ABSTRACT
Earth-abundant Co X-ides are emerging as promising catalysts for the electrocatalytic hydrogenation of quinoline (ECHQ), yet challenging due to the limited fundamental understanding of ECHQ mechanism on Co X-ides. This work identifies the catalytic performance differences of Co X-ides in ECHQ and provides significant insights into the catalytic mechanism of ECHQ. Among selected Co X-ides, the Co3O4 presents the best ECHQ performance with a high conversion of 98.2% and 100% selectivity at ambient conditions. The Co3O4 sites present a higher proportion of 2-coordinated hydrogen-bonded water at the interface than other Co X-ides at a low negative potential, which enhances the kinetics of subsequent water dissociation to produce H*. An ideal 1,4/2,3-H* addition pathway on Co3O4 surface with a spontaneous desorption of 1,2,3,4-tetrahydroquinoline is demonstrated through operando tracing and theoretical calculations. In comparison, the Co9S8 sites display the lowest ECHQ performance due to the high thermodynamic barrier in the H* formation step, which suppresses subsequent hydrogenation; while the ECHQ on Co(OH)F and CoP sites undergo the 1,2,3,4- and 4,3/1,2-H* addition pathway respectively with the high desorption barriers and thus low conversion of quinoline. Moreover, the Co3O4 presents a wide substrate scope and allows excellent conversion of other quinoline derivatives and N-heterocyclic substrates.
ABSTRACT
There is an optical interference noise in the conventional Raman-based fiber-optics distributed sensing, which results in a poor temperature resolution performance. In addition, the traditional whole-fiber demodulation principle complicates the operation steps of the system. In this paper, a novel dynamic difference attenuation recognition (DDAR) principle is operated in the DDP scheme (dual demodulation principle) and the SDP scheme (self-demodulation principle) respectively. It not only helps to eliminate the optical interference noise, but also omits the whole-fiber calibration process. In this experiment, a temperature resolution of 0.30 °C (17.0 km) is achieved through using the DDP scheme based on the DDAR principle, and the measurement time can be shortened to 1.5 s. Meanwhile, a temperature resolution of 0.18 °C (17.0 km) is obtained for the SDP scheme under the DDAR principle. The SNR of DDP and DSP schemes can be optimized to 12.82 dB and 13.32 dB by the proposed DDAR technology. Furthermore, the temperature resolution performance under a large temperature measurement range (0-1000 °C) is theoretically analyzed. The results indicate that the temperature responsivity for DDP and SDP schemes are parabolic and linear type respectively, which causes the temperature resolution of the two schemes to show a different trend with the change of temperature. The proposed DDAR method also can improve the temperature resolution in such a large temperature measurement range.