Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters








Database
Language
Publication year range
1.
Nature ; 2024 Oct 02.
Article in English | MEDLINE | ID: mdl-39358505

ABSTRACT

Ageing impairs the ability of neural stem cells (NSCs) to transition from quiescence to proliferation in the adult mammalian brain. Functional decline of NSCs results in the decreased production of new neurons and defective regeneration following injury during ageing1-4. Several genetic interventions have been found to ameliorate old brain function5-8, but systematic functional testing of genes in old NSCs-and more generally in old cells-has not been done. Here we develop in vitro and in vivo high-throughput CRISPR-Cas9 screening platforms to systematically uncover gene knockouts that boost NSC activation in old mice. Our genome-wide screens in primary cultures of young and old NSCs uncovered more than 300 gene knockouts that specifically restore the activation of old NSCs. The top gene knockouts are involved in cilium organization and glucose import. We also establish a scalable CRISPR-Cas9 screening platform in vivo, which identified 24 gene knockouts that boost NSC activation and the production of new neurons in old brains. Notably, the knockout of Slc2a4, which encodes the GLUT4 glucose transporter, is a top intervention that improves the function of old NSCs. Glucose uptake increases in NSCs during ageing, and transient glucose starvation restores the ability of old NSCs to activate. Thus, an increase in glucose uptake may contribute to the decline in NSC activation with age. Our work provides scalable platforms to systematically identify genetic interventions that boost the function of old NSCs, including in vivo, with important implications for countering regenerative decline during ageing.

2.
Nat Aging ; 3(7): 866-893, 2023 07.
Article in English | MEDLINE | ID: mdl-37443352

ABSTRACT

The regenerative potential of brain stem cell niches deteriorates during aging. Yet the mechanisms underlying this decline are largely unknown. Here we characterize genome-wide chromatin accessibility of neurogenic niche cells in vivo during aging. Interestingly, chromatin accessibility at adhesion and migration genes decreases with age in quiescent neural stem cells (NSCs) but increases with age in activated (proliferative) NSCs. Quiescent and activated NSCs exhibit opposing adhesion behaviors during aging: quiescent NSCs become less adhesive, whereas activated NSCs become more adhesive. Old activated NSCs also show decreased migration in vitro and diminished mobilization out of the niche for neurogenesis in vivo. Using tension sensors, we find that aging increases force-producing adhesions in activated NSCs. Inhibiting the cytoskeletal-regulating kinase ROCK reduces these adhesions, restores migration in old activated NSCs in vitro, and boosts neurogenesis in vivo. These results have implications for restoring the migratory potential of NSCs and for improving neurogenesis in the aged brain.


Subject(s)
Chromatin , Neural Stem Cells , Chromatin/genetics , Neurogenesis/genetics , Brain
3.
Nat Aging ; 2(9): 809-823, 2022 09.
Article in English | MEDLINE | ID: mdl-37118502

ABSTRACT

Interactions between the sexes negatively impact health in many species. In Caenorhabditis, males shorten the lifespan of the opposite sex-hermaphrodites or females. Here we use transcriptomic profiling and targeted screens to systematically uncover conserved genes involved in male-induced demise in C. elegans. Some genes (for example, delm-2, acbp-3), when knocked down, are specifically protective against male-induced demise. Others (for example, sri-40), when knocked down, extend lifespan with and without males, suggesting general mechanisms of protection. In contrast, many classical long-lived mutants are impacted more negatively than wild type by the presence of males, highlighting the importance of sexual environment for longevity. Interestingly, genes induced by males are triggered by specific male components (seminal fluid, sperm and pheromone), and manipulating these genes in combination in hermaphrodites induces stronger protection. One of these genes, the conserved ion channel delm-2, acts in the nervous system and intestine to regulate lipid metabolism. Our analysis reveals striking differences in longevity in single sex versus mixed sex environments and uncovers elaborate strategies elicited by sexual interactions that could extend to other species.


Subject(s)
Caenorhabditis , Disorders of Sex Development , Animals , Female , Male , Caenorhabditis elegans/genetics , Semen , Longevity/genetics , Spermatozoa , Disorders of Sex Development/genetics
4.
Cell Stem Cell ; 27(2): 202-223, 2020 08 06.
Article in English | MEDLINE | ID: mdl-32726579

ABSTRACT

Aging has a profound and devastating effect on the brain. Old age is accompanied by declining cognitive function and enhanced risk of brain diseases, including cancer and neurodegenerative disorders. A key question is whether cells with regenerative potential contribute to brain health and even brain "rejuvenation." This review discusses mechanisms that regulate neural stem cells (NSCs) during aging, focusing on the effect of metabolism, genetic regulation, and the surrounding niche. We also explore emerging rejuvenating strategies for old NSCs. Finally, we consider how new technologies may help harness NSCs' potential to restore healthy brain function during physiological and pathological aging.


