Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters








Database
Language
Publication year range
1.
Cancer Immunol Res ; 2024 Oct 15.
Article in English | MEDLINE | ID: mdl-39404741

ABSTRACT

Resistance to immune checkpoint inhibitors (ICIs) is common, even in tumors with T cell infiltration. We thus investigated consequences of ICI-induced T cell infiltration in the microenvironment of resistant tumors. T cells and neutrophil numbers increased in ICI-resistant tumors following treatment, in contrast to ICI-responsive tumors. Resistant tumors were distinguished by high expression of IL-1 Receptor 1 (IL1R1), enabling a synergistic response to IL-1 and TNFα to induce G-CSF, CXCL1, and CXCL2 via NF-κB signaling, supporting immunosuppressive neutrophil accumulation in tumor. Perturbation of this inflammatory resistance circuit sensitized tumors to ICIs. Paradoxically, T cells drove this resistance circuit via TNF both in vitro and in vivo. Evidence of this inflammatory resistance circuit and its impact also translated to human cancers. These data support a mechanism of ICI resistance, wherein treatment-induced T cell activity can drive resistance in tumors responsive to IL-1 and TNFα, with important therapeutic implications.

2.
Cell ; 186(6): 1127-1143.e18, 2023 03 16.
Article in English | MEDLINE | ID: mdl-36931243

ABSTRACT

CD8+ T cell responses are critical for anti-tumor immunity. While extensively profiled in the tumor microenvironment, recent studies in mice identified responses in lymph nodes (LNs) as essential; however, the role of LNs in human cancer patients remains unknown. We examined CD8+ T cells in human head and neck squamous cell carcinomas, regional LNs, and blood using mass cytometry, single-cell genomics, and multiplexed ion beam imaging. We identified progenitor exhausted CD8+ T cells (Tpex) that were abundant in uninvolved LN and clonally related to terminally exhausted cells in the tumor. After anti-PD-L1 immunotherapy, Tpex in uninvolved LNs reduced in frequency but localized near dendritic cells and proliferating intermediate-exhausted CD8+ T cells (Tex-int), consistent with activation and differentiation. LN responses coincided with increased circulating Tex-int. In metastatic LNs, these response hallmarks were impaired, with immunosuppressive cellular niches. Our results identify important roles for LNs in anti-tumor immune responses in humans.


Subject(s)
CD8-Positive T-Lymphocytes , Neoplasms , Humans , Animals , Mice , Lymph Nodes , Neoplasms/therapy , Neoplasms/pathology , Immunotherapy/methods , Tumor Microenvironment
3.
Science ; 378(6625): eaba1624, 2022 12 16.
Article in English | MEDLINE | ID: mdl-36520915

ABSTRACT

Chimeric antigen receptor (CAR) T cells are ineffective against solid tumors with immunosuppressive microenvironments. To overcome suppression, we engineered circuits in which tumor-specific synNotch receptors locally induce production of the cytokine IL-2. These circuits potently enhance CAR T cell infiltration and clearance of immune-excluded tumors, without systemic toxicity. The most effective IL-2 induction circuit acts in an autocrine and T cell receptor (TCR)- or CAR-independent manner, bypassing suppression mechanisms including consumption of IL-2 or inhibition of TCR signaling. These engineered cells establish a foothold in the target tumors, with synthetic Notch-induced IL-2 production enabling initiation of CAR-mediated T cell expansion and cell killing. Thus, it is possible to reconstitute synthetic T cell circuits that activate the outputs ultimately required for an antitumor response, but in a manner that evades key points of tumor suppression.


Subject(s)
Immunosuppression Therapy , Immunotherapy, Adoptive , Interleukin-2 , Neoplasms , Receptors, Chimeric Antigen , T-Lymphocytes , Humans , Immunotherapy, Adoptive/methods , Interleukin-2/genetics , Interleukin-2/metabolism , Neoplasms/immunology , Neoplasms/therapy , Receptors, Antigen, T-Cell/genetics , T-Lymphocytes/immunology , T-Lymphocytes/transplantation , Tumor Microenvironment , Animals , Mice , Receptors, Chimeric Antigen/genetics , Receptors, Chimeric Antigen/metabolism , Cell Engineering , Receptors, Notch/metabolism , Immunosuppression Therapy/methods
4.
Mol Biol Cell ; 32(13): 1221-1228, 2021 06 15.
Article in English | MEDLINE | ID: mdl-33909446

ABSTRACT

Sensing physical forces is a critical first step in mechano-transduction of cells. Zyxin, a LIM domain-containing protein, is recruited to force-bearing actin filaments and is thought to repair and strengthen them. Yet, the precise force-induced protein interactions surrounding zyxin remain unclear. Using BioID analysis, we identified proximal proteins surrounding zyxin under normal and force-bearing conditions by label-free mass spectrometry analysis. Under force-bearing conditions, increased biotinylation of α-actinin 1, α-actinin 4, and AFAP1 were detected, and these proteins accumulated along force-bearing actin fibers independently from zyxin, albeit at a lower intensity than zyxin. VASP also accumulated along force-bearing actin fibers in a zyxin-dependent manner, but the biotinylation of VASP remained constant regardless of force, supporting the model of a free zyxin-VASP complex in the cytoplasm being corecruited to tensed actin fibers. In addition, ARHGAP42, a RhoA GAP, was also identified as a proximal protein of zyxin and colocalized with zyxin along contractile actin bundles. The overexpression of ARHGAP42 reduced the rate of small wound closure, a zyxin-dependent process. These results demonstrate that the application of proximal biotinylation can resolve the proximity and composition of protein complexes as a function of force, which had not been possible with traditional biochemical analysis.


Subject(s)
Biomechanical Phenomena/physiology , Zyxin/metabolism , Zyxin/physiology , Actin Cytoskeleton/metabolism , Actins/metabolism , Animals , Cell Adhesion Molecules/metabolism , Dogs , Focal Adhesions/metabolism , Madin Darby Canine Kidney Cells , Mechanical Phenomena , Microfilament Proteins/metabolism , Phosphoproteins/metabolism , Stress, Mechanical , Zyxin/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL