Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 280
Filter
1.
IEEE Trans Med Imaging ; PP2024 Oct 04.
Article in English | MEDLINE | ID: mdl-39365718

ABSTRACT

Cone-beam computed tomography (CBCT) systems, with their flexibility, present a promising avenue for direct point-of-care medical imaging, particularly in critical scenarios such as acute stroke assessment. However, the integration of CBCT into clinical workflows faces challenges, primarily linked to long scan duration resulting in patient motion during scanning and leading to image quality degradation in the reconstructed volumes. This paper introduces a novel approach to CBCT motion estimation using a gradient-based optimization algorithm, which leverages generalized derivatives of the backprojection operator for cone-beam CT geometries. Building on that, a fully differentiable target function is formulated which grades the quality of the current motion estimate in reconstruction space. We drastically accelerate motion estimation yielding a 19-fold speed-up compared to existing methods. Additionally, we investigate the architecture of networks used for quality metric regression and propose predicting voxel-wise quality maps, favoring autoencoder-like architectures over contracting ones. This modification improves gradient flow, leading to more accurate motion estimation. The presented method is evaluated through realistic experiments on head anatomy. It achieves a reduction in reprojection error from an initial average of 3 mm to 0.61 mm after motion compensation and consistently demonstrates superior performance compared to existing approaches. The analytic Jacobian for the backprojection operation, which is at the core of the proposed method, is made publicly available. In summary, this paper contributes to the advancement of CBCT integration into clinical workflows by proposing a robust motion estimation approach that enhances efficiency and accuracy, addressing critical challenges in time-sensitive scenarios.

2.
Elife ; 132024 Sep 13.
Article in English | MEDLINE | ID: mdl-39269893

ABSTRACT

Tumor neoantigen peptide vaccines hold potential for boosting cancer immunotherapy, yet efficiently co-delivering peptides and adjuvants to antigen-presenting cells in vivo remains challenging. Virus-like particle (VLP), which is a kind of multiprotein structure organized as virus, can deliver therapeutic substances into cells and stimulate immune response. However, the weak targeted delivery of VLP in vivo and its susceptibility to neutralization by antibodies hinder their clinical applications. Here, we first designed a novel protein carrier using the mammalian-derived capsid protein PEG10, which can self-assemble into endogenous VLP (eVLP) with high protein loading and transfection efficiency. Then, an engineered tumor vaccine, named ePAC, was developed by packaging genetically encoded neoantigen into eVLP with further modification of CpG-ODN on its surface to serve as an adjuvant and targeting unit to dendritic cells (DCs). Significantly, ePAC can efficiently target and transport neoantigens to DCs, and promote DCs maturation to induce neoantigen-specific T cells. Moreover, in mouse orthotopic liver cancer and humanized mouse tumor models, ePAC combined with anti-TIM-3 exhibited remarkable antitumor efficacy. Overall, these results support that ePAC could be safely utilized as cancer vaccines for antitumor therapy, showing significant potential for clinical translation.


Subject(s)
Antigens, Neoplasm , Cancer Vaccines , Dendritic Cells , Animals , Cancer Vaccines/immunology , Cancer Vaccines/genetics , Cancer Vaccines/administration & dosage , Mice , Antigens, Neoplasm/immunology , Antigens, Neoplasm/genetics , Humans , Dendritic Cells/immunology , Vaccines, Virus-Like Particle/immunology , Vaccines, Virus-Like Particle/administration & dosage , Vaccines, Virus-Like Particle/genetics , Capsid Proteins/immunology , Capsid Proteins/genetics , Peptides/immunology , Female , Mice, Inbred C57BL , Cell Line, Tumor , Vaccination
3.
Adv Mater ; 36(41): e2409329, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39221531

