Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.863
Filter
1.
Eur J Med Chem ; 280: 116924, 2024 Sep 28.
Article in English | MEDLINE | ID: mdl-39383655

ABSTRACT

OBJECTIVES: Polymyxins are the last-line therapy for top-priority multidrug-resistant (MDR) gram-negative bacteria. However, polymyxin nephrotoxicity impedes its clinical application. This study aimed to design, synthesize, and identify a novel and promising polymyxin derivative with high efficacy and low toxicity. METHODS: To design polymyxin derivatives, we reduced the hydrophobicity of the two hydrophobic domains (fatty acyl chain and D-Phe6-L-Leu7) and modified the positive charged L-2,4-diaminobutyric acid (Dab) residues. Twenty-five derivatives were synthesized, and their antibacterial activities in vitro and renal cytotoxicities were determined. The nephrotoxicity and pharmacokinetic parameters of compound 12 were examined in rats. Antibacterial efficacy in vivo was evaluated using a mouse systemic infection model. Surface plasmon resonance analysis, compound 12-rifampicin combination therapy, and scanning electron microscopy were used to study the mechanism of action of compound 12. RESULTS: This research found a new compound, identified as compound 12, which showed similar or increased antibacterial activity against all tested sensitive and carbapenem-resistant gram-negative bacteria. It exhibited reduced renal cytotoxicity and nephrotoxicity, a favorable pharmacokinetic profile, and maintained or improved antibacterial efficacy in vivo. Importantly, its anti-Pseudomonas aeruginosa activity significantly improved. Compound 12, when combined with rifampicin, enhanced the activity of rifampin against gram-negative bacteria. Compound 12 also showed a high affinity for lipopolysaccharide and disrupted cell membrane integrity. CONCLUSION: Reducing the hydrophobicity of the two domains reduced renal cytotoxicity and nephrotoxicity. Shortening the side chain of Dab3 by one carbon maintained or increased its antibacterial activity both in vitro and in vivo. Furthermore, only the length of the side chain of Dab9 could be shortened by one carbon among the Dab1,5 and Dab8,9 residues. The bactericidal effects of compound 12 were related to the disruption of cell membrane integrity. Compound 12 may be a promising candidate for combating sensitive and carbapenem-resistant gram-negative bacterial infections, especially Pseudomonas aeruginosa.

2.
Zhongguo Zhong Yao Za Zhi ; 49(16): 4477-4487, 2024 Aug.
Article in Chinese | MEDLINE | ID: mdl-39307784

ABSTRACT

Aurantii Fructus Immaturus(AFI) is a traditional Chinese herbal medicine with multiple origins from Citrus aurantium and its legally cultivated variants. With advancements in agricultural biotechnology, many new cultivated varieties have sprung up,leading to an abundance of AFI adulterants and chaos in the herbal medicine markets. This study developed a specific identification method for AFI and its closely related adulterants by examining the appearance trait, content of extract, and multiple ingredients,involving indicators such as the ratio of pulp capsule to cross section diameter(Pc/Cs ratio), the content of extract, and the profile of 11 ingredients. The research finds that:(1) Pc/Cs ratio can conveniently identify adulterants such as Poncirus trifoliata, Ju, and Babagan from the genuine AFI.(2) The extract content can be used to identify adulterants originated from C. wilsonii with C. aurantium.(3) The contents of synephrine in all the samples were in accordance with the Chinese Pharmacopoeia except for the adulterants from P. trifoliata, C. wilsonii, C. aurantium 'Changshanhuyou' and orah mandarins. The synephrine content was high as 1. 40% in some C. sinensis varieties. The mass fraction of hesperidin was over 10. 00% in C. sinensis, while it was below 2. 50% in C. aurantium. C. aurantium contained high levels of naringin(3. 96%-15. 21%) and neo-hesperidin(9. 38%-21. 93%).(4) The compositions of adulterants from P. trifoliata and C. wilsonii were more similar to that of C. aurantium 'Daidai', but with significantly lower neo-hesperidin content(0. 03%-0. 14%) than that in C. aurantium, and they lacked hesperetin and tangeretin. C. maxima(originating from C. maxima) showed closer composition to Choucheng and hybrid originated from Citrus aurantium × Poncirus trifoliata, but had higher hesperidin content(3. 13%) than that in C. aurantium. Ju was closely related to C. sinensis and neither contained naringin nor neo-hesperidin. Hesperidins in Babagan and orah mandarins were similar to that in C. sinensis, with none containing rhoifolin. These quality indicators in combination can accurately distinguish between C. sinensis, C. aurantium, and their closely related adulterants(P. trifoliata, C. wilsonii, C. maxima, orah mandarins and C. reticulata), which are expected to provide a systematic method for quality control of AFI.


Subject(s)
Citrus , Drug Contamination , Drugs, Chinese Herbal , Quality Control , Drugs, Chinese Herbal/chemistry , Drugs, Chinese Herbal/analysis , Citrus/classification , Citrus/chemistry , Chromatography, High Pressure Liquid , Hesperidin/analysis , Hesperidin/chemistry , Hesperidin/analogs & derivatives , China , Synephrine/analysis
3.
Nat Commun ; 15(1): 7608, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-39218986

ABSTRACT

The Ideal Plant Architecture 1 (IPA1) transcription factor promotes rice yield and immunity through phosphorylation at its amino acid residue Ser163 as a switch. Although phosphorylated IPA1 mimic, IPA1(S163D), directly targets the promoter of immune response gene WRKY45, it cannot activate its expression. Here, we identified a co-activator of IPA1(S163D), a RING-finger E3 ligase IPA1 interactor 7 (IPI7), which fine-tunes the transcriptional activity of IPA1 to timely promote plant immunity and simultaneously maintain growth for yield. IPI7 interacts with IPA1 and promotes K29-polyubiquitination of IPA1 in vitro and in vivo. However, the stability of IPA1 protein is not affected by IPI7-mediated ubiquitination. The IPI7-promoted K29-polyubiquitination of IPA1 is induced by Magnaporthe oryzae infection and required for phosphorylated IPA1 to transactivate WRKY45 expression for immune response but not for plain IPA1 to transactivate DENSE AND ERECT PANICLES 1 (DEP1) expression for panicle development. IPI7 knockout impairs IPA1-mediated immunity but not yield. Our study reveals that plants utilize non-proteolytic K29-ubiquitination as a response to pathogen infection to fine-tune IPA1 transactivation activity for promoting immunity.


Subject(s)
Oryza , Plant Diseases , Plant Proteins , Transcriptional Activation , Ubiquitin-Protein Ligases , Ubiquitination , Plant Diseases/microbiology , Oryza/microbiology , Oryza/metabolism , Oryza/genetics , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/genetics , Plant Proteins/metabolism , Plant Proteins/genetics , Phosphorylation , Gene Expression Regulation, Plant , Transcription Factors/metabolism , Transcription Factors/genetics , Plant Immunity/genetics , Ascomycota
4.
Nat Chem ; 16(10): 1621-1629, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39251841

ABSTRACT

Multi-site functionalization of molecules provides a potent approach to accessing intricate compounds. However, simultaneous functionalization of the reactive site and the inert remote C(sp3)-H poses a formidable challenge, as chemical reactions conventionally occur at the most active site. In addition, achieving precise control over site selectivity for remote C(sp3)-H activation presents an additional hurdle. Here we report an alternative modular method for alkene difunctionalization, encompassing radical-triggered translocation of functional groups and remote C(sp3)-H desaturation via photo/cobalt dual catalysis. By systematically combining radical addition, functional group migration and cobalt-promoted hydrogen atom transfer, we successfully effectuate the translocation of the carbon-carbon double bond and another functional group with precise site selectivity and remarkable E/Z selectivity. This redox-neutral approach shows good compatibility with diverse fluoroalkyl and sulfonyl radical precursors, enabling the migration of benzoyloxy, acetoxy, formyl, cyano and heteroaryl groups. This protocol offers a resolution for the simultaneous transformation of manifold sites.

5.
Inorg Chem ; 63(40): 18608-18614, 2024 Oct 07.
Article in English | MEDLINE | ID: mdl-39285692

ABSTRACT

Substituents are widespread in chemistry, but it has remained quite difficult to reliably determine the thermodynamic and kinetic stabilities of substituted compounds, though they are key to helping establish a structural rule and synthetic viability, respectively. As an important class of valence isomers in the benzene family, benzvalene-like structures have been extensively studied in systems associated with electron-neutral (i.e., C, Si, Ge, Pb, and Sn) and electron-rich (e.g., P) skeletons. However, stable benzvalene-like examples associated with electron-deficient skeletons have been very limited, possibly due to the very complicated bonding patterns of electron-deficient elements. Here, we performed an extensive structural search at the density functional theory (DFT) and CBS-QB3 level for the well-known six-vertex dicarboranes (C2B4R6), one of the central families of boranes and carboranes chemistry. We unexpectedly found that all of the previously reported benzvalene-like structures III (C2B4R6) as the long-chased "rule breaker" examples of the Wade-Mingos rule (W-M rule) are not the lowest-lying structures. Promisingly, for the first time, we succeeded in identifying several substituted III as the genuine lowest-lying structures and thus true "rule breakers." Thus, "benzvalenes" present hitherto the fourth member of the lowest-lying structural patterns for the family of six-vertex dicarboranes. Moreover, the presently revealed good kinetic stability of III' (C2B4R2R'4) over a wide range of substituents promoted us to recommend a novel kind of synthesizable carboranes beyond the Wade-Mingos rule, i.e., "benzvalene-like carboranes" with all of the classical skeletal atoms.

6.
Chem Sci ; 2024 Sep 03.
Article in English | MEDLINE | ID: mdl-39297003

ABSTRACT

Due to the intrinsic spatial orientation and structural novelty, Csp3-rich N-heterocycles have been recognized as increasingly sought-after scaffolds as compared to the aromatic ring-based moieties, which have generated considerable recent attention in drug discovery. Hence, we disclose a modular cobalt-catalyzed conformationally restricted alkylarylation strategy for the divergent access to Csp3-rich N-hetero(spiro)cycles. Herein, multiple effects, including radical rebound and conformational restriction, play critical roles in the stabilization of the stereospecific alkyl-cobalt-aryl intermediate. Under simple and mild reaction conditions, cobalt catalyst combines a range of polyfunctionalized cyclenyl bromides and organozinc pivalates to rapidly and reliably forge the architecturally complex Csp3-rich N-hetero(spiro)cycles (>70 examples, >20 : 1 dr), including but not limited to the [5,5]-, [5,6]-, [5,7]-, [5,12]-bicycles, tri- and tetracyclic N-heterocycles, as well as various novel N-heterospirocyclic scaffolds in one synthetic operation. Preliminary kinetic investigations suggested that the final reductive elimination might be the rate-determining step. Moreover, ample substrate scope, good functional group compatibility and facile derivatizations to the pharmaceutically active molecules show the potential applications of this technology to organic syntheses and drug discoveries in medicinal chemistry.

7.
Ecotoxicol Environ Saf ; 284: 117015, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-39265265

ABSTRACT

Phthalates are widespread and commonly used plasticizers that lead to adverse health effects. Several natural products provide a protective effect against phthalates. Moreover, microRNAs (miRNAs) are regulated by natural products and phthalates. Therefore, miRNAs' impacts and potential targets may underlie the mechanism of phthalates. However, the relationship between phthalate-modulated miRNAs and phthalate protectors derived from natural products is poorly understood and requires further supporting information. In this paper, we review the adverse effects and potential targets of phthalates on reproductive systems as well as cancer and non-cancer responses. Information on natural products that attenuate the adverse effects of phthalates is retrieved through a search of Google Scholar and the miRDB database. Moreover, information on miRNAs that are upregulated or downregulated in response to phthalates is collected, along with their potential targets. The interplay between phthalate-modulated miRNAs and natural products is established. Overall, this review proposes a straightforward pathway showing how phthalates modulate different miRNAs and targets and cause adverse effects, which are partly attenuated by several natural products, thereby providing a direction for investigating the natural product-miRNA-target axis against phthalate-induced effects.


