the edges, suggesting a possible topological origin. The exfoliated Ta2NiSe7 flakes were used as saturable absorbers (SAs) in an Er-doped fiber laser, hosting a mode-locked pulse with a modulation depth of up to 52.6% and a short pulse duration of 225 fs, far outstripping existing TI-based SAs. This work demonstrates the existence of robust 1D ESs and the superior SA performance of Ta2NiSe7.

5.
Phys Rev Lett ; 133(4): 046102, 2024 Jul 26.
Article in English | MEDLINE | ID: mdl-39121412

ABSTRACT

The successful growth of non-van der Waals (vdW) group-III nitride epilayers on vdW substrates not only opens an unprecedented opportunity to obtain high-quality semiconductor thinfilm but also raises a strong debate for its growth mechanism. Here, combining multiscale computational approaches and experimental characterization, we propose that the growth of a nitride epilayer on a vdW substrate, e.g., AlN on graphene, may belong to a previously unknown model, named hybrid vdW epitaxy (HVE). Atomic-scale simulations demonstrate that a unique interfacial hybrid-vdW interaction can be created between AlN and graphene, and, consequently, a first-principles-based continuum growth model is developed to capture the unusual features of HVE. Surprisingly, it is revealed that the in-plane and out-of-plane growth are strongly correlated in HVE, which is absent in existing growth models. The concept of HVE is confirmed by our experimental measurements, presenting a new growth mechanism beyond the current category of material growth.

6.
Nature ; 632(8026): 775-781, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39169248

ABSTRACT

Superconductivity involving finite-momentum pairing1 can lead to spatial-gap and pair-density modulations, as well as Bogoliubov Fermi states within the superconducting gap. However, the experimental realization of their intertwined relations has been challenging. Here we detect chiral kagome superconductivity modulations with residual Fermi arcs in KV3Sb5 and CsV3Sb5 using normal and Josephson scanning tunnelling microscopy down to 30 millikelvin with a resolved electronic energy difference at the microelectronvolt level. We observe a U-shaped superconducting gap with flat residual in-gap states. This gap shows chiral 2a × 2a spatial modulations with magnetic-field-tunable chirality, which align with the chiral 2a × 2a pair-density modulations observed through Josephson tunnelling. These findings demonstrate a chiral pair density wave (PDW) that breaks time-reversal symmetry. Quasiparticle interference imaging of the in-gap zero-energy states reveals segmented arcs, with high-temperature data linking them to parts of the reconstructed vanadium d-orbital states within the charge order. The detected residual Fermi arcs can be explained by the partial suppression of these d-orbital states through an interorbital 2a × 2a PDW and thus serve as candidate Bogoliubov Fermi states. In addition, we differentiate the observed PDW order from impurity-induced gap modulations. Our observations not only uncover a chiral PDW order with orbital selectivity but also show the fundamental space-momentum correspondence inherent in finite-momentum-paired superconductivity.

7.
Nat Mater ; 2024 Aug 28.
Article in English | MEDLINE | ID: mdl-39198714

ABSTRACT

Superconductivity and magnetism are often antagonistic in quantum matter, although their intertwining has long been considered in frustrated-lattice systems. Here we utilize scanning tunnelling microscopy and muon spin resonance to demonstrate time-reversal symmetry-breaking superconductivity in kagome metal Cs(V, Ta)3Sb5, where the Cooper pairing exhibits magnetism and is modulated by it. In the magnetic channel, we observe spontaneous internal magnetism in a fully gapped superconducting state. Under the perturbation of inverse magnetic fields, we detect a time-reversal asymmetrical interference of Bogoliubov quasi-particles at a circular vector. At this vector, the pairing gap spontaneously modulates, which is distinct from pair density waves occurring at a point vector and consistent with the theoretical proposal of an unusual interference effect under time-reversal symmetry breaking. The correlation between internal magnetism, Bogoliubov quasi-particles and pairing modulation provides a chain of experimental indications for time-reversal symmetry-breaking kagome superconductivity.

8.
Mater Horiz ; 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38990691

ABSTRACT

The anomalous Hall effect (AHE), significantly enhanced by the extrinsic mechanism, has attracted attention for its almost unlimited Hall response, which exceeds the upper limit of the Berry curvature mechanism. However, due to the high conductivity in the clean regime and weak skew scattering, it is a great challenge to obtain large anomalous Hall conductivities and large anomalous Hall angles at the same time. Here, we unveil a new magnetic metal system, EuAl2Si2, which hosts both colossal anomalous Hall conductivity (σAxy ≥ 104 Ω-1 cm-1) and large anomalous Hall angle (AHA >10%). The scaling relation suggests that the skew scattering mechanism is dominant in the colossal anomalous Hall response and gives rise to a large skew scattering constant. The large effective SOC and large magnetic moment may account for this anomaly. Our results indicate that EuAl2Si2 is a good platform to study the extrinsic AHE mechanism.