ABSTRACT

Ferroptosis in neurons is considered one of the key factors that induces Parkinson's disease (PD), which is caused by excessive iron accumulation in the intracellular labile iron pool (LIP). The iron ions released from the LIP lead to the aberrant generation of reactive oxygen species (ROS) to trigger ferroptosis and exacerbate PD progression. Herein, a pioneering design of multifunctional nanoregulator deferoxamine (DFO)-integrated nanosheets (BDPR NSs) is presented that target the LIP to restrict ferroptosis and protect against PD. The BDPR NSs are constructed by incorporating a brain-targeting peptide and DFO into polydopamine-modified black phosphorus nanosheets. These BDPR NSs can sequester free iron ions, thereby ameliorating LIP overload and regulating iron metabolism. Furthermore, the BDPR NSs can decrease lipid peroxidation generation by mitigating ROS accumulation. More importantly, BDPR NSs can specifically accumulate in the mitochondria to suppress ROS generation and decrease mitochondrial iron accumulation. In vivo experiments demonstrated that the BDPR NSs highly efficiently mitigated dopaminergic neuronloss and its associated behavioral disorders by modulating the LIP and inhibiting ferroptosis. Thus, the BDPR-based nanovectors holds promise as a potential avenue for advancing PD therapy.


Subject(s)
Deferoxamine , Ferroptosis , Iron , Parkinson Disease , Reactive Oxygen Species , Ferroptosis/drug effects , Parkinson Disease/drug therapy , Parkinson Disease/metabolism , Parkinson Disease/pathology , Iron/chemistry , Iron/metabolism , Deferoxamine/pharmacology , Deferoxamine/chemistry , Animals , Reactive Oxygen Species/metabolism , Mice , Nanostructures/chemistry , Humans , Polymers/chemistry , Polymers/pharmacology , Mitochondria/metabolism , Mitochondria/drug effects , Indoles/chemistry , Indoles/pharmacology , Lipid Peroxidation/drug effects
4.
Acta Pharm Sin B ; 14(8): 3416-3431, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39220881

ABSTRACT

Chimeric antigen receptor T (CAR-T) cell therapy as a form of adoptive cell therapy (ACT) has shown significant promise in cancer treatment, demonstrated by the FDA-approved CAR-T cell therapies targeting CD19 or B cell maturation antigen (BCMA) for hematological malignancies, albeit with moderate outcomes in solid tumors. However, despite these advancements, the efficacy of CAR-T therapy is often compromised by T cell exhaustion, a phenomenon that impedes the persistence and effector function of CAR-T cells, leading to a relapse rate of up to 75% in patients treated with CD19 or CD22 CAR-T cells for hematological malignancies. Strategies to overcome CAR-T exhaustion employ state-of-the-art genomic engineering tools and single-cell sequencing technologies. In this review, we provide a comprehensive understanding of the latest mechanistic insights into T cell exhaustion and their implications for the current efforts to optimize CAR-T cell therapy. These insights, combined with lessons learned from benchmarking CAR-T based products in recent clinical trials, aim to address the challenges posed by T cell exhaustion, potentially setting the stage for the development of tailored next-generation approaches to cancer treatment.

5.
J Control Release ; 375: 1-19, 2024 Aug 31.
Article in English | MEDLINE | ID: mdl-39208935

ABSTRACT

Point-of-care ultrasound demonstrates significant potential in biomedical research due to its noninvasive, real-time visualization, cost-effectiveness, and other biological benefits. Ultrasound irradiation can precisely control the mechanical and physicochemical effects on pathogenic lesions, enabling real-time visualization, tunable tissue penetration depth, and therapeutic applications. This review summarizes recent advancements in ultrasound-enabled diagnostics and therapeutics, focusing on mechanochemical effects that can be directly integrated into biomedical applications. Additionally, the structure-functionality relationships of sonotheranostic nanoplatforms are systematically discussed, providing insights into the underlying biological effects. Finally, the limitations of current ultrasonic medicine are discussed, along with potential expansions to facilitate patient-centered translations.

6.
Nat Commun ; 15(1): 6608, 2024 Aug 04.
Article in English | MEDLINE | ID: mdl-39098906

ABSTRACT

The antitumor performance of PROteolysis-TArgeting Chimeras (PROTACs) is limited by its insufficient tumor specificity and poor pharmacokinetics. These disadvantages are further compounded by tumor heterogeneity, especially the presence of cancer stem-like cells, which drive tumor growth and relapse. Herein, we design a region-confined PROTAC nanoplatform that integrates both reactive oxygen species (ROS)-activatable and hypoxia-responsive PROTAC prodrugs for the precise manipulation of bromodomain and extraterminal protein 4 expression and tumor eradication. These PROTAC nanoparticles selectively accumulate within and penetrate deep into tumors via response to matrix metalloproteinase-2. Photoactivity is then reactivated in response to the acidic intracellular milieu and the PROTAC is discharged due to the ROS generated via photodynamic therapy specifically within the normoxic microenvironment. Moreover, the latent hypoxia-responsive PROTAC prodrug is restored in hypoxic cancer stem-like cells overexpressing nitroreductase. Here, we show the ability of region-confined PROTAC nanoplatform to effectively degrade BRD4 in both normoxic and hypoxic environments, markedly hindering tumor progression in breast and head-neck tumor models.


Subject(s)
Cell Cycle Proteins , Nanoparticles , Proteolysis , Transcription Factors , Humans , Proteolysis/drug effects , Animals , Nanoparticles/chemistry , Cell Line, Tumor , Mice , Transcription Factors/metabolism , Female , Cell Cycle Proteins/metabolism , Reactive Oxygen Species/metabolism , Prodrugs/pharmacology , Prodrugs/chemistry , Photochemotherapy/methods , Neoplastic Stem Cells/drug effects , Neoplastic Stem Cells/metabolism , Mice, Nude , Xenograft Model Antitumor Assays , Tumor Microenvironment/drug effects , Breast Neoplasms/drug therapy , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Nuclear Proteins/metabolism , Matrix Metalloproteinase 2/metabolism , Mice, Inbred BALB C , Neoplasms/drug therapy , Neoplasms/metabolism , Neoplasms/pathology , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Bromodomain Containing Proteins
7.
Int J Cancer ; 155(11): 1928-1938, 2024 Dec 01.
Article in English | MEDLINE | ID: mdl-39039820

ABSTRACT

Immunotherapy, especially immune checkpoint blockade therapy, represents a major milestone in the history of cancer therapy. However, the current response rate to immunotherapy among cancer patients must be improved; thus, new strategies for sensitizing patients to immunotherapy are urgently needed. Erythroid progenitor cells (EPCs), a population of immature erythroid cells, exert potent immunosuppressive functions. As a newly recognized immunosuppressive population, EPCs have not yet been effectively targeted. In this review, we summarize the immunoregulatory mechanisms of EPCs, especially for CD45+ EPCs. Moreover, in view of the regulatory effects of EPCs on the tumor microenvironment, we propose the concept of EPC-immunity, present existing strategies for targeting EPCs, and discuss the challenges encountered in both basic research and clinical applications. In particular, the impact of existing cancer treatments on EPCs is discussed, laying the foundation for combination therapies. The aim of this review is to provide new avenues for improving the efficacy of cancer immunotherapy by targeting EPCs.


Subject(s)
Erythroid Precursor Cells , Immunotherapy , Neoplasms , Tumor Microenvironment , Humans , Neoplasms/therapy , Neoplasms/immunology , Neoplasms/pathology , Immunotherapy/methods , Tumor Microenvironment/immunology , Erythroid Precursor Cells/immunology , Animals , Leukocyte Common Antigens/metabolism
8.
Phytochemistry ; 226: 114219, 2024 Oct.
Article in English | MEDLINE | ID: mdl-38997098

ABSTRACT

Eight previously undescribed sesquiterpene lactones (1-8), together with six known ones (9-14) were isolated from the aerial parts of Tithonia diversifolia (Hemsl.) A. Gray. The absolute configurations of these compounds were elucidated using HRMS, NMR spectroscopy, optical rotation measurements, X-ray crystallography, and ECD. Among them, sesquiterpene lactones 2-4 share a unique carbon skeleton with a rare C-3/C-4 ring-opened structure. Compounds 1 and 8 showed moderate inhibitory effects toward CT26 murine colon carcinoma cells by promoting lipid ROS production, highlighting their potential as ferroptosis inducers.


Subject(s)
Antineoplastic Agents, Phytogenic , Asteraceae , Ferroptosis , Lactones , Sesquiterpenes , Sesquiterpenes/chemistry , Sesquiterpenes/pharmacology , Sesquiterpenes/isolation & purification , Lactones/chemistry , Lactones/pharmacology , Lactones/isolation & purification , Ferroptosis/drug effects , Animals , Mice , Asteraceae/chemistry , Molecular Structure , Antineoplastic Agents, Phytogenic/pharmacology , Antineoplastic Agents, Phytogenic/chemistry , Antineoplastic Agents, Phytogenic/isolation & purification , Drug Screening Assays, Antitumor , Structure-Activity Relationship , Cell Line, Tumor , Dose-Response Relationship, Drug , Humans , Cell Proliferation/drug effects , Plant Components, Aerial/chemistry , Reactive Oxygen Species/metabolism
9.
Adv Mater ; 36(33): e2310659, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38871360

ABSTRACT

Layered iron/manganese-based oxides are a class of promising cathode materials for sustainable batteries due to their high energy densities and earth abundance. However, the stabilization of cationic and anionic redox reactions in these cathodes during cycling at high voltage remain elusive. Here, an electrochemically/thermally stable P2-Na0.67Fe0.3Mn0.5Mg0.1Ti0.1O2 cathode material with zero critical elements is designed for sodium-ion batteries (NIBs) to realize a highly reversible capacity of ≈210 mAh g-1 at 20 mA g-1 and good cycling stability with a capacity retention of 74% after 300 cycles at 200 mA g-1, even when operated with a high charge cut-off voltage of 4.5 V versus sodium metal. Combining a suite of cutting-edge characterizations and computational modeling, it is shown that Mg/Ti co-doping leads to stabilized surface/bulk structure at high voltage and high temperature, and more importantly, enhances cationic/anionic redox reaction reversibility over extended cycles with the suppression of other undesired oxygen activities. This work fundamentally deepens the failure mechanism of Fe/Mn-based layered cathodes and highlights the importance of dopant engineering to achieve high-energy and earth-abundant cathode material for sustainable and long-lasting NIBs.

10.
Exploration (Beijing) ; 4(2): 20210146, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38855617

ABSTRACT

mRNA therapeutics have emerged as powerful tools for cancer immunotherapy in accordance with their superiority in expressing all sequence-known proteins in vivo. In particular, with a small dosage of delivered mRNA, antigen-presenting cells (APCs) can synthesize mutant neo-antigens and multi-antigens and present epitopes to T lymphocytes to elicit antitumor effects. In addition, expressing receptors like chimeric antigen receptor (CAR), T-cell receptor (TCR), CD134, and immune-modulating factors including cytokines, interferons, and antibodies in specific cells can enhance immunological response against tumors. With the maturation of in vitro transcription (IVT) technology, large-scale and pure mRNA encoding specific proteins can be synthesized quickly. However, the clinical translation of mRNA-based anticancer strategies is restricted by delivering mRNA into target organs or cells and the inadequate endosomal escape efficiency of mRNA. Recently, there have been some advances in mRNA-based cancer immunotherapy, which can be roughly classified as modifications of the mRNA structure and the development of delivery systems, especially the lipid nanoparticle platforms. In this review, the latest strategies for overcoming the limitations of mRNA-based cancer immunotherapies and the recent advances in delivering mRNA into specific organs and cells are summarized. Challenges and opportunities for clinical applications of mRNA-based cancer immunotherapy are also discussed.

11.
RSC Adv ; 14(21): 14934-14941, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38716098

ABSTRACT

Ferroptosis, characterized by elevated iron levels and lipid peroxidation (LPO), is a recently identified regulatory mechanism of cell death. Its substantial involvement in ischemic tissue injury, neurodegenerative disorders, and cancer positions ferroptosis inhibition as a promising strategy for managing these diverse diseases. In this study, we introduce curcumin-polydopamine nanoparticles (Cur-PDA NPs) as an innovative ferroptosis inhibitor. Cur-PDA NPs demonstrate remarkable efficacy in chelating both Fe2+ and Fe3+in vitro along with scavenging free radicals. Cur-PDA NPs were found to efficiently mitigate reactive oxygen species, reduce Fe2+ accumulation, suppress LPO, and rejuvenate mitochondrial function in PC12 cells. Thus, these NPs can act as potent therapeutic agents against ferroptosis, primarily via iron chelation and reduction of oxidative stress.

12.
Small ; 20(36): e2401497, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38693067

ABSTRACT

Manganese-based lithium-rich layered oxides (Mn-LLOs) are promising candidate cathode materials for lithium-ion batteries, however, the severe voltage decay during cycling is the most concern for their practical applications. Herein, an Mn-based composite nanostructure constructed Li2MnO3 (LMO@Li2MnO3) is developed via an ultrathin amorphous functional oxide LixMnOy coating at the grain surface. Due to the thin and universal LMO amorphous surface layer etched from the lithiation process by the high-concentration alkaline solution, the structural and interfacial stability of Li2MnO3 are enhanced apparently, showing the significantly improved voltage maintenance, cycle stability, and energy density. In particular, the LMO@Li2MnO3 cathode exhibits zero voltage decay over 200 cycles. Combining with ex situ spectroscopic and microscopic techniques, the Mn2+/4+ coexisted behavior of the amorphous LMO is revealed, which enables the stable electrochemistry of Li2MnO3. This work provides new possible routes for suppressing the voltage decay of Mn-LLOs by modifying with the composite functional unit construction.

13.
Acta Pharmacol Sin ; 45(8): 1740-1751, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38609561

ABSTRACT

Proteolysis targeting chimeras (PROTACs) have emerged as revolutionary anticancer therapeutics that degrade disease-causing proteins. However, the anticancer performance of PROTACs is often impaired by their insufficient bioavailability, unsatisfactory tumor specificity and ability to induce acquired drug resistance. Herein, we propose a polymer-conjugated PROTAC prodrug platform for the tumor-targeted delivery of the most prevalent von Hippel-Lindau (VHL)- and cereblon (CRBN)-based PROTACs, as well as for the precise codelivery of a degrader and conventional small-molecule drugs. The self-assembling PROTAC prodrug nanoparticles (NPs) can specifically target and be activated inside tumor cells to release the free PROTAC for precise protein degradation. The PROTAC prodrug NPs caused more efficient regression of MDA-MB-231 breast tumors in a mouse model by degrading bromodomain-containing protein 4 (BRD4) or cyclin-dependent kinase 9 (CDK9) with decreased systemic toxicity. In addition, we demonstrated that the PROTAC prodrug NPs can serve as a versatile platform for the codelivery of a PROTAC and chemotherapeutics for enhanced anticancer efficiency and combination benefits. This study paves the way for utilizing tumor-targeted protein degradation for precise anticancer therapy and the effective combination treatment of complex diseases.


Subject(s)
Nanoparticles , Prodrugs , Proteolysis , Von Hippel-Lindau Tumor Suppressor Protein , Prodrugs/chemistry , Prodrugs/pharmacology , Prodrugs/therapeutic use , Humans , Animals , Proteolysis/drug effects , Nanoparticles/chemistry , Cell Line, Tumor , Von Hippel-Lindau Tumor Suppressor Protein/metabolism , Female , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/therapeutic use , Cell Cycle Proteins/metabolism , Mice , Cyclin-Dependent Kinase 9/antagonists & inhibitors , Cyclin-Dependent Kinase 9/metabolism , Transcription Factors/metabolism , Mice, Nude , Adaptor Proteins, Signal Transducing/metabolism , Breast Neoplasms/drug therapy , Breast Neoplasms/metabolism , Mice, Inbred BALB C , Drug Delivery Systems , Bromodomain Containing Proteins , Ubiquitin-Protein Ligases
14.
Cancer Lett ; 588: 216727, 2024 Apr 28.
Article in English | MEDLINE | ID: mdl-38431035

