Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 88
Filter
1.
Endocrinology ; 165(8)2024 Jul 01.
Article in English | MEDLINE | ID: mdl-39001875

ABSTRACT

The functional maturation of the pituitary gland requires adequate cell differentiation and vascular network formation. Although spatiotemporal signaling and transcription factors are known to govern pituitary development, the involvement of primary cilia, nonmoving hair-like organelles, remains unclear. In this study, we uncovered the contribution of primary cilia to cell-type determination and vascular network formation during pituitary development. Homozygous knockout mice lacking a ciliary kinase, Dyrk2-/-, exhibit abnormalities in ciliary structure and pituitary hypoplasia, accompanied by varying degrees of failure in differentiation among all types of hormone-producing cells in the anterior lobe. Aberrations in cell differentiation in Dyrk2-/- mice arise from a decrease in the expression of crucial transcription factors, Lhx4, Lhx3, and Prop1, resulting from the inactivity of Hedgehog (Hh) signaling during the early stages of development. Furthermore, the loss of Dyrk2 results in vascular system abnormalities during the middle to late stages of development. Mechanistically, transcriptome analyses revealed the downregulation of vitronectin-integrin αvß3-VEGFR2 signaling, essential for orchestrating vascular development. Collectively, our findings demonstrate that primary cilia play a pivotal role as critical regulators of cell survival, cell determination, and angiogenesis during pituitary gland development through the activation of Hh signaling. These findings expand our understanding of the potential link between pituitary dysfunction in human disorders and ciliopathies.


Subject(s)
Cell Differentiation , Cilia , Neovascularization, Physiologic , Pituitary Gland , Animals , Mice , Angiogenesis , Cilia/metabolism , Cilia/physiology , Hedgehog Proteins/metabolism , Hedgehog Proteins/genetics , Mice, Knockout , Neovascularization, Physiologic/genetics , Neovascularization, Physiologic/physiology , Pituitary Gland/metabolism , Signal Transduction , Transcription Factors/metabolism , Transcription Factors/genetics , Dyrk Kinases/genetics
2.
Proc Natl Acad Sci U S A ; 121(28): e2320070121, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38968120

ABSTRACT

Hedgehog (Hh) signaling, an evolutionarily conserved pathway, plays an essential role in development and tumorigenesis, making it a promising drug target. Multiple negative regulators are known to govern Hh signaling; however, how activated Smoothened (SMO) participates in the activation of downstream GLI2 and GLI3 remains unclear. Herein, we identified the ciliary kinase DYRK2 as a positive regulator of the GLI2 and GLI3 transcription factors for Hh signaling. Transcriptome and interactome analyses demonstrated that DYRK2 phosphorylates GLI2 and GLI3 on evolutionarily conserved serine residues at the ciliary base, in response to activation of the Hh pathway. This phosphorylation induces the dissociation of GLI2/GLI3 from suppressor, SUFU, and their translocation into the nucleus. Loss of Dyrk2 in mice causes skeletal malformation, but neural tube development remains normal. Notably, DYRK2-mediated phosphorylation orchestrates limb development by controlling cell proliferation. Taken together, the ciliary kinase DYRK2 governs the activation of Hh signaling through the regulation of two processes: phosphorylation of GLI2 and GLI3 downstream of SMO and cilia formation. Thus, our findings of a unique regulatory mechanism of Hh signaling expand understanding of the control of Hh-associated diseases.


Subject(s)
Dyrk Kinases , Hedgehog Proteins , Protein Serine-Threonine Kinases , Protein-Tyrosine Kinases , Signal Transduction , Zinc Finger Protein Gli2 , Zinc Finger Protein Gli3 , Animals , Zinc Finger Protein Gli3/metabolism , Zinc Finger Protein Gli3/genetics , Zinc Finger Protein Gli2/metabolism , Zinc Finger Protein Gli2/genetics , Phosphorylation , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/genetics , Hedgehog Proteins/metabolism , Hedgehog Proteins/genetics , Mice , Protein-Tyrosine Kinases/metabolism , Protein-Tyrosine Kinases/genetics , Humans , Nerve Tissue Proteins/metabolism , Nerve Tissue Proteins/genetics , Kruppel-Like Transcription Factors/metabolism , Kruppel-Like Transcription Factors/genetics , Cell Proliferation , Cilia/metabolism , Smoothened Receptor/metabolism , Smoothened Receptor/genetics , Nuclear Proteins , Repressor Proteins
3.
Histol Histopathol ; 39(11): 1427-1434, 2024 Nov.
Article in English | MEDLINE | ID: mdl-38656683

ABSTRACT

To maintain microenvironmental and cellular homeostasis, cells respond to multiple stresses by activating characteristic cellular mechanisms consisting of receptors, signal transducers, and effectors. Dysfunction of these mechanisms can trigger multiple human diseases as well as cancers. Dual-specificity tyrosine-regulated kinases (DYRKs) are members of the CMGC group and are evolutionarily conserved from yeast to mammals. Previous studies revealed that DYRK2 has important roles in the regulation of the cell cycle and survival in cancer cells. On the other hand, recent studies show that DYRK2 also exhibits significant functions in multiple cellular stress responses and in maintaining cellular homeostasis. Hence, the further elucidation of mechanisms underlying DYRK2's diverse responses to various stresses helps to promote the advancement of innovative clinical therapies and pharmacological drugs. This review summarizes the molecular mechanisms of DYRK2, particularly focusing on cellular stress responses.


Subject(s)
Dyrk Kinases , Protein Serine-Threonine Kinases , Protein-Tyrosine Kinases , Stress, Physiological , Humans , Protein-Tyrosine Kinases/metabolism , Protein Serine-Threonine Kinases/metabolism , Animals , Stress, Physiological/physiology , Signal Transduction , Cell Cycle/physiology , Neoplasms/metabolism , Neoplasms/enzymology , Neoplasms/pathology
4.
Biochim Biophys Acta Gen Subj ; 1868(6): 130600, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38508285

ABSTRACT

OBJECTIVES: Lung cancer is a leading cause of cancer-related mortality and remains one of the most poorly prognosed disease worldwide. Therefore, it is necessary to identify novel molecular markers with potential therapeutic effects. Recent findings have suggested that dual-specificity tyrosine-regulated kinase 2 (DYRK2) plays a tumor suppressive role in colorectal, breast, and hepatic cancers; however, its effect and mechanism in lung cancer remain poorly understood. Therefore, this study aimed to investigate the tumor-suppressive role and molecular mechanism of DYRK2 in lung adenocarcinoma (LUAD) by in vitro experiments and xenograft models. MATERIALS AND METHODS: The evaluation of DYRK2 expression was carried out using lung cancer cell lines and normal bronchial epithelial cells. Overexpression of DYRK2 was induced by an adenovirus vector, and cell proliferation was assessed through MTS assay and Colony Formation Assay. Cell cycle analysis was performed using flow cytometry. Additionally, proliferative capacity was evaluated in a xenograft model by subcutaneously implanting A549 cells into SCID mice (C·B17/Icr-scidjcl-scid/scid). RESULTS: Immunoblotting assays showed that DYRK2 was downregulated in most LUAD cell lines. DYRK2 overexpression using adenovirus vectors significantly suppressed cell proliferation compared with that in the control group. Additionally, DYRK2 overexpression suppressed tumor growth in a murine subcutaneous xenograft model. Mechanistically, DYRK2 overexpression inhibited the proliferation of LUAD cells via p21-mediated G1 arrest, which was contingent on p53. CONCLUSION: Taken together, these findings suggest that DYRK2 may serve as potential prognostic biomarker and therapeutic target for LUAD.


Subject(s)
Adenocarcinoma of Lung , Cell Proliferation , Dyrk Kinases , G1 Phase Cell Cycle Checkpoints , Lung Neoplasms , Protein Serine-Threonine Kinases , Protein-Tyrosine Kinases , Animals , Humans , Mice , A549 Cells , Adenocarcinoma of Lung/pathology , Adenocarcinoma of Lung/metabolism , Adenocarcinoma of Lung/genetics , Cell Line, Tumor , G1 Phase Cell Cycle Checkpoints/genetics , Gene Expression Regulation, Neoplastic , Lung Neoplasms/pathology , Lung Neoplasms/metabolism , Lung Neoplasms/genetics , Mice, SCID , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/genetics , Protein-Tyrosine Kinases/metabolism , Protein-Tyrosine Kinases/genetics , Xenograft Model Antitumor Assays
5.
Proc Natl Acad Sci U S A ; 121(9): e2313964121, 2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38394242

ABSTRACT

Invariant natural killer T (iNKT) cells are innate-like T lymphocytes that express an invariant T cell receptor α chain and contribute to bridging innate and acquired immunity with rapid production of large amounts of cytokines after stimulation. Among effecter subsets of iNKT cells, follicular helper NKT (NKTFH) cells are specialized to help B cells. However, the mechanisms of NKTFH cell differentiation remain to be elucidated. In this report, we studied the mechanism of NKTFH cell differentiation induced by pneumococcal surface protein A and α-galactosylceramide (P/A) vaccination. We found that Gr-1+ cells helped iNKT cell proliferation and NKTFH cell differentiation in the spleen by producing interleukin-27 (IL-27) in the early phase after vaccination. The neutralization of IL-27 impaired NKTFH cell differentiation, which resulted in compromised antibody production and diminished protection against Streptococcus pneumoniae infection by the P/A vaccine. Our data indicated that Gr-1+ cell-derived IL-27 stimulated mitochondrial metabolism, meeting the energic demand required for iNKT cells to differentiate into NKTFH cells. Interestingly, Gr-1+ cell-derived IL-27 was induced by iNKT cells via interferon-γ production. Collectively, our findings suggest that optimizing the metabolism of iNKT cells was essential for acquiring specific effector functions, and they provide beneficial knowledge on iNKT cell-mediated vaccination-mediated therapeutic strategies.


Subject(s)
Interleukin-27 , Natural Killer T-Cells , Animals , Mice , Interleukin-27/metabolism , T-Lymphocytes, Helper-Inducer , Cytokines/metabolism , Cell Differentiation , Mice, Inbred C57BL
6.
Biomarkers ; 29(2): 55-67, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38361436

ABSTRACT

BACKGROUND: The conventional markers for hepatocellular carcinoma (HCC), α-fetoprotein (AFP) and des-γ-carboxy prothrombin (DCP), have several limitations; both have low sensitivity in patients with early-stage HCC; low sensitivity for AFP with HCC after eliminating hepatitis C virus (HCV); low specificity for DCP in patients with non-viral HCC, which is increasing worldwide; low specificity for AFP in patients with liver injury; and low specificity for DCP in patients treated with warfarin. To overcome these issues, the identification of novel biomarkers is an unmet need. OBJECTIVE: This study aimed to assess the usefulness of serum protein kinase C delta (PKCδ) for detecting these HCCs. METHODS: PKCδ levels were measured using a sandwich enzyme-linked immunosorbent assay in 363 chronic liver disease (CLD) patients with and without HCC. RESULTS: In both viral and non-viral CLD, PKCδ can detect HCCs with high sensitivity and specificity, particularly in the very early stages. Notably, the value and sensitivity of PKCδ were not modified by HCV elimination status. Liver injury and warfarin administration, which are known to cause false-positive results for conventional markers, did not modify PKCδ levels. CONCLUSIONS: PKCδ is an enhanced biomarker for the diagnosis of HCC that compensates for the drawbacks of conventional markers.


Subject(s)
Carcinoma, Hepatocellular , Hepatitis C , Liver Neoplasms , Humans , Carcinoma, Hepatocellular/diagnosis , Carcinoma, Hepatocellular/pathology , alpha-Fetoproteins , Biomarkers, Tumor , Liver Neoplasms/diagnosis , Liver Neoplasms/pathology , Protein Kinase C-delta , Warfarin , Sensitivity and Specificity , Protein Precursors , Biomarkers , Prothrombin/metabolism
7.
Curr Issues Mol Biol ; 45(10): 8539-8551, 2023 Oct 23.
Article in English | MEDLINE | ID: mdl-37886981

ABSTRACT

The dual-specificity tyrosine phosphorylation-regulated kinase 2 (DYRK2) regulates the induction of apoptosis and DNA repair, metastasis inhibition, cell cycle G1/S transition, protein scaffold stability for E3 ligase complexes, and embryogenesis. Owing to these functions, DYRK2 is thought to regulate tumorigenesis, and its function in cancer has been investigated. Notably, DYRK2 has been reported to function as a tumor suppressor; however, it has also been reported to act as an oncogene in some cancers. This discrepancy makes it difficult to elucidate the conserved functions of DYRK2 in cancer. Here, we reviewed the functions of DYRK2 in various cancers. Patient tissue samples were evaluated for each cancer type. Although some studies have used cell lines and/or xenografts to elucidate the mechanism of DYRK2 function, these studies are not sufficient to understand the role of DYRK2 in cancers. In particular, studies using genetically modified mice would help us to understand the reported functional duality of DYRK2 in cancer.

8.
Cancer Sci ; 114(12): 4558-4570, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37776195

ABSTRACT

Dual-specificity tyrosine-regulated kinase 2 (DYRK2) is a protein kinase that phosphorylates p53-Ser46 and induces apoptosis in response to DNA damage. However, the relationship between DYRK2 expression and chemosensitivity after DNA damage in colorectal cancer has not been well investigated. The aim of the present study was to examine whether DYRK2 could be a novel marker for predicting chemosensitivity after 5-fluorouracil- and oxaliplatin-induced DNA damage in colorectal cancer. Here we showed that DYRK2 knockout decreased the chemosensitivity to 5-fluorouracil and oxaliplatin in p53 wild-type colorectal cancer cells, whereas the chemosensitivity remained unchanged in p53-deficient/mutated colorectal cancer cells. In addition, no significant differences in chemosensitivity to 5-fluorouracil and oxaliplatin between scramble and siDYRK2 p53(-/-) colorectal cancer cells were observed. Conversely, the combination of adenovirus-mediated overexpression of DYRK2 with 5-fluorouracil or oxaliplatin enhanced apoptosis and chemosensitivity through p53-Ser46 phosphorylation in p53 wild-type colorectal cancer cells. Furthermore, DYRK2 knockout decreased chemosensitivity to 5-fluorouracil and oxaliplatin in p53 wild-type xenograft mouse models. Taken together, these findings demonstrated that DYRK2 expression was associated with chemosensitivity to 5-fluorouracil and oxaliplatin in p53 wild-type colorectal cancer, suggesting the importance of evaluating the p53 status and DYRK2 expression as a novel marker in therapeutic strategies for colorectal cancer.


Subject(s)
Colorectal Neoplasms , Tumor Suppressor Protein p53 , Humans , Animals , Mice , Oxaliplatin/pharmacology , Oxaliplatin/therapeutic use , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/genetics , Colorectal Neoplasms/metabolism , Apoptosis/genetics , Fluorouracil/pharmacology , Fluorouracil/therapeutic use , DNA Damage
9.
Genes Dis ; 10(3): 758-770, 2023 May.
Article in English | MEDLINE | ID: mdl-37396550

ABSTRACT

The dual-specificity tyrosine-regulated kinase (DYRK) family is evolutionarily conserved from invertebrate to mammals. DYRKs regulate cell proliferation, apoptosis, survival, and differentiation by modifying the protein activation state, cellular localization, and turnover. In contrast to several studies in cellular models, the available evidence regarding the in vivo roles of DYRKs in mammalian development is limited. This review summarizes the in vivo studies on Dyrks which provide insight into their roles in mammalian tissue development and congenital diseases. In vivo evidence obtained using knockout and genetically modified animals helps to understand and develop novel clinical therapies and drug for human congenital diseases, such as Down syndrome and neuronal disorders (associated with DYRK1A) and skeletal ciliopathies (associated with DYRK2).

10.
JHEP Rep ; 5(7): 100759, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37333975

ABSTRACT

Background & Aims: Hepatocellular carcinoma (HCC) is one of the most common cancers worldwide, and has a poor prognosis. However, the molecular mechanisms underlying hepatocarcinogenesis and progression remain unknown. In vitro gain- and loss-of-function analyses in cell lines and xenografts revealed that dual-specificity tyrosine-regulated kinase 2 (DYRK2) influences tumour growth in HCC. Methods: To investigate the role of Dyrk2 during hepatocarcinogenesis, we developed liver-specific Dyrk2 conditional knockout mice and an in vivo gene delivery system with a hydrodynamic tail vein injection and the Sleeping Beauty transposon. The antitumour effects of Dyrk2 gene transfer were investigated in a murine autologous carcinogenesis model. Results: Dyrk2 expression was reduced in tumours, and that its downregulation was induced before hepatocarcinogenesis. Dyrk2 gene transfer significantly suppressed carcinogenesis. It also suppresses Myc-induced de-differentiation and metabolic reprogramming, which favours proliferative, and malignant potential by altering gene profiles. Dyrk2 overexpression caused Myc and Hras degradation at the protein level rather than at the mRNA level, and this degradation mechanism was regulated by the proteasome. Immunohistochemical analyses revealed a negative correlation between DYRK2 expression and MYC and longer survival in patients with HCC with high-DYRK2 and low-MYC expressions. Conclusions: Dyrk2 protects the liver from carcinogenesis by promoting Myc and Hras degradation. Our findings would pave the way for a novel therapeutic approach using DYRK2 gene transfer. Impact and Implications: Hepatocellular carcinoma (HCC) is one of the most common cancers, with a poor prognosis. Hence, identifying molecules that can become promising targets for therapies is essential to improve mortality. No studies have clarified the association between DYRK2 and carcinogenesis, although DYRK2 is involved in tumour growth in various cancer cells. This is the first study to show that Dyrk2 expression decreases during hepatocarcinogenesis and that Dyrk2 gene transfer is an attractive approach with tumour suppressive activity against HCC by suppressing Myc-mediated de-differentiation and metabolic reprogramming that favours proliferative and malignant potential via Myc and Hras degradation.

11.
Molecules ; 28(10)2023 May 11.
Article in English | MEDLINE | ID: mdl-37241771

ABSTRACT

Extended-synaptotagmin 1 (E-Syt1) is an endoplasmic reticulum membrane protein that is involved in cellular lipid transport. Our previous study identified E-Syt1 as a key factor for the unconventional protein secretion of cytoplasmic proteins in liver cancer, such as protein kinase C delta (PKCδ); however, it is unclear whether E-Syt1 is involved in tumorigenesis. Here, we showed that E-Syt1 contributes to the tumorigenic potential of liver cancer cells. E-Syt1 depletion significantly suppressed the proliferation of liver cancer cell lines. Database analysis revealed that E-Syt1 expression is a prognostic factor for hepatocellular carcinoma (HCC). Immunoblot analysis and cell-based extracellular HiBiT assays showed that E-Syt1 was required for the unconventional secretion of PKCδ in liver cancer cells. Furthermore, deficiency of E-Syt1 suppressed the activation of insulin-like growth factor 1 receptor (IGF1R) and extracellular-signal-related kinase 1/2 (Erk1/2), both of which are signaling pathways mediated by extracellular PKCδ. Three-dimensional sphere formation and xenograft model analysis revealed that E-Syt1 knockout significantly decreased tumorigenesis in liver cancer cells. These results provide evidence that E-Syt1 is critical for oncogenesis and is a therapeutic target for liver cancer.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Humans , Synaptotagmin I/metabolism , Carcinoma, Hepatocellular/genetics , Liver Neoplasms/genetics , Cell Line , Carcinogenesis
12.
DNA Cell Biol ; 42(5): 225-228, 2023 May.
Article in English | MEDLINE | ID: mdl-36930842

ABSTRACT

Unconventional protein secretion (UPS) is a crucial mechanism controlling the localization of cytosolic proteins lacking signal peptides and is implicated in inflammation, neurodegenerative diseases, and cancer. Several previous studies on immune cells have demonstrated the mechanisms of UPS. In cancer, the active secretion of several cytosolic proteins, including PKCδ and nucleolin, has been described. Moreover, we have recently demonstrated that extended synaptotagmin 1, one of the membrane proteins of the endoplasmic reticulum, plays a critical role in UPS in liver cancer cells. Importantly, UPS in cancer cells shows characteristics that are markedly different from those of the previously known UPS, and therefore, we categorize them as cancer-related UPS (CUPS). In this article, we provide an overview of UPS mechanisms and discuss the process that leads to the naming of cancer-specific UPS as CUPS.