9.
Nat Commun ; 15(1): 6467, 2024 Jul 31.
Article in English | MEDLINE | ID: mdl-39085284

ABSTRACT

A hallmark of unconventional superconductors is a complex electronic phase diagram where intertwined orders of charge-spin-lattice degrees of freedom compete and coexist. While the kagome metals such as CsV3Sb5 also exhibit complex behavior, involving coexisting charge density wave order and superconductivity, much is unclear about the microscopic origin of the superconducting pairing. We study the vortex lattice in the superconducting state of Cs(V0.86Ta0.14)3Sb5, where the Ta-doping suppresses charge order and enhances superconductivity. Using small-angle neutron scattering, a strictly bulk probe, we show that the vortex lattice exhibits a strikingly conventional behavior. This includes a triangular symmetry with a period consistent with 2e-pairing, a field dependent scattering intensity that follows a London model, and a temperature dependence consistent with a uniform superconducting gap. Our results suggest that optimal bulk superconductivity in Cs(V1-xTax)3Sb5 arises from a conventional Bardeen-Cooper-Schrieffer electron-lattice coupling, different from spin fluctuation mediated unconventional copper- and iron-based superconductors.

10.
Adv Sci (Weinh) ; 11(29): e2309003, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38828764

ABSTRACT

Applying lattice strain to thin films, a critical factor to tailor their properties such as stabilizing a structural phase unstable at ambient pressure, generally necessitates heteroepitaxial growth to control the lattice mismatch with substrate. Therefore, while homoepitaxy, the growth of thin film on a substrate made of the same material, is a useful method to fabricate high-quality thin films, its application to studying strain-induced structural phases is limited. Contrary to this general belief, here the quasi-homoepitaxial growth of Cs and Rb thin films is reported with substantial in-plane compressive strain. This is achieved by utilizing the alkali-metal layer existing in bulk crystal of kagome metals AV3Sb5 (A = Cs and Rb) as a structural template. The angle-resolved photoemission spectroscopy measurements reveal the formation of metallic quantum well states and notable thickness-dependent quasiparticle lifetime. Comparison with density functional theory calculations suggests that the obtained thin films crystalize in the face-centered cubic structure, which is typically stable only under high pressure in bulk crystals. These findings provide a useful approach for synthesizing highly strained thin films by quasi-homoepitaxy, and pave the way for investigating many-body interactions in Fermi liquids with tunable dimensionality.

11.
Nat Commun ; 15(1): 5038, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38866771

ABSTRACT

Transition metal compounds with kagome structure have been found to exhibit a variety of exotic structural, electronic, and magnetic orders. These orders are competing with energies very close to each other, resulting in complex phase transitions. Some of the phases are easily observable, such as the charge density wave (CDW) and the superconducting phase, while others are more challenging to identify and characterize. Here we present magneto-transport evidence of a new phase below ~ 35 K in the kagome topological metal CsV3Sb5 (CVS) thin flakes between the CDW and the superconducting transition temperatures. This phase is characterized by six-fold rotational symmetry in the in-plane magnetoresistance (MR) and is connected to the orbital current order in CVS. Furthermore, the phase is characterized by a large in-plane negative magnetoresistance, which suggests the existence of a three-dimensional, magnetic field-tunable orbital current ordered phase. Our results highlight the potential of magneto-transport to reveal the interactions between exotic quantum states of matter and to uncover the symmetry of such hidden phases.

12.
Nat Commun ; 15(1): 5491, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38944656

ABSTRACT

Localized magnetic moments in non-magnetic materials, by interacting with the itinerary electrons, can profoundly change the metallic properties, developing various correlated phenomena such as the Kondo effect, heavy fermion, and unconventional superconductivity. In most Kondo systems, the localized moments are introduced through magnetic impurities. However, the intrinsic magnetic properties of materials can also be modulated by the dimensionality. Here, we report the observation of Kondo effect in a heterodimensional superlattice VS2-VS, in which arrays of the one-dimensional (1D) VS chains are encapsulated by two-dimensional VS2 layers. In such a heterodimensional Kondo superlattice, we observe the typical Kondo effect but with intriguing anisotropic field dependence. This unique anisotropy is determined to originate from the magnetic anisotropy which has the root in the unique 1D chains in the structure, as corroborated by the first-principles calculation. Our results open up a novel avenue of studying exotic correlated physics in heterodimensional materials.