ABSTRACT

Head and neck squamous cell carcinoma (HNSCC) is a formidable cancer type that poses significant treatment challenges, including radiotherapy (RT) resistance. The metabolic characteristics of tumors present substantial obstacles to cancer therapy, and the relationship between RT and tumor metabolism in HNSCC remains elusive. Ferroptosis is a type of iron-dependent regulated cell death, representing an emerging disease-modulatory mechanism. Here, we report that after RT, glutamine levels rise in HNSCC, and the glutamine transporter protein SLC1A5 is upregulated. Notably, blocking glutamine significantly enhances the therapeutic efficacy of RT in HNSCC. Furthermore, inhibition of glutamine combined with RT triggers immunogenic tumor ferroptosis, a form of nonapoptotic regulated cell death. Mechanistically, RT increases interferon regulatory factor (IRF) 1 expression by activating the interferon signaling pathway, and glutamine blockade augments this efficacy. IRF1 drives transferrin receptor expression, elevating intracellular Fe2+ concentration, disrupting iron homeostasis, and inducing cancer cell ferroptosis. Importantly, the combination treatment-induced ferroptosis is dependent on IRF1 expression. Additionally, blocking glutamine combined with RT boosts CD47 expression and hinders macrophage phagocytosis, attenuating the treatment effect. Dual-blocking glutamine and CD47 promote tumor remission and enhance RT-induced ferroptosis, thereby ameliorating the tumor microenvironment. Our work provides valuable insights into the metabolic and immunological mechanisms underlying RT-induced ferroptosis, highlighting a promising strategy to augment RT efficacy in HNSCC.


Subject(s)
Ferroptosis , Head and Neck Neoplasms , Humans , Squamous Cell Carcinoma of Head and Neck/drug therapy , Squamous Cell Carcinoma of Head and Neck/radiotherapy , Glutamine/metabolism , Head and Neck Neoplasms/drug therapy , Head and Neck Neoplasms/radiotherapy , CD47 Antigen , Cell Line, Tumor , Iron/metabolism , Tumor Microenvironment , Minor Histocompatibility Antigens/metabolism , Amino Acid Transport System ASC/metabolism
15.
Dalton Trans ; 53(12): 5544-5552, 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38426260

ABSTRACT

A novel triple helical-like complex [Dy2K2L3(NO3)2]·3DMF (1) based on a designed Schiff base N'1,N'3-bis((E)-3-ethoxy-2-hydroxybenzylidene)-malonohydrazide (H4L) was synthesized with good chemical and thermal stabilities. Single-crystal X-ray structural analysis showed that 1 presents a tetranuclear triple helical-like structure via the coordination mode of Dy : K : L with 2 : 2 : 3 stoichiometry. Fluorescence measurements showed that 1@EtOH has excellent fluorescence turn-on/off response ability for aluminium ions and 4,5-dimethyl-2-nitroaniline (DMNA) with outstanding selectivity, sensitivity, and anti-interference ability. The calculated limit of detection (LOD) values for 1@EtOH to Al3+ and DMNA were found to be 0.53 and 3.33 µM, respectively. Density functional theory (DFT) calculation showed that the fluorescence response mechanism can be explained by the photoinduced electron transfer (PET) mechanism; meanwhile, the inner filter effect (IFE) of DMNA can also affect the emission of 1@EtOH.

16.
Adv Mater ; 36(23): e2314132, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38353332

ABSTRACT

Radiation therapy (RT) is one of the primary options for clinical cancer therapy, in particular advanced head and neck squamous cell carcinoma (HNSCC). Herein, the crucial role of bromodomain-containing protein 4 (BRD4)-RAD51 associated protein 1 (RAD51AP1) axis in sensitizing RT of HNSCC is revealed. A versatile nanosensitizer (RPB7H) is thus innovatively engineered by integrating a PROteolysis TArgeting Chimeras (PROTAC) prodrug (BPA771) and hafnium dioxide (HfO2) nanoparticles to downregulate BRD4-RAD51AP1 pathway and sensitize HNSCC tumor to RT. Upon intravenous administration, the RPB7H nanoparticles selectively accumulate at the tumor tissue and internalize into tumor cells by recognizing neuropilin-1 overexpressed in the tumor mass. HfO2 nanoparticles enhance RT effectiveness by amplifying X-ray deposition, intensifying DNA damage, and boosting oxidative stress. Meanwhile, BPA771 can be activated by RT-induced H2O2 secretion to degrade BRD4 and inactivate RAD51AP1, thus impeding RT-induced DNA damage repair. This versatile nanosensitizer, combined with X-ray irradiation, effectively regresses HNSCC tumor growth in a mouse model. The findings introduce a PROTAC prodrug-based radiosensitization strategy by targeting the BRD4-RAD51AP1 axis, may offer a promising avenue to augment RT and more effective HNSCC therapy.