Subject(s)
Neural Stem Cells , Rejuvenation , Brain , Stem Cell Niche
5.
Elife ; 82019 07 08.
Article in English | MEDLINE | ID: mdl-31282863

ABSTRACT

Sexual interactions have a potent influence on health in several species, including mammals. Previous work in C. elegans identified strategies used by males to accelerate the demise of the opposite sex (hermaphrodites). But whether hermaphrodites evolved counter-strategies against males remains unknown. Here we discover that young C. elegans hermaphrodites are remarkably resistant to brief sexual encounters with males, whereas older hermaphrodites succumb prematurely. Surprisingly, it is not their youthfulness that protects young hermaphrodites, but the fact that they have self-sperm. The beneficial effect of self-sperm is mediated by a sperm-sensing pathway acting on the soma rather than by fertilization. Activation of this pathway in females triggers protection from the negative impact of males. Interestingly, the role of self-sperm in protecting against the detrimental effects of males evolved independently in hermaphroditic nematodes. Endogenous strategies to delay the negative effect of mating may represent a key evolutionary innovation to maximize reproductive success.


Subject(s)
Caenorhabditis elegans/physiology , Disorders of Sex Development/physiopathology , Sexual Behavior, Animal/physiology , Spermatozoa/physiology , Animals , Female , Male , Reproduction/physiology , Spermatogenesis
6.
Science ; 359(6381): 1277-1283, 2018 03 16.
Article in English | MEDLINE | ID: mdl-29590078

ABSTRACT

In the adult brain, the neural stem cell (NSC) pool comprises quiescent and activated populations with distinct roles. Transcriptomic analysis revealed that quiescent and activated NSCs exhibited differences in their protein homeostasis network. Whereas activated NSCs had active proteasomes, quiescent NSCs contained large lysosomes. Quiescent NSCs from young mice accumulated protein aggregates, and many of these aggregates were stored in large lysosomes. Perturbation of lysosomal activity in quiescent NSCs affected protein-aggregate accumulation and the ability of quiescent NSCs to activate. During aging, quiescent NSCs displayed defects in their lysosomes, increased accumulation of protein aggregates, and reduced ability to activate. Enhancement of the lysosome pathway in old quiescent NSCs cleared protein aggregates and ameliorated the ability of quiescent NSCs to activate, allowing them to regain a more youthful state.


Subject(s)
Aging/physiology , Cell Division , Cellular Senescence , Lysosomes/physiology , Neural Stem Cells/physiology , Animals , Mice , Mice, Inbred C57BL
7.
Genome Res ; 27(12): 2096-2107, 2017 12.
Article in English | MEDLINE | ID: mdl-29141961

ABSTRACT

Chromatin accessibility, a crucial component of genome regulation, has primarily been studied in homogeneous and simple systems, such as isolated cell populations or early-development models. Whether chromatin accessibility can be assessed in complex, dynamic systems in vivo with high sensitivity remains largely unexplored. In this study, we use ATAC-seq to identify chromatin accessibility changes in a whole animal, the model organism Caenorhabditis elegans, from embryogenesis to adulthood. Chromatin accessibility changes between developmental stages are highly reproducible, recapitulate histone modification changes, and reveal key regulatory aspects of the epigenomic landscape throughout organismal development. We find that over 5000 distal noncoding regions exhibit dynamic changes in chromatin accessibility between developmental stages and could thereby represent putative enhancers. When tested in vivo, several of these putative enhancers indeed drive novel cell-type- and temporal-specific patterns of expression. Finally, by integrating transcription factor binding motifs in a machine learning framework, we identify EOR-1 as a unique transcription factor that may regulate chromatin dynamics during development. Our study provides a unique resource for C. elegans, a system in which the prevalence and importance of enhancers remains poorly characterized, and demonstrates the power of using whole organism chromatin accessibility to identify novel regulatory regions in complex systems.


Subject(s)
Caenorhabditis elegans/genetics , Chromatin , Enhancer Elements, Genetic , Amino Acid Motifs , Animals , Caenorhabditis elegans/growth & development , Caenorhabditis elegans Proteins/metabolism , Chromatin/chemistry , Chromatin/metabolism , Chromatin Assembly and Disassembly , DNA, Helminth , Epigenesis, Genetic , Nuclear Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL