Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters








Publication year range
1.
J Hazard Mater ; 474: 134802, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38838525

ABSTRACT

Organic fertilization is a major driver potentiating soil antibiotic resistance in farmland. However, it remains unclear how bacterial antibiotic resistance evolves in fertilized soils and even spreads to crops. Compared with no fertilizer and commercial fertilizer treatments, organic fertilizers markedly increased the abundance of soil antibiotic resistance genes (ARGs) but the relatively weaker transfer of resistance genes from soil to crops. The introduction of organic fertilizers enriches the soil with nutrients, driving indigenous microorganisms towards a K-strategy. The pH, EC, and nutrients as key drivers influenced the ARGs abundance. The neutral (pH 7.2), low salt (TDS 1.4 %) and mesotrophic (carbon content 3.54 g/L) habitats similar to the soil environment conditioned by organic fertilizers. These environmental conditions clearly prolonged the persistence of resistant plasmids, and facilitated their dissemination to massive conjugators soil microbiome but not to plant endophytes. This suggested that organic fertilizers inhibited the spread of ARGs to crops. Moreover, the composition of conjugators showed differential selection of resistant plasmids by endophytes under these conditions. This study sheds light on the evolution and dissemination of antibiotic resistance in farmlands and can aid in the development of antimicrobial resistance control strategies in agriculture.

2.
BMC Microbiol ; 24(1): 153, 2024 May 04.
Article in English | MEDLINE | ID: mdl-38704527

ABSTRACT

BACKGROUND: Saline lakes are home to various archaea that play special and crucial roles in the global biogeochemical cycle. The Qinghai-Tibet Plateau hosts a large number of lakes with diverse salinity ranging from 0.1 to over 400 g/L, harboring complex and diverse archaea. To the best of our knowledge, the formation mechanisms and potential ecological roles of archaea in Qinghai-Tibetan Plateau saline lakes remain largely unknown. RESULTS: Using High-throughput Illumina sequencing, we uncovered the vastly distinct archaea communities between two typical saline lakes with significant salinity differences on the Qinghai Tibet Plateau (Qinghai saline lake and Chaka hypersaline lake) and suggested archaea played different important roles in methanogenesis-related and nitrate reduction-related functions of these two lakes, respectively. Rather than the individual effect of salinity, the composite effect of salinity with diverse environmental parameters (e.g., temperature, chlorophyll a, total nitrogen, and total phosphorus) dominated the explanation of the variations in archaeal community structure in different habitats. Based on the network analysis, we further found the correlations between dominant archaeal OTUs were tight but significantly different between the two habitats, implying that archaeal interactions may also largely determine the shape of archaeal communities. CONCLUSION: The present study improved our understanding of the structure and function of archaea in different saline lakes on the Qinghai-Tibet Plateau and provided a new perspective on the mechanisms underlying shaping their communities.


Subject(s)
Archaea , Lakes , Salinity , Lakes/microbiology , Lakes/chemistry , Archaea/genetics , Archaea/classification , Archaea/metabolism , Tibet , High-Throughput Nucleotide Sequencing , Phylogeny , Biodiversity , Ecosystem , RNA, Ribosomal, 16S/genetics , Nitrogen/metabolism , Nitrogen/analysis , DNA, Archaeal/genetics
3.
J Hazard Mater ; 471: 134282, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38657509

ABSTRACT

Microplastics (MPs) pose a threat to farmland soil quality and crop safety. MPs exist widely in food legumes farmland soil due to the extensive use of agricultural film and organic fertilizer, but their distribution characteristics and their impact on soil environment have not been reported. The abundance and characteristics of MPs, soil physical and chemical properties, and bacterial community composition were investigated in 76 soil samples from five provinces in northern China. The results showed that the abundance of MPs ranged from 1600 to 36,200 items/kg. MPs in soil were mostly fibrous, less than 0.2 mm, and white. Rayon, polyester and polyethylene were the main types of MPs. The influences of MPs on soil physicochemical properties and bacterial communities mainly depended on the type of MPs. Notably, polyethylene significantly decreased the proportion of silt particles, and increased the nitrate nitrogen content as well as the abundance of MPs-degrading bacteria Paenibacillus (p < 0.05). Moreover, bacteria were more sensitive to polyesters in soil with low concentration of organic matter. This study indicated that MPs in food legumes farmland soil presented a higher-level. And, they partially altered soil physicochemical properties, and soil bacteria especially in soil with low organic matter.