Subject(s)
Nanoparticles , Prodrugs , Radiation-Sensitizing Agents , Transcription Factors , Prodrugs/chemistry , Prodrugs/pharmacology , Animals , Humans , Cell Line, Tumor , Mice , Radiation-Sensitizing Agents/chemistry , Radiation-Sensitizing Agents/pharmacology , Transcription Factors/metabolism , Nanoparticles/chemistry , Cell Cycle Proteins/metabolism , Proteolysis/drug effects , Squamous Cell Carcinoma of Head and Neck/drug therapy , Squamous Cell Carcinoma of Head and Neck/metabolism , Squamous Cell Carcinoma of Head and Neck/radiotherapy , Squamous Cell Carcinoma of Head and Neck/pathology , Head and Neck Neoplasms/radiotherapy , Head and Neck Neoplasms/metabolism , Head and Neck Neoplasms/drug therapy , DNA Damage/drug effects , Neuropilin-1/metabolism , Bromodomain Containing Proteins
17.
ACS Nano ; 2024 Feb 05.
Article in English | MEDLINE | ID: mdl-38314720

ABSTRACT

Solid-state Li metal batteries (SSLMBs) are widely investigated since they possess promising energy density and high safety. However, the poor interfacial compatibility between the electrolyte and electrodes limits their promising development. Herein, a robust composite electrolyte (poly(vinyl ethylene carbonate) electrolyte with 3 wt % of BaTiO3, PVEC-3BTO) with excellent interfacial performance is rationally designed by incorporating ferroelectric BaTiO3 (BTO) nanoparticles into the poly(vinyl ethylene carbonate) (PVEC) electrolyte matrix. Benefiting from the high dielectric constant and ferroelectric properties of BTO, the interfacial compatibility between electrolytes and electrodes was significantly improved. The enhanced Li+ transference number (0.64) of solid electrolyte and in situ generated BaF2 inorganic interphase contribute to the enhanced cycling stability of PVEC-3BTO based Li//Li symmetrical batteries. Furthermore, the antioxidation ability of PVEC-3BTO has also been enhanced by modulating the local electric field for good pairing with high-voltage LiCoO2 material. Therefore, in this work, the mechanism of BTO for improving interfacial compatibility is revealed, and also useful methods for addressing the interface issues of SSLMBs have been provided.

18.
Am J Physiol Cell Physiol ; 326(3): C724-C741, 2024 03 01.
Article in English | MEDLINE | ID: mdl-38223927

ABSTRACT

Diabetic cardiomyopathy (DCM) is closely related to ferroptosis, a new type of cell death that mainly manifests as intracellular iron accumulation and lipid peroxidation. Paeoniflorin (PA) helps to improve impaired glucose tolerance, influences the distribution of the intestinal flora, and induces significant resistance to ferroptosis in several models. In this study, we found that PA improved cardiac dysfunction in mice with DCM by alleviating myocardial damage, resisting oxidative stress and ferroptosis, and changing the community composition and structure of the intestinal microbiota. Metabolomics analysis revealed that PA-treated fecal microbiota transplantation affected metabolites in DCM mice. Based on in vivo and in vitro experiments, 11,12-epoxyeicosatrienoic acid (11,12-EET) may serve as a key contributor that mediates the cardioprotective and antiferroptotic effects of PA-treated fecal microbiota transplantation (FMT) in DCM mice.NEW & NOTEWORTHY This study demonstrated for the first time that paeoniflorin (PA) exerts protective effects in diabetic cardiomyopathy mice by alleviating myocardial damage, resisting ferroptosis, and changing the community composition and structure of the intestinal microbiota, and 11,12-epoxyeicosatrienoic acid (11,12-EET) may serve as a key contributor in its therapeutic efficacy.