13.
Nano Lett ; 24(19): 5791-5798, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38695400

ABSTRACT

The second-order nonlinear transport illuminates a frequency-doubling response emerging in quantum materials with a broken inversion symmetry. The two principal driving mechanisms, the Berry curvature dipole and the skew scattering, reflect various information including ground-state symmetries, band dispersions, and topology of electronic wave functions. However, effective manipulation of them in a single system has been lacking, hindering the pursuit of strong responses. Here, we report on the effective manipulation of the two mechanisms in a single graphene moiré superlattice, AB-BA stacked twisted double bilayer graphene. Most saliently, by virtue of the high tunability of moiré band structures and scattering rates, a record-high second-order transverse conductivity ∼ 510 µm S V-1 is observed, which is orders of magnitude higher than any reported values in the literature. Our findings establish the potential of electrically tunable graphene moiré systems for nonlinear transport manipulations and applications.

14.
Nature ; 630(8015): 64-69, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38750364

ABSTRACT

The interplay among frustrated lattice geometry, non-trivial band topology and correlation yields rich quantum states of matter in kagome systems1,2. A series of recent members in this family, AV3Sb5 (A = K, Rb or Cs), exhibit a cascade of symmetry-breaking transitions3, involving the 3Q chiral charge ordering4-8, electronic nematicity9,10, roton pair density wave11 and superconductivity12. The nature of the superconducting order is yet to be resolved. Here we report an indication of dynamic superconducting domains with boundary supercurrents in intrinsic CsV3Sb5 flakes. The magnetic field-free superconducting diode effect is observed with polarity modulated by thermal histories, suggesting that there are dynamic superconducting order domains in a spontaneous time-reversal symmetry-breaking background. Strikingly, the critical current exhibits double-slit superconductivity interference patterns when subjected to an external magnetic field. The characteristics of the patterns are modulated by thermal cycling. These phenomena are proposed as a consequence of periodically modulated supercurrents flowing along certain domain boundaries constrained by fluxoid quantization. Our results imply a time-reversal symmetry-breaking superconducting order, opening a potential for exploring exotic physics, for example, Majorana zero modes, in this intriguing topological kagome system.

15.
ACS Nano ; 18(16): 10758-10767, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38598699

ABSTRACT

Neural networks are increasingly used to solve optimization problems in various fields, including operations research, design automation, and gene sequencing. However, these networks face challenges due to the nondeterministic polynomial time (NP)-hard issue, which results in exponentially increasing computational complexity as the problem size grows. Conventional digital hardware struggles with the von Neumann bottleneck, the slowdown of Moore's law, and the complexity arising from heterogeneous system design. Two-dimensional (2D) memristors offer a potential solution to these hardware challenges, with their in-memory computing, decent scalability, and rich dynamic behaviors. In this study, we explore the use of nonvolatile 2D memristors to emulate synapses in a discrete-time Hopfield neural network, enabling the network to solve continuous optimization problems, like finding the minimum value of a quadratic polynomial, and tackle combinatorial optimization problems like Max-Cut. Additionally, we coupled volatile memristor-based oscillators with nonvolatile memristor synapses to create an oscillatory neural network-based Ising machine, a continuous-time analog dynamic system capable of solving combinatorial optimization problems including Max-Cut and map coloring through phase synchronization. Our findings demonstrate that 2D memristors have the potential to significantly enhance the efficiency, compactness, and homogeneity of integrated Ising machines, which is useful for future advances in neural networks for optimization problems.

16.
Adv Mater ; 36(29): e2402232, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38684179

ABSTRACT

Recently, the real topology has been attracting widespread interest in two dimensions (2D). Here, based on first-principles calculations and theoretical analysis, the monolayer Cr2Se2O (ML-CrSeO) is revealed as the first material example of a 2D antiferromagnetic (AFM) real Chern insulator (RCI) with topologically protected corner states. Unlike previous RCIs, it is found that the real topology of the ML-CrSeO is rooted in one certain mirror subsystem of the two spin channels, and cannot be directly obtained from all the valence bands in each spin channel as commonly believed. In particular, due to antiferromagnetism, the corner modes in ML-CrSeO exhibit strong corner-contrasted spin polarization, leading to spin-corner coupling (SCC). This SCC enables a direct connection between spin space and real space. Consequently, large and switchable net magnetization can be induced in the ML-CrSeO nanodisk by electrostatic means, such as potential step and in-plane electric field, and the corresponding magnetoelectric responses behave like a sign function, distinguished from that of the conventional multiferroic materials. This work considerably broadens the candidate range of RCI materials, and opens up a new direction for topo-spintronics and 2D AFM materials research.