Subject(s)
Biological Products , MicroRNAs , Phthalic Acids , Phthalic Acids/toxicity , Humans , Animals , Plasticizers/toxicity , Environmental Pollutants/toxicity
8.
Heliyon ; 10(16): e35885, 2024 Aug 30.
Article in English | MEDLINE | ID: mdl-39224272

ABSTRACT

High-energy gamma rays produced in inertial confinement fusion (ICF) experiments are crucial for studying implosion dynamics. These gamma rays, characterized by their extremely short durations, represent the least disturbed products of fusion, preserving vital birth information. To detect such γ-rays, ultrafast radiation detectors with high time resolution are necessary. This study introduces a newly developed Cherenkov optical image screen designed for ultra-fast gamma-ray imaging. Composed of pure quartz fiber material, the imaging screen features a single fiber pixel size of 0.6 mm and a thickness of 3 cm. Theoretical investigations explore the luminous time response and efficiency of the Cherenkov optical imaging screen under gamma-ray irradiation. Experimental validation was conducted using a steady-state gamma-ray source with an average energy of 1.25 MeV. Results demonstrate that the image screen achieves a spatial resolution limit of 0.75 mm. The temporal response exhibits a full width at half maximum of less than 0.4 ns when excited by a high-energy electron beam with a single pulse duration of several picoseconds.

9.
Biochem Biophys Res Commun ; 734: 150662, 2024 Sep 04.
Article in English | MEDLINE | ID: mdl-39245030

ABSTRACT

Lipid metabolism, particularly triglyceride (TG) metabolism, is crucial for liver regeneration. During the early phase of liver regeneration, the liver temporarily accumulates a substantial amount of TG-dominated lipids. However, the specific composition of the TG profile during this phase is not yet fully understood. Here, we showed that the TG molecular composition in the liver was significantly altered during liver regeneration following carbon tetrachloride (CCl4)-induced liver injury. Lipid accumulation in livers was observed as early as 12 hours after CCl4 treatment, with transient regeneration-associated steatosis (TRAS) lasting until 24 hours. Hepatocyte proliferation began only after liver lipid levels returned to baseline at 48 hours. Furthermore, the profile of TG species changed significantly during liver regeneration. During the TRAS period, the accumulated TGs in the liver were mainly long-chain triglycerides, with most of the fatty acids constituting these triglycerides having fewer than 20 carbon atoms. In the proliferation phase, the fatty acid composition of these triglycerides shifted from long-chain to ultra-long-chain fatty acids. Our results suggest a significant TRAS-related change in the TG lipid profile of the liver during liver regeneration.

10.
J Hazard Mater ; 480: 135839, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-39298965

ABSTRACT

A precious metal catalyst with loaded Pt single atoms was prepared and used for the complete oxidation of C3H6O. Detailed results show that the T100 of the 1.5Pt SA/γ-Al2O3 catalyst in the oxidation process of acetone is 250 °C, the TOF of Pt is 1.09 × 10-2 s-1, and the catalyst exhibits good stability. Characterization reveals that the high dispersion of Pt single atoms and strong interaction with the carrier improve the redox properties of the catalyst, enhancing the adsorption and dissociation capability of gaseous oxygen. DFT calculations show that after the introduction of Pt, the oxygen vacancy formation energy on the catalyst surface is reduced to 1.2 eV, and PDOS calculations prove that electrons on Pt atoms can be quickly transferred to O atoms, increasing the number of electrons on the σp * bond and promoting the escape of lattice oxygen. In addition, in situ DRIFTS and adsorption experiments indicate that the C3H6O oxidation process follows the Mars-van Krevelen reaction mechanism, and CH2 =C(CH3)=O(ads), O* (O2-), formate, acetate, and carbonate are considered as the main intermediate species and/or transients in the reaction process. Particularly, the activation rate of O2 and the cleavage of the -C-C- bond are the main rate-determining steps in the oxidation of C3H6O. This work will further enhance the study of the oxidation mechanism of oxygenated volatile organic pollutants over loaded noble metal catalysts.

11.
Acta Biomater ; 187: 20-50, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-39182801

ABSTRACT

Gouty arthritis (GA) is caused by monosodium urate (MSU) crystals deposition. GA is difficult to cure because of its complex disease mechanism and the tendency to reoccur. GA patients require long-term uric acid-lowering and anti-inflammatory treatments. In the past ten years, as a painless, convenient and well-tolerated new drug transdermal delivery method, microneedles (MNs) administration has been continuously developed, which can realize various drug release modes to deal with various complex diseases. Compared with the traditional administration methods (oral and injection), MNs are more conducive to the long-term independent treatment of GA patients because of their safe, efficient and controllable drug delivery ability. In this review, the pathological mechanism of GA and common therapeutic drugs for GA are summarized. After that, MNs drug delivery mechanisms were summarized: dissolution release mechanism, swelling release mechanism and channel-assisted release mechanism. According to drug delivery patterns of MNs, the mechanisms and applications of rapid-release MNs, long-acting MNs, intelligent-release MNs and multiple-release MNs were reviewed. Additionally, existing problems and future trends of MNs in the treatment of GA were also discussed. STATEMENT OF SIGNIFICANCE: Gout is an arthritis caused by metabolic disease "hyperuricemia". Epidemiological studies show that the number of gouty patients is increasing rapidly worldwide. Due to the complex disease mechanism and recurrent nature of gout, gouty patients require long-term therapy. However, traditional drug delivery modes (oral and injectable) have poor adherence, low drug utilization, and lack of local localized targeting. They may lead to adverse effects such as rashes and gastrointestinal reactions. As a painless, convenient and well-tolerated new drug transdermal delivery method, microneedles have been continuously developed, which can realize various drug release modes to deal with gouty arthritis. In this review, the material structure, design strategy and future outlook of microneedles for treating gouty arthritis will be reviewed.


Subject(s)
Administration, Cutaneous , Arthritis, Gouty , Drug Delivery Systems , Needles , Arthritis, Gouty/drug therapy , Humans , Animals , Uric Acid
12.
Neural Netw ; 179: 106595, 2024 Nov.
Article in English | MEDLINE | ID: mdl-39159535

ABSTRACT

Graph neural networks (GNNs) leveraging metapaths have garnered extensive utilization. Nevertheless, the escalating parameters and data corpus within graph pre-training models incur mounting training costs. Consequently, GNN models encounter hurdles including diminished generalization capacity and compromised performance amidst small sample datasets. Drawing inspiration from the efficacy demonstrated by self-supervised learning methodologies in natural language processing, we embark on an exploration. We endeavor to imbue graph data with augmentable, learnable prompt vectors targeting node representation enhancement to foster superior adaptability to downstream tasks. This paper proposes a novel approach, the Metapath Integrated Graph Prompt Neural Network (MIGP), which leverages learnable prompt vectors to enhance node representations within a pretrained model framework. By leveraging learnable prompt vectors, MIGP aims to address the limitations posed by mall sample datasets and improve GNNs' model generalization. In the pretraining stage, we split symmetric metapaths in heterogeneous graphs into short metapaths and explicitly propagate information along the metapaths to update node representations. In the prompt-tuning stage, the parameters of the pretrained model are fixed, a set of independent basis vectors is introduced, and an attention mechanism is employed to generate task-specific learnable prompt vectors for each node. Another notable contribution of our work is the introduction of three patent datasets, which is a pioneering application in related fields. We will make these three patent datasets publicly available to facilitate further research on large-scale patent data analysis. Through comprehensive experiments conducted on three patent datasets and three other public datasets, i.e., ACM, IMDB, and DBLP, we demonstrate the superior performance of the MIGP model in enhancing model applicability and performance across a variety of downstream datasets. The source code and datasets are available in the website.1.


Subject(s)
Neural Networks, Computer , Natural Language Processing , Algorithms , Humans
13.
Int J Nanomedicine ; 19: 8463-8483, 2024.
Article in English | MEDLINE | ID: mdl-39185346

ABSTRACT

Introduction: Parkinson's disease (PD) is a common neurodegenerative disorder characterized by the degeneration of dopaminergic neurons in the substantia nigra. The precise molecular mechanisms underlying neuronal loss in PD remain unknown, and there are currently no effective treatments for PD-associated neurodegeneration. Echinacoside (ECH) is known for its neuroprotective effects, which include scavenging cellular reactive oxygen species and promoting mitochondrial fusion. However, the blood-brain barrier (BBB) limits the bioavailability of ECH in the brain, posing a significant challenge to its use in PD treatment. Methods: We synthesized and characterized PEGylated ECH liposomes (ECH@Lip) and peptide angiopep-2 (ANG) modified liposomes (ECH@ANG-Lip). The density of ANG in ANG-Lip was optimized using bEnd.3 cells. The brain-targeting ability of the liposomes was assessed in vitro using a transwell BBB model and in vivo using an imaging system and LC-MS. We evaluated the enhanced neuroprotective properties of this formulation in a the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD model. Results: The ECH@ANG-Lip demonstrated significantly higher whole-brain uptake compared to ECH@Lip and free ECH. Furthermore, ECH@ANG-Lip was more effective in mitigating MPTP-induced behavioral impairment, oxidative stress, dopamine depletion, and dopaminergic neuron death than both ECH@Lip and free ECH. Conclusion: The formulation used in our study significantly enhanced the neuroprotective efficacy of ECH in the MPTP-induced PD model. Thus, ECH@ANG-Lip shows considerable potential for improving the bioavailability of ECH and providing neuroprotective effects in the brain.


Subject(s)
Blood-Brain Barrier , Disease Models, Animal , Glycosides , Liposomes , Mice, Inbred C57BL , Neuroprotective Agents , Animals , Liposomes/chemistry , Liposomes/pharmacokinetics , Blood-Brain Barrier/drug effects , Blood-Brain Barrier/metabolism , Neuroprotective Agents/chemistry , Neuroprotective Agents/pharmacology , Neuroprotective Agents/pharmacokinetics , Mice , Male , Glycosides/chemistry , Glycosides/pharmacology , Glycosides/pharmacokinetics , Brain/drug effects , Brain/metabolism , Parkinson Disease/drug therapy , Cell Line , Dopaminergic Neurons/drug effects , 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine , Polyethylene Glycols/chemistry , Polyethylene Glycols/pharmacokinetics
14.
Life Sci ; 356: 122981, 2024 Nov 01.
Article in English | MEDLINE | ID: mdl-39147314

ABSTRACT

Doxorubicin-induced cardiotoxicity (DIC) poses a significant challenge, impeding its widespread application. Emerging evidence suggests the involvement of ferroptosis in the DIC. While the downregulation of SLC7A11 expression has been linked to the promotion of ferroptosis, the precise regulatory mechanism remains unclear. Recent studies, including our own, have highlighted abnormal levels of autophagy adapter protein P62 and autophagy in DIC development. Thus, our study aimed to further investigate the role of autophagy and ferroptosis in DIC, elucidating underlying molecular mechanisms across molecular, cellular, and whole-organ levels utilizing gene knockdown, immunoprecipitation, and mass spectrometry techniques. The results of our findings unveiled cardiomyocyte damage, heightened autophagy levels, and ferroptosis in DOX-treated mouse hearts. Notably, inhibition of autophagy levels attenuated DOX-induced ferroptosis. Mechanistically, we discovered that the autophagy adaptor protein P62 mediates the entry of SLC7A11 into the autophagic pathway for degradation. Furthermore, the addition of autophagy inhibitors (CQ or BAF) could elevate SLC7A11 and GPX4 protein expression, reduce the accumulation of Fe2+ and ROS in cardiomyocytes, and thus mitigate DOX-induced ferroptosis. In summary, our findings underscore the pivotal role of the P62-autophagy pathway in SLC7A11 degradation, modulating ferroptosis to exacerbate DIC. This finding offers significant insights into the underlying molecular mechanisms of DOX-induced ferroptosis and identifies new targets for reversing DIC.


Subject(s)
Amino Acid Transport System y+ , Autophagy , Cardiotoxicity , Doxorubicin , Ferroptosis , Myocytes, Cardiac , Sequestosome-1 Protein , Animals , Male , Mice , Amino Acid Transport System y+/metabolism , Amino Acid Transport System y+/genetics , Antibiotics, Antineoplastic/toxicity , Antibiotics, Antineoplastic/adverse effects , Autophagy/drug effects , Cardiotoxicity/metabolism , Cardiotoxicity/etiology , Doxorubicin/adverse effects , Doxorubicin/toxicity , Ferroptosis/drug effects , Mice, Inbred C57BL , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/pathology , Reactive Oxygen Species/metabolism , Sequestosome-1 Protein/metabolism , Sequestosome-1 Protein/genetics
15.
J Med Chem ; 67(17): 14927-14945, 2024 Sep 12.
Article in English | MEDLINE | ID: mdl-39166949

ABSTRACT

Tuberculosis (TB) remains a major public health challenge, with research on new anti-TB drugs crucial for global TB elimination efforts. Here, we report a novel class of anti-TB agents. Especially, compounds 5b and 5j exhibited the highest activity [minimum inhibitory concentration (MIC) H37Rv: 0.16 and 0.12 µg/mL]. Chiral resolution was performed on compounds 5b and 5j; the isomers were evaluated for their activity and safety, confirming that the R-isomer 5bb and 5jb displayed significant anti-TB activity (MIC H37Rv: 0.03-0.06 µg/mL; MDR-Mtb: 0.125-0.06 µg/mL) and low hERG toxicity. Further evaluations on 5bb and 5jb demonstrated good metabolic stability, favorable kinetic parameters and oral bioavailability (F: 56.7 and 63.8%, respectively). The results of in vivo activity assessment indicate that 5bb and 5jb exhibit protective and therapeutic effects on zebrafish larvae and adult zebrafish infected with Mycobacterium marinum. Based on these results, compounds 5bb and 5jb are considered promising candidates for further in-depth studies.


Subject(s)
Antitubercular Agents , Drug Design , Microbial Sensitivity Tests , Zebrafish , Antitubercular Agents/pharmacology , Antitubercular Agents/chemical synthesis , Antitubercular Agents/pharmacokinetics , Antitubercular Agents/chemistry , Animals , Structure-Activity Relationship , Mycobacterium tuberculosis/drug effects , Pyrimidines/pharmacology , Pyrimidines/chemical synthesis , Pyrimidines/chemistry , Pyrimidines/pharmacokinetics , Humans , Mycobacterium marinum/drug effects , Molecular Structure
17.
Nat Commun ; 15(1): 6954, 2024 Aug 13.
Article in English | MEDLINE | ID: mdl-39138164

ABSTRACT

Phenolic compounds have long captivated the interest of organic synthesis, particularly in their quest for selective hydroxylation of arenes using H2O as a hydroxyl source. However, the inherent high reactivity and low redox potential of phenols often lead to undesirable overoxidation byproducts. To address this challenge, herein, we develop an electrophotochemical approach, finetuning substrate oxidative potential and enabling para-selective hydroxylation of anilides. This method showcases versatility, accommodating a wide array of substrates, while revealing high regional selectivity and compatibility with diverse functional groups. Moreover, the protocol allows facile late-stage functionalization of biologically active molecules. Mechanistic investigations demonstrate the activation of anilides by the excited state photocatalyst, effectively decreasing their oxidative potential and enhancing regional selectivity during hydroxylation. By using this protocol, important drug molecules such as Paracetamol, Fenretinide, Practolol, and AM404 could be synthesized, demonstrating the applicability of this approach in drug synthesis and late-stage functionalization.

18.
Curr Med Sci ; 44(4): 854-863, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39112916

ABSTRACT

OBJECTIVE: This study aimed to establish a neural cell injury model in vitro by stimulating PC12 cells with lipopolysaccharide (LPS) and to examine the effects of astragaloside IV on key targets using high-throughput sequence technology and bioinformatics analyses. METHODS: PC12 cells in the logarithmic growth phase were treated with LPS at final concentrations of 0.25, 0.5, 0.75, 1, and 1.25 mg/mL for 24 h. Cell morphology was evaluated, and cell survival rates were calculated. A neurocyte inflammatory model was established with LPS treatment, which reached a 50% cell survival rate. PC12 cells were treated with 0.01, 0.1, 1, 10, or 100 µmol/L astragaloside IV for 24 h. The concentration of astragaloside IV that did not affect the cell survival rate was selected as the treatment group for subsequent experiments. NOS activity was detected by colorimetry; the expression levels of ERCC2, XRCC4, XRCC2, TNF-α, IL-1ß, TLR4, NOS and COX-2 mRNA and protein were detected by RT-qPCR and Western blotting. The differentially expressed genes (DEGs) between the groups were screened using a second-generation sequence (fold change>2, P<0.05) with the following KEGG enrichment analysis, RT-qPCR and Western blotting were used to detect the mRNA and protein expression of DEGs related to the IL-17 pathway in different groups of PC12 cells. RESULTS: The viability of PC12 cells was not altered by treatment with 0.01, 0.1, or 1 µmol/L astragaloside IV for 24 h (P>0.05). However, after treatment with 0.5, 0.75, 1, or 1.25 mg/mL LPS for 24 h, the viability steadily decreased (P<0.01). The mRNA and protein expression levels of ERCC2, XRCC4, XRCC2, TNF-α, IL-1ß, TLR4, NOS, and COX-2 were significantly increased after PC12 cells were treated with 1 mg/mL LPS for 24 h (P<0.01); however, these changes were reversed when PC12 cells were pretreated with 0.01, 0.1, or 1 µmol/L astragaloside IV in PC12 cells and then treated with 1 mg/mL LPS for 24 h (P<0.05). Second-generation sequencing revealed that 1026 genes were upregulated, while 1287 genes were downregulated. The DEGs were associated with autophagy, TNF-α, interleukin-17, MAPK, P53, Toll-like receptor, and NOD-like receptor signaling pathways. Furthermore, PC12 cells treated with a 1 mg/mL LPS for 24 h exhibited increased mRNA and protein expression of CCL2, CCL11, CCL7, MMP3, and MMP10, which are associated with the IL-17 pathway. RT-qPCR and Western blotting analyses confirmed that the DEGs listed above corresponded to the sequence assay results. CONCLUSION: LPS can damage PC12 cells and cause inflammatory reactions in nerve cells and DNA damage. astragaloside IV plays an anti-inflammatory and DNA damage protective role and inhibits the IL-17 signaling pathway to exert a neuroprotective effect in vitro.


Subject(s)
Anti-Inflammatory Agents , Cell Survival , DNA Repair , Lipopolysaccharides , Saponins , Triterpenes , Animals , PC12 Cells , Rats , Lipopolysaccharides/pharmacology , Triterpenes/pharmacology , Saponins/pharmacology , Anti-Inflammatory Agents/pharmacology , Cell Survival/drug effects , DNA Repair/drug effects
19.
Zhonghua Nan Ke Xue ; 30(3): 266-271, 2024 Mar.
Article in Chinese | MEDLINE | ID: mdl-39177395

ABSTRACT

Necrozoospermia is a special type of asthenospermia, in which mass sperm death is commonly seen, with an incidence rate of 0.2%-0.4%. Studies on necrospermia are rarely reported. Its etiology is complicated, and its diagnosis and treatment are very difficult. This article focuses on the main etiological factors, pathophysiological mechanism, diagnostic methods and treatment strategies of necrospermia, aiming to provide some reference for andrologists and reproduction physicians, as well as a theoretical guidance for intracytoplasmic sperm injection (ICSI) in the treatment of the patients with necrospermia.


Subject(s)
Sperm Injections, Intracytoplasmic , Humans , Male , Sperm Injections, Intracytoplasmic/methods , Infertility, Male/diagnosis , Infertility, Male/etiology , Infertility, Male/therapy , Spermatozoa , Asthenozoospermia/diagnosis , Asthenozoospermia/therapy
20.
Phys Rev Lett ; 133(6): 066902, 2024 Aug 09.
Article in English | MEDLINE | ID: mdl-39178433

ABSTRACT

Charge-order states of broken symmetry, such as charge density wave (CDW), are able to induce exceptional physical properties, however, the precise understanding of the underlying physics is still elusive. Here, we combine fluctuational electrodynamics and density functional theory to reveal an unconventional thermophotonic effect in CDW-bearing TiSe_{2}, referred to as thermophotonic-CDW (tp-CDW). The interplay of plasmon polariton and CDW electron excitations give rise to an anomalous negative temperature dependency in thermal photons transport, offering an intuitive fingerprint for a transformation of the electron order. Additionally, the demonstrated nontrivial features of tp-CDW transition hold promise for a controllable manipulation of heat flow, which could be extensively utilized in various fields such as thermal science and electron dynamics, as well as in next-generation energy devices.

SELECTION OF CITATIONS
SEARCH DETAIL