Subject(s)
Neoplasms , Secretory Pathway , Endoplasmic Reticulum/metabolism , Protein Transport , Cell Membrane/metabolism , Membrane Proteins/metabolism , Neoplasms/metabolism
13.
Oncotarget ; 14: 146-147, 2023 02 20.
Article in English | MEDLINE | ID: mdl-36806015

Subject(s)
Neoplasms , Humans , Proteins
14.
Cancer Sci ; 114(6): 2471-2484, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36851883

ABSTRACT

Protein kinase C delta (PKCδ) is a multifunctional serine-threonine kinase implicated in cell proliferation, differentiation, tumorigenesis, and therapeutic resistance. However, the molecular mechanism of PKCδ in colorectal cancer (CRC) remains unclear. In this study, we showed that PKCδ acts as a negative regulator of cellular senescence in p53 wild-type (wt-p53) CRC. Immunohistochemical analysis revealed that PKCδ levels in human CRC tissues were higher than those in the surrounding normal tissues. Deletion studies have shown that cell proliferation and tumorigenesis in wt-p53 CRC is sensitive to PKCδ expression. We found that PKCδ activates p21 via a p53-independent pathway and that PKCδ-kinase activity is essential for p21 activity. In addition, both repression of PKCδ expression and inhibition of PKCδ activity induced cellular senescence-like phenotypes, including increased senescence-associated ß-galactosidase (SA-ß-gal) staining, low LaminB1 expression, large nucleus size, and senescence-associated secretory phenotype (SASP) detection. Finally, a kinase inhibitor of PKCδ suppressed senescence-dependent tumorigenicity in a dose-dependent manner. These results offer a mechanistic insight into CRC survival and tumorigenesis. In addition, a novel therapeutic strategy for wt-p53 CRC is proposed.


Subject(s)
Colorectal Neoplasms , Protein Kinase C-delta , Humans , Protein Kinase C-delta/genetics , Protein Kinase C-delta/metabolism , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism , Cyclin-Dependent Kinase Inhibitor p21/genetics , Cyclin-Dependent Kinase Inhibitor p21/metabolism , Cellular Senescence/genetics , Colorectal Neoplasms/pathology , Carcinogenesis
15.
Gastro Hep Adv ; 2(1): 83-95, 2023.
Article in English | MEDLINE | ID: mdl-39130149

ABSTRACT

Backgrounds and Aims: Hepatocellular carcinoma (HCC) is the most common cancer with a poor prognosis. Identification of an alternative biomarker that can detect early-stage and conventional tumor marker-negative HCC is urgently needed. We found that protein kinase C delta (PKCδ) is specifically secreted from HCC cell lines into extracellular space and contributes to tumor development and that its serum levels were elevated in HCC patients. This study aimed to assess the practical usefulness of serum PKCδ for detecting HCC in chronic liver disease (CLD) patients. Methods: Serum PKCδ levels in 313 CLD patients with and without HCC (n = 187 and 126, respectively) were measured using a sandwich enzyme-linked immunosorbent assay. The diagnostic performance of PKCδ for HCC was evaluated using the receiver operating characteristic curve analysis and was compared with that of conventional markers, α-fetoprotein (AFP), and des-γ-carboxy prothrombin (DCP). Results: Serum PKCδ levels in HCC patients were significantly higher than those in CLD patients without HCC. PKCδ distinguished HCC patients from CLD patients without HCC, with high sensitivity and specificity. Subgroup analyses revealed that the diagnostic performance of PKCδ for HCC was comparable to that of AFP and DCP, and that approximately 40% of AFP/DCP double-negative HCC patients were positive for PKCδ. PKCδ yielded better diagnostic performance for detecting solitary small-sized (ie, very early stage) HCC than AFP and DCP. There was no significant correlation between serum PKCδ and AFP/DCP levels. Conclusion: Serum PKCδ is a novel HCC biomarker, which is independent of and complementary to conventional markers. Specifically, PKCδ may be useful for detecting very early-stage or AFP/DCP double-negative HCC.

16.
Proc Natl Acad Sci U S A ; 119(36): e2202730119, 2022 09 06.
Article in English | MEDLINE | ID: mdl-36044553

ABSTRACT

Protein secretion in cancer cells defines tumor survival and progression by orchestrating the microenvironment. Studies suggest the occurrence of active secretion of cytosolic proteins in liver cancer and their involvement in tumorigenesis. Here, we investigated the identification of extended-synaptotagmin 1 (E-Syt1), an endoplasmic reticulum (ER)-bound protein, as a key mediator for cytosolic protein secretion at the ER-plasma membrane (PM) contact sites. Cytosolic proteins interacted with E-Syt1 on the ER, and then localized spatially inside SEC22B+ vesicles of liver cancer cells. Consequently, SEC22B on the vesicle tethered to the PM via Q-SNAREs (SNAP23, SNX3, and SNX4) for their secretion. Furthermore, inhibiting the interaction of protein kinase Cδ (PKCδ), a liver cancer-specific secretory cytosolic protein, with E-Syt1 by a PKCδ antibody, decreased in both PKCδ secretion and tumorigenicity. Results reveal the role of ER-PM contact sites in cytosolic protein secretion and provide a basis for ER-targeting therapy for liver cancer.


Subject(s)
Liver Neoplasms , R-SNARE Proteins , Synaptotagmin I , Cell Membrane/metabolism , Endoplasmic Reticulum/metabolism , Humans , Liver Neoplasms/genetics , Liver Neoplasms/metabolism , Protein Transport , R-SNARE Proteins/metabolism , Synaptotagmin I/metabolism , Tumor Microenvironment
17.
Cancer Sci ; 113(7): 2378-2385, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35490382

ABSTRACT

Protein kinase C delta (PKCδ) is a multifunctional PKC family member and has been implicated in many types of cancers, including liver cancer. Recently, we have reported that PKCδ is secreted from liver cancer cells, and involved in cell proliferation and tumor growth. However, it remains unclear whether the extracellular PKCδ directly regulates cell surface growth factor receptors. Here, we identify epidermal growth factor receptor (EGFR) as a novel interacting protein of the cell surface PKCδ in liver cancer cells. Imaging studies showed that secreted PKCδ interacted with EGFR-expressing cells in both autocrine and paracrine manners. Biochemical analysis revealed that PKCδ bound to the extracellular domain of EGFR. We further found that a part of the amino acid sequence on the C-terminal region of PKCδ was similar to the putative EGFR binding site of EGF. In this regard, the point mutant of PKCδ in the binding site lacked the ability to bind to the extracellular domain of EGFR. Upon an extracellular PKCδ-EGFR association, ERK1/2 activation, downstream of EGFR signaling, was apparently induced in liver cancer cells. This study indicates that extracellular PKCδ behaves as a growth factor and provides a molecular basis for extracellular PKCδ-targeting therapy for liver cancer.


Subject(s)
ErbB Receptors , Liver Neoplasms , Protein Kinase C-delta , Cell Line , Cell Proliferation , Epidermal Growth Factor/metabolism , ErbB Receptors/genetics , ErbB Receptors/metabolism , Humans , Liver Neoplasms/genetics , Protein Kinase C-delta/genetics , Protein Kinase C-delta/metabolism
18.
J Cell Sci ; 135(11)2022 06 01.
Article in English | MEDLINE | ID: mdl-35582972

ABSTRACT

Neural precursor cell-expressed developmentally down-regulated 8 (NEDD8), an ubiquitin-like protein, is an essential regulator of the DNA damage response. Numerous studies have shown that neddylation (conjugation of NEDD8 to target proteins) dysfunction causes several human diseases, such as cancer. Hence clarifying the regulatory mechanism of neddylation could provide insight into the mechanism of genome stability underlying the DNA damage response (DDR) and carcinogenesis. Here, we demonstrate that dual-specificity tyrosine-regulated kinase 2 (DYRK2) is a novel regulator of neddylation and maintains genome stability. Deletion of DYRK2 leads to persistent DNA double-strand breaks (DSBs) and subsequent genome instability. Mechanistically, DYRK2 promotes neddylation through forming a complex with NAE1, which is a component of NEDD8-activating enzyme E1, and maintaining its protein level by suppressing polyubiquitylation. The present study is the first to demonstrate that DYRK2 controls neddylation and is necessary for maintaining genome stability. This article has an associated First Person interview with the first author of the paper.