Subject(s)
Bacteria , Microplastics , Soil Microbiology , Soil Pollutants , Soil , China , Soil Pollutants/analysis , Soil/chemistry , Microplastics/analysis , Bacteria/classification , Fabaceae , Agriculture , Farms
4.
J Hazard Mater ; 469: 134080, 2024 May 05.
Article in English | MEDLINE | ID: mdl-38522204

ABSTRACT

Humus substances (HSs) participate in extracellular electron transfer (EET), which is unclear in heterogeneous soil. Here, a microbial electrochemical system (MES) was constructed to determine the effect of HSs, including humic acid, humin and fulvic acid, on soil electron transfer. The results showed that fulvic acid led to the optimal electron transfer efficiency in soil, as evidenced by the highest accumulated charges and removal of total petroleum hydrocarbons after 140 days, with increases of 161% and 30%, respectively, compared with those of the control. However, the performance of MES with the addition of humic acid and humin was comparable to that of the control. Fulvic acid amendment enhanced the carboxyl content and oxidative state of dissolved organic matter, endowing a better electron transfer capacity. Additionally, the presence of fulvic acid induced an increase in the abundance of electroactive bacteria and organic degraders, extracellular polymeric substances and functional enzymes such as cytochrome c and NADH synthesis, and the expression of m tr C gene, which is responsible for EET enhancement in soil. Overall, this study reveals the mechanism by which HSs stimulate soil electron transfer at the physicochemical and biological levels and provides basic support for the application of bioelectrochemical technology in soil.


Subject(s)
Benzopyrans , Humic Substances , Soil , Humic Substances/analysis , Soil/chemistry , Electrons
5.
Environ Int ; 177: 108035, 2023 07.
Article in English | MEDLINE | ID: mdl-37329759

ABSTRACT

Bioelectric field is a stimulated force to degrade xenobiotic pollutants in soils. However, the effect of bioelectric field on microplastics (MPs) aging is unclear. The degradation behavior of polyvinyl chloride (PVC), polyethylene (PE) and polylactic acid (PLA) was investigated in an agricultural soil microbial electrochemical system in which bioelectric field was generated in-situ by native microbes. Based on the density function theory, the energy gaps between the highest and the lowest occupied molecular orbitals of the three polymers with periodic structure were 4.20, 7.24 and 10.09 eV respectively, and further decreased under the electric field, indicating the higher hydrolysis potential of PLA. Meanwhile, the mass loss of PLA in the closed-circuit group (CC) was the highest on day 120, reaching 8.94%, which was 3.01-3.54 times of that without bioelectric field stimulation. This was mainly due to the enrichment of plastic-degrading bacteria and a robust co-occurrence network as the deterministic assembly process, e.g., the abundance of potential plastic-degrading bacteria on the surface of PLA and PVC in the CC increased by 1.92 and 1.30 times, respectively, compared to the open-circuit group. In terms of functional genes, the xenobiotic biodegradation and metabolism capacity of plasticsphere in the CC were stronger than that in soil, and determined by the bioaccessibility of soil nitrogen and carbon. Overall, this study explored the promoting effect of bioelectric field on the degradation of MPs and reveled the mechanism from quantum chemical calculations and microbial community analysis, which provides a novel perception to the in-situ degradation of MPs.


Subject(s)
Microplastics , Plastics , Soil/chemistry , Xenobiotics , Soil Microbiology , Polyesters
6.
Microb Cell Fact ; 22(1): 52, 2023 Mar 15.
Article in English | MEDLINE | ID: mdl-36918882

