Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters








Database
Language
Publication year range
1.
Waste Manag Res ; 32(2): 124-30, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24519226

ABSTRACT

This study evaluated bioelectricity generation by using kitchen garbage (KG) and bamboo waste (BW) as a solid waste management option by a microbial fuel cell (MFC) method. The nutrient content [nitrogen, phosphorus and potassium (NPK)] of the by-products of bioelectricity were also analyzed and assessed for their potential use as a soil amendment. A one-chamber MFC was used for bioelectricity generation in laboratory experiments using both KG and BW. A data-logger recorded voltage every 20 mins at a constant room temperature of 25°C over 45 days. The trend of voltage generation was different for the two organic wastes. In the case of KG, the voltage at the initial stage (0-5 days) increased rapidly and then gradually to a peak of 620 mV. In contrast, the voltage increased gradually to a peak of 540 mV in the case of BW. The by-products of bioelectricity can be used as soil conditioner as its NPK content was in the range of soil conditioner mentioned in other literature. Thus, the MFC has emerged as an efficient and eco-friendly solution for organic waste management, especially in developing and technologically less sophisticated countries, and can provide green and safe electricity from organic waste.


Subject(s)
Bioelectric Energy Sources , Sasa , Waste Management , Biomass , Food
2.
Water Sci Technol ; 68(12): 2545-51, 2013.
Article in English | MEDLINE | ID: mdl-24355839

ABSTRACT

Simulating the dynamics of soil water content and modeling soil water evaporation are critical for many environmental and agricultural strategies. The present study aims to develop an analytical solution to simulate soil water redistribution during the evaporation process. This analytical solution was derived utilizing an exponential function to describe the relation of hydraulic conductivity and water content on pressure head. The solution was obtained based on the initial condition of saturation and an exponential function to model the change of surface water content. Also, the evaporation experiments were conducted under a climate control apparatus to validate the theoretical development. Comparisons between the proposed analytical solution and experimental result are presented from the aspects of soil water redistribution, evaporative rate and cumulative evaporation. Their good agreement indicates that this analytical solution provides a reliable way to investigate the interaction of evaporation and soil water profile.


Subject(s)
Climate , Hydrodynamics , Models, Theoretical , Soil , Water Movements , Computer Simulation , Volatilization
3.
Waste Manag ; 33(11): 2465-9, 2013 Nov.
Article in English | MEDLINE | ID: mdl-23962448

ABSTRACT

Microbial fuel cells (MFCs) have gained a lot of attention recently as a mode of converting organic matter into electricity. In this study, a compost-based microbial fuel cell that generates bioelectricity by biodegradation of organic matter is developed. Grass cuttings, along with leaf mold, rice bran, oil cake (from mustard plants) and chicken droppings (waste from chickens) were used as organic waste. The electric properties of the MFC under anaerobic fermentation condition were investigated along with the influence of different types of membranes, the mixing of fly ash, and different types of electrode materials. It is observed that the maximum voltage was increased by mixing fly ash. Cellophane showed the highest value of voltage (around 350mV). Bamboo charcoal is good for anode material; however carbon fiber is better for the cathode material in terms of optimization of power generated. This developed MFC is a simple cell to generate electricity from organic waste.


Subject(s)
Bioelectric Energy Sources , Garbage , Coal Ash
4.
Water Sci Technol ; 68(2): 328-34, 2013.
Article in English | MEDLINE | ID: mdl-23863424

ABSTRACT

Simulation of flow and contaminant transport through the vadose zone requires accurate parameterization of the soil hydraulic properties. This requirement is particularly important for soils with a complex structure. In the present study, a physically based closed-form expression for the bimodal unsaturated hydraulic conductivity function is proposed for soils with bimodal pore-size distribution. It combines the bimodal representation of the soil-water characteristic curve (SWCC) function of Liu with the conductivity representation model of Mualem. The proposed equations are defined by parameters that have physical significance, which can be related to the properties of the materials. Experimental data for the representation of bimodal SWCCs and corresponding hydraulic conductivity curves were used to demonstrate the applicability of the proposed functions. The proposed approaches resulted in good agreement with experimental data. These functions can potentially be used as an effective tool for identifying hydraulic porosities in mediums with a complex structure.


Subject(s)
Models, Theoretical , Soil/chemistry , Water Movements , Porosity
5.
Water Sci Technol ; 67(8): 1740-7, 2013.
Article in English | MEDLINE | ID: mdl-23579828

ABSTRACT

In the last decades several approaches have been developed to describe bimodal or multimodal soil-water characteristic curves (SWCCs). Unfortunately, most of these models were derived empirically. In the presented study, physically based bimodal and multimodal SWCC functions have been developed for structural soils. The model involved two or more continual pore series; the probability density functions for each pore series were assumed to be lognormal distribution and can be superposed to obtain the overall probability density function of the structural soils. The proposed functions were capable of simulating bimodal or multimodal SWCCs using parameters which can be related to physical properties of the structural soils. The experimental SWCC data were used to verify the proposed method. The fitting results showed that the proposed approaches resulted in good agreement between measurement and simulation. These functions can potentially be used as effective tools for indentifying hydraulic porosities in the structural mediums.


Subject(s)
Models, Theoretical , Soil , Water , Porosity
SELECTION OF CITATIONS
SEARCH DETAIL