17.
Nat Commun ; 15(1): 2888, 2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38605015

ABSTRACT

Superconductivity is caused by electron pairs that are canonically isotropic, whereas some exotic superconductors are known to exhibit non-trivial anisotropy stemming from unconventional pairings. However, superconductors with hexagonal symmetry, the highest rotational symmetry allowed in crystals, exceptionally have strong constraint that is called emergent rotational symmetry (ERS): anisotropic properties should be very weak especially near the critical temperature Tc even for unconventional pairings such as d-wave states. Here, we investigate superconducting anisotropy of the recently-found hexagonal Kagome superconductor CsV3Sb5, which is known to exhibit various intriguing phenomena originating from its undistorted Kagome lattice formed by vanadium atoms. Based on calorimetry performed under accurate two-axis field-direction control, we discover a combination of six- and two-fold anisotropies in the in-plane upper critical field. Both anisotropies, robust up to very close to Tc, are beyond predictions of standard theories. We infer that this clear ERS violation with nematicity is best explained by multi-component nematic superconducting order parameter in CsV3Sb5 intertwined with symmetry breakings caused by the underlying charge-density-wave order.

18.
Sci Adv ; 10(17): eadn7582, 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38657056

ABSTRACT

With the rapid development of micro/nanofabrication technologies, the concept of transformable kirigami has been applied for device fabrication in the microscopic world. However, most nano-kirigami structures and devices were typically fabricated or transformed at fixed positions and restricted to limited mechanical motion along a single axis due to their small sizes, which significantly limits their functionalities and applications. Here, we demonstrate the precise shaping and position control of nano-kirigami microrotors. Metallic microrotors with size of ~10 micrometers were deliberately released from the substrates and readily manipulated through the multimode actuation with controllable speed and direction using an advanced optoelectronic tweezers technique. The underlying mechanisms of versatile interactions between the microrotors and electric field are uncovered by theoretical modeling and systematic analysis. This work reports a novel methodology to fabricate and manipulate micro/nanorotors with well-designed and sophisticated kirigami morphologies, providing new solutions for future advanced optoelectronic micro/nanomachinery.

19.
Phys Rev Lett ; 132(10): 106601, 2024 Mar 08.
Article in English | MEDLINE | ID: mdl-38518320

ABSTRACT

It has been theoretically predicted that perturbation of the Berry curvature by electromagnetic fields gives rise to intrinsic nonlinear anomalous Hall effects that are independent of scattering. Two types of nonlinear anomalous Hall effects are expected. The electric nonlinear Hall effect has recently begun to receive attention, while very few studies are concerned with the magneto-nonlinear Hall effect. Here, we combine experiment and first-principles calculations to show that the kagome ferromagnet Fe_{3}Sn_{2} displays such a magneto-nonlinear Hall effect. By systematic field angular and temperature-dependent transport measurements, we unambiguously identify a large anomalous Hall current that is linear in both applied in-plane electric and magnetic fields, utilizing a unique in-plane configuration. We clarify its dominant orbital origin and connect it to the magneto-nonlinear Hall effect. The effect is governed by the intrinsic quantum geometric properties of Bloch electrons. Our results demonstrate the significance of the quantum geometry of electron wave functions from the orbital degree of freedom and open up a new direction in Hall transport effects.

20.
Sci Bull (Beijing) ; 69(7): 885-892, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38383234

ABSTRACT

Vortices and bound states offer an effective means of comprehending the electronic properties of superconductors. Recently, surface-dependent vortex core states have been observed in the newly discovered kagome superconductors CsV3Sb5. Although the spatial distribution of the sharp zero energy conductance peak appears similar to Majorana bound states arising from the superconducting Dirac surface states, its origin remains elusive. In this study, we present observations of tunable vortex bound states (VBSs) in two chemically-doped kagome superconductors Cs(V1-xTrx)3Sb5 (Tr = Ta or Ti), using low-temperature scanning tunneling microscopy/spectroscopy. The CsV3Sb5-derived kagome superconductors exhibit full-gap-pairing superconductivity accompanied by the absence of long-range charge orders, in contrast to pristine CsV3Sb5. Zero-energy conductance maps demonstrate a field-driven continuous reorientation transition of the vortex lattice, suggesting multiband superconductivity. The Ta-doped CsV3Sb5 displays the conventional cross-shaped spatial evolution of Caroli-de Gennes-Matricon bound states, while the Ti-doped CsV3Sb5 exhibits a sharp, non-split zero-bias conductance peak (ZBCP) that persists over a long distance across the vortex. The spatial evolution of the non-split ZBCP is robust against surface effects and external magnetic field but is related to the doping concentrations. Our study reveals the tunable VBSs in multiband chemically-doped CsV3Sb5 system and offers fresh insights into previously reported Y-shaped ZBCP in a non-quantum-limit condition at the surface of kagome superconductor.

SELECTION OF CITATIONS
SEARCH DETAIL