Subject(s)
Diabetes Mellitus , Diabetic Cardiomyopathies , Ferroptosis , Gastrointestinal Microbiome , Glucosides , Monoterpenes , Animals , Mice , Diabetic Cardiomyopathies/drug therapy , Myocardium
19.
Crit Rev Oncol Hematol ; 195: 104274, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38295890

ABSTRACT

Human epidermal growth factor receptor 2 (HER2) serves as both a prognostic indicator and a therapeutic target for breast cancer. Therefore, anti-HER2 therapy plays a crucial role in the treatment of HER2-positive cancer. Antibody-drug conjugates (ADCs) are composed of a monoclonal antibody, a chemical linker and a payload, wherein their aim is to reduce the toxicity associated with chemotherapy drugs by utilizing specific antibodies. Among the anti-HER2 ADCs currently approved for clinical use, trastuzumab emtansine(T-DM1) and trastuzumab deruxtecan (T-Dxd) have demonstrated remarkable efficacy in treating HER2-positive breast cancer. However, it is essential to emphasize the occurrence of lung toxicity during the treatment process, which can be life-threatening. In this review, we provide an overview of the new epidemiological features associated with interstitial lung disease (ILD) related to anti-HER2 ADCs in breast cancer. We also summarize the potential pathogenesis and explore the diagnosis and treatment strategies within this field.


Subject(s)
Antineoplastic Agents , Breast Neoplasms , Immunoconjugates , Lung Diseases, Interstitial , Female , Humans , Ado-Trastuzumab Emtansine/adverse effects , Antibodies, Monoclonal, Humanized/adverse effects , Antineoplastic Agents/adverse effects , Breast Neoplasms/complications , Breast Neoplasms/drug therapy , Immunoconjugates/adverse effects , Receptor, ErbB-2/metabolism , Trastuzumab/adverse effects , Lung Diseases, Interstitial/chemically induced
20.
Int J Nanomedicine ; 19: 403-414, 2024.
Article in English | MEDLINE | ID: mdl-38250189

ABSTRACT

Background: Radiotherapy is an indispensable part of the multidisciplinary treatment of breast cancer (BC). Due to the potential for serious side effects from ionizing radiation in the treatment of breast cancer, which can adversely affect the patient's quality of life, the radiation dose is often limited. This limitation can result in an incomplete eradication of tumors. Methods: In this study, biomimetic copper single-atom catalysts (platelet cell membrane camouflaging, PC) were synthesized with the aim of improving the therapeutic outcomes of radiotherapy for BC. Following guidance to the tumor site facilitated by the platelet cell membrane coating, PC releases a copper single-atom nanozyme (SAzyme). This SAzyme enhances therapeutic effects by generating reactive oxygen species from H2O2 and concurrently inhibiting the self-repair mechanisms of cancer cells through the consumption of intracellular glutathione (GSH) within the tumor microenvironment. PC-augmented radiotherapy induces immunogenic cell death, which triggers an immune response to eradicate tumors. Results: With the excellent biocompatibility, PC exhibited precise tumor-targeting capabilities. Furthermore, when employed in conjunction with radiotherapy, PC showed impressive tumor elimination results through immunological activation. Remarkably, the tumor suppression rate achieved with PC-enhanced radiotherapy reached an impressive 93.6%. Conclusion: Therefore, PC presents an innovative approach for designing radiosensitizers with tumor-specific targeting capabilities, aiming to enhance the therapeutic impact of radiotherapy on BC.


Subject(s)
Breast Neoplasms , Radioimmunotherapy , Humans , Female , Copper/pharmacology , Hydrogen Peroxide , Quality of Life , Breast Neoplasms/radiotherapy , Glutathione , Tumor Microenvironment
SELECTION OF CITATIONS
SEARCH DETAIL