ABSTRACT

BACKGROUND: Thraustochytrids accumulate lipids with a high content of docosahexaenoic acid (DHA). Although their growth and DHA content are significantly affected by the dissolved oxygen (DO) supply, the role of DO on the transcriptional regulation of metabolism and accumulation of intracellular metabolites remains poorly understood. Here we investigate the effects of three different DO supply conditions (10%, 30%, and 50%) on the fed-batch culture of the Aurantiochytrium PKU#Mn16 strain to mainly reveal the differential gene expressions and metabolite profiles. RESULTS: While the supply of 10% DO significantly reduced the rates of biomass and DHA production in the early stages of fermentation, it achieved the highest amounts of biomass (56.7 g/L) and DHA (6.0 g/L) on prolonged fermentation. The transcriptome analyses of the early stage (24 h) of fermentation revealed several genes involved in the central carbon, amino acid, and fatty acid metabolism, which were significantly downregulated at a 10% DO level. The comparative metabolomics results revealed the accumulation of several long-chain fatty acids, amino acids, and other metabolites, supporting the transcriptional regulation under the influence of a low oxygen supply condition. In addition, certain genes involved in antioxidative systems were downregulated under 10% DO level, suggesting a lesser generation of reactive oxygen species that lead to oxidative damage and fatty acid oxidation. CONCLUSIONS: The findings of this study suggest that despite the slow growth and metabolism in the early stage of fermentation of Aurantiochytrium sp. PKU#Mn16, a constant supply of low dissolved oxygen can yield biomass and DHA content better than that with high oxygen supply conditions. The critical information gained in this study will help to further improve DHA production through bioprocess engineering strategies.


Subject(s)
Docosahexaenoic Acids , Stramenopiles , Docosahexaenoic Acids/metabolism , Fermentation , Fatty Acids/metabolism , Lipid Metabolism , Stramenopiles/genetics , Oxygen/metabolism
7.
Sci Total Environ ; 855: 158587, 2023 Jan 10.
Article in English | MEDLINE | ID: mdl-36084778

ABSTRACT

To explore the responses of soil microbial communities to concentration gradients of antibiotic residues in soil, 32 soil samples were collected from a typical greenhouse vegetable production base in Northern China in 2019. The total concentrations of 26 antibiotic residues in these soil samples was 83.24-4237.93 µg·kg-1, of which metabolites of tetracyclines were 23.34-1798.80 µg·kg-1. The total concentrations in 32 samples were clustered into three levels (L: <100 µg·kg-1, M: 100-300 µg·kg-1, H: >300 µg·kg-1) to elucidate the impacts of antibiotic residues on the diversity, structure, composition, function and antibiotic resistome of soil microbial community. Results showed that higher concentration of antibiotic residues in soil was prone to decrease the diversity and shift the structure and composition of soil microbial community. Antibiotic resistome occurred in soils with antibiotic residues exceeding 300 µg·kg-1. Interactions among soil bacteria followed the order of H > L > M, consistent with the relative abundances of mobile genetic elements. Bacteroidetes and Firmicutes were the top attributors impacting the profile of antibiotics in soil. According to weighted comprehensive pollution index of risk quotient, in 28.1 % of soil samples the residual antibiotics presented high ecological risk, whereas in the rest of soil samples the ecological risk is medium. The results will enrich the database and provide references for antibiotic contamination control in soils of the region and alike.


Subject(s)
Microbiota , Soil Pollutants , Soil , Vegetables , Anti-Bacterial Agents/analysis , Manure , Soil Microbiology , Soil Pollutants/analysis , Genes, Bacterial
8.
Chemosphere ; 307(Pt 3): 135864, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35948105

ABSTRACT

The redox process driven by anaerobic respiration is a link between matter conversion and energy exchange in soil biogeochemistry. Microbial extracellular electron transfer forming biocurrents is a force in element cycling and community living in soil. However, the effect of indigenous microorganisms generating biocurrents on soil quality is unclear. We found that soil biocurrent showed little adverse influence on soil pH, cation exchange capacity, and available nitrogen, phosphorus and potassium and deblocked sequestered organic matter (29%). In addition, the bioelectric field derived from biocurrent obviously forced the migration of mineral elements, which was a supplement to the theory of water-salt transport, providing a new perspective on element transport. Moreover, the soil biocurrent directly regulated the availability of Ca and Fe (increase of 7-fold), indicating that electron transfer plays an important role in weathering and mineralization and thus pedogenesis. From a microbial ecology point of view, the soil bacterial richness and diversity were perfectly restored to their original state when the biocurrent stopped; including bacterial functions; although a temporary enrichment of certain species was observed. The above results provide new insights into the interactions between electron transfer and soil quality and confirm the safety of soil bioelectrochemical technology.