Subject(s)
Cullin Proteins , DNA Damage , Protein Serine-Threonine Kinases/genetics , Protein-Tyrosine Kinases/genetics , Cullin Proteins/metabolism , DNA Damage/genetics , Genomic Instability/genetics , Humans , NEDD8 Protein/genetics , NEDD8 Protein/metabolism , Ubiquitins/genetics , Ubiquitins/metabolism , Dyrk Kinases
19.
World J Gastroenterol ; 28(2): 188-198, 2022 Jan 14.
Article in English | MEDLINE | ID: mdl-35110944

ABSTRACT

Protein kinase Cδ (PKCδ) is a member of the PKC family, and its implications have been reported in various biological and cancerous processes, including cell proliferation, cell death, tumor suppression, and tumor progression. In liver cancer cells, accumulating reports show the bi-functional regulation of PKCδ in cell death and survival. PKCδ function is defined by various factors, such as phosphorylation, catalytic domain cleavage, and subcellular localization. PKCδ has multiple intracellular distribution patterns, ranging from the cytosol to the nucleus. We recently found a unique extracellular localization of PKCδ in liver cancer and its growth factor-like function in liver cancer cells. In this review, we first discuss the structural features of PKCδ and then focus on the functional diversity of PKCδ based on its subcellular localization, such as the nucleus, cell surface, and extracellular space. These findings improve our knowledge of PKCδ involvement in the progression of liver cancer.


Subject(s)
Liver Neoplasms , Protein Kinase C-delta , Cell Line , Cell Nucleus/metabolism , Humans , Liver Neoplasms/metabolism , Phosphorylation , Protein Kinase C-delta/metabolism
20.
Cancer Sci ; 113(3): 960-970, 2022 Mar.
Article in English | MEDLINE | ID: mdl-34932844

ABSTRACT

Colorectal cancer is one of the most common gastrointestinal tumors with good outcomes; however, with distant metastasis, the outcomes are poor. Novel treatment methods are urgently needed. Our in vitro studies indicate that dual-specificity tyrosine-regulated kinase 2 (DYRK2) functions as a tumor suppressor in colorectal cancer by regulating cell survival, proliferation, and apoptosis induction. In addition, DYRK2 expression is decreased in tumor tissues compared to nontumor tissues in colorectal cancer, indicating a correlation with clinical prognosis. In this context, we devised a novel therapeutic strategy to overexpress DYRK2 in tumors by adenovirus-mediated gene transfer. The present study shows that overexpression of DYRK2 in colon cancer cell lines by adenovirus inhibits cell proliferation and induces apoptosis in vitro. Furthermore, in mouse subcutaneous xenograft and liver metastasis models, enforced expression of DYRK2 by direct or intravenous injection of adenovirus to the tumor significantly inhibits tumor growth. Taken together, these findings show that adenovirus-based overexpression of DYRK2 could be a novel gene therapy for liver metastasis of colorectal cancer.


Subject(s)
Adenoviridae/genetics , Colorectal Neoplasms/therapy , Genetic Therapy/methods , Protein Serine-Threonine Kinases/genetics , Protein-Tyrosine Kinases/genetics , Animals , Apoptosis/genetics , Cell Line, Tumor , Cell Proliferation/genetics , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , Genetic Vectors , Humans , Liver Neoplasms/genetics , Liver Neoplasms/secondary , Liver Neoplasms/therapy , Mice , Tumor Suppressor Proteins/genetics , Xenograft Model Antitumor Assays , Dyrk Kinases
SELECTION OF CITATIONS
SEARCH DETAIL