Subject(s)
Soil Microbiology , Soil , Nitrogen , Phosphorus , Potassium , Soil/chemistry , Water
9.
Mar Drugs ; 20(4)2022 Mar 28.
Article in English | MEDLINE | ID: mdl-35447902

ABSTRACT

Thraustochytrids have gained significant attention in recent years because of their considerable ecological and biotechnological importance. Yet, the influence of seasons and habitats on their culturable diversity and lipid profile remains poorly described. In this study, a total of 58 thraustochytrid strains were isolated from the coastal waters of Qingdao, China. These strains were phylogenetically close to five thraustochytrid genera, namely Botryochytrium, Oblongichytrium, Schizochytrium, Thraustochytrium, and Sicyoidochytrium. Most of the isolated strains were classified into the genera Thraustochytrium and Oblongichytrium. Further diversity analysis revealed that samples collected from nutrient-rich habitats and during summer/fall yielded significantly higher culturable diversity of thraustochytrids than those from low-nutrient habitats and winter/spring. Moreover, sampling habitats and seasons significantly impacted the fatty acid profiles of the strains. Particularly, the Oblongichytrium sp. OC931 strain produced a significant amount (153.99 mg/L) of eicosapentaenoic acid (EPA), accounting for 9.12% of the total fatty acids, which was significantly higher than that of the previously reported Aurantiochytrium strains. Overall, the results of this study fill the gap in our current understanding of the culturable diversity of thraustochytrids in the coastal waters and the impact of the sampling habitats and seasons on their capacity for lipid accumulation.


Subject(s)
Fatty Acids , Stramenopiles , Biotechnology , Ecosystem , Eicosapentaenoic Acid
10.
Bioresour Technol ; 318: 124273, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33099103

ABSTRACT

Docosahexaenoic acid (DHA, C22:6) production in thraustochytrids is known to be mediated independently through polyunsaturated fatty acid (PUFA) synthase and fatty acid synthase systems. This study elucidates the unresolved effects of different carbon and nitrogen sources on the functionality of PUFA synthase subunit B (pfaB) and corresponding DHA production in Thraustochytriidae sp. PKU#SW8. Carbon and nitrogen sources showed significant effect on the pfaB gene expression and DHA production patterns, but these patterns did not correspond with each other, suggesting the strong role of substrates in differential induction of the two synthase systems. Nitrogen starvation increased DHA yield in parallel with upregulated gene expression, showing strong indication of PUFA synthase activity in N-deficient culture. The fully functional catalytic activity of PfaB subunit from strain PKU#SW8 in a heterologous host was also demonstrated. This study provides the direct evidence of pfaB gene actively for DHA biosynthesis in Thraustochytriidae sp. PKU#SW8.


Subject(s)
Carbon , Stramenopiles , Docosahexaenoic Acids , Fatty Acids, Unsaturated , Nitrogen , Stramenopiles/genetics
11.
Bioresour Technol ; 297: 122402, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31761627

ABSTRACT

This study reports comparative evaluation of the growth and DHA productivity of the thraustochytrid strain Thraustochytriidae PKU#Mn16 fermented with seven different substrate feeding strategies. Of these strategies, fed-batch fermentation of the mixed substrate (glucose & glycerol) yielded the maximum growth (52.2 ±â€¯1.5 g/L), DHA yield (Yp/s: 8.65) and productivity (100.7 ±â€¯2.9 mg/L-h), comparable with those of previously reported Aurantiochytrium strains. Transcriptomics analyses revealed that glucose upregulated some genes of the fatty acid synthase pathway whereas glycerol upregulated a few genes of the polyketide synthase pathway. Co-fermentation of the mixed substrate differentially regulated genes of these two pathways and significantly enhanced the DHA productivity. Furthermore, some genes involved in DNA replication, phagosome, carbon metabolism, and ß-oxidation were also found to alter significantly during the mixed-substrate fermentation. Overall, this study provides a unique strategy for enhancing growth and DHA productivity of the strain PKU#Mn16 and the first insight into the mechanisms underlying mixed-substrate fermentation.


Subject(s)
Carbon , Docosahexaenoic Acids , Biosynthetic Pathways , Fatty Acids , Fermentation
12.
Mar Drugs ; 17(5)2019 May 06.
Article in English | MEDLINE | ID: mdl-31064054

ABSTRACT

Labyrinthulomycete protists have gained significant attention in the recent past for their biotechnological importance. Yet, their lipid profiles are poorly described because only a few large-scale isolation attempts have been made so far. Here, we isolated more than 200 strains from mangrove habitats of China and characterized the molecular phylogeny and lipid accumulation potential of 71 strains. These strains were the closest relatives of six genera namely Aurantiochytrium, Botryochytrium, Parietichytrium, Schizochytrium, Thraustochytrium, and Labyrinthula. Docosahexaenoic acid (DHA) production of the top 15 strains ranged from 0.23 g/L to 1.14 g/L. Two labyrinthulid strains, GXBH-107 and GXBH-215, exhibited unprecedented high DHA production potential with content >10% of biomass. Among all strains, ZJWZ-7, identified as an Aurantiochytrium strain, exhibited the highest DHA production. Further optimization of culture conditions for strain ZJWZ-7 showed improved lipid production (1.66 g/L DHA and 1.68 g/L saturated fatty acids (SFAs)) with glycerol-malic-acid, peptone-yeast-extract, initial pH 7, 28 °C, and rotation rate 150 rpm. Besides, nitrogen source, initial pH, temperature, and rotation rate had significant effects on the cell biomass, DHA, and SFAs production. This study provides the identification and characterization of nearly six dozen thraustochytrids and labyrinthulids with high potential for lipid accumulation.


Subject(s)
Lipids/analysis , Lipids/biosynthesis , Stramenopiles/chemistry , Biomass , Biotechnology , China , Docosahexaenoic Acids/analysis , Ecosystem , Marine Biology , Phylogeny , Seawater , Stramenopiles/growth & development , Wetlands
13.
Synth Syst Biotechnol ; 3(2): 121-129, 2018 Jun.
Article in English | MEDLINE | ID: mdl-29900425

ABSTRACT

Thraustochytrids, rich in docosahexaenoic acid (DHA, C22:6ω3), represent a potential source of dietary fatty acids. Yet, the effect of culture conditions on growth and fatty acid composition vary widely among different thraustochytrid strains. Two different thraustochytrid strains, Schizochytrium sp. PKU#Mn4 and Thraustochytriidae sp. PKU#Mn16 were studied for their growth and DHA production characteristics under various culture conditions. Although they exhibited similar fatty acid profiles, PKU#Mn4 seemed a good candidate for industrial DHA fermentation while PKU#Mn16 displayed growth tolerance to a wide range of process conditions. Relative DHA content of 48.5% and 49.2% (relative to total fatty acids), respectively, were achieved on glycerol under their optimal flask culture conditions. Maximum DHA yield (Yp/x) of 21.0% and 18.9% and productivity of 27.6 mg/L-h and 31.9 mg/L-h were obtained, respectively, in 5-L bioreactor fermentation operated with optimal conditions and dual oxygen control strategy. A 3.4- and 2.8-fold improvement of DHA production (g/L), respectively, was achieved in this study. Overall, our study provides the potential of two thraustochytrid strains and their culture conditions for efficient production of DHA-rich oil.

14.
Chemosphere ; 186: 209-217, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28780448

ABSTRACT

Core endpoints in zebrafish embryos are crucial indicators in screening harmful effects of chemicals. In this study, we established a three-step process to more quantitatively and less-subjective determine effects of chemicals on phenotypes of developing zebrafish embryos. Embryos were exposed to each of two concentrations of the representative chemicals cadmium chloride (CdCl2), tris(1,3-dichloro-2-propyl) phosphate (TDCIPP) or 1H, 1H, 2H, 2H-nonafluoro-1-hexanol (4:2 FTOH) from 0.75 h post-fertilization (hpf) to 96 hpf. After exposure, larvae were imaged by use of a three-step method to describe morphology. Seven points were selected, which resulted in acquisition of 21 lines and 105 angles from images of larvae. Exposure to TDCIPP (0.1 or 0.2 mg/L), CdCl2 (1 or 4 mg/L) or 4:2 FTOH (0.3 or 1 mg/L) significantly changed lengths of some lines and magnitudes of some angles, that resulted in differential scoring of points. Points were then prioritized and directions, distances and trajectories of movement were further described and standard reference values were developed. Movement of the point describing the mouth during embryonic development was found to be a sensitive parameter for assessment of adverse effects of chemicals. The present study provides a new strategy to characterize phenotypes of development of zebrafish embryo/larva following exposure to environmental toxins.


Subject(s)
Embryo, Nonmammalian/drug effects , Embryonic Development/drug effects , Toxicity Tests/methods , Water Pollutants, Chemical/toxicity , Zebrafish/growth & development , Animals , Hexanols , Larva/drug effects , Organophosphates , Zebrafish/embryology
SELECTION OF CITATIONS
SEARCH DETAIL