Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 201
Filter
1.
J Colloid Interface Sci ; 677(Pt A): 425-434, 2025 Jan.
Article in English | MEDLINE | ID: mdl-39096710

ABSTRACT

In this study, a simple one-pot synthesis process is employed to introduce Pd dopant and abundant S vacancies into In2S3 nanosheets. The optimized Pd-doped In2S3 photocatalyst, with abundant S vacancies, demonstrates a significant enhancement in photocatalytic hydrogen evolution. The joint modification of Pd doping and rich S vacancies on the band structure of In2S3 result in an improvement in both the light absorption capacity and proton reduction ability. It is worth noting that photogenerated electrons enriched by S vacancies can rapidly migrate to adjacent Pd atoms through an efficient transfer path constructed by Pd-S bond, effectively suppressing the charge recombination. Consequently, the dual-defective In2S3 shows an efficient photocatalytic H2 production rate of 58.4 ± 2.0 µmol·h-1. Additionally, further work has been conducted on other ternary metal sulfide, ZnIn2S4. Our findings provide a new insight into the development of highly efficient photocatalysts through synergistic defect engineering.

2.
J Colloid Interface Sci ; 677(Pt A): 610-619, 2025 Jan.
Article in English | MEDLINE | ID: mdl-39116559

ABSTRACT

Photocatalytic nitrogen reduction is a promising green technology for ammonia synthesis under mild conditions. However, the poor charge transfer efficiency and weak N2 adsorption/activation capability severely hamper the ammonia production efficiency. In this work, heteropoly blue (r-PW12) nanoparticles are loaded on the surface of ultrathin bismuth oxychloride nanosheets with oxygen vacancies (BiOCl-OVs) by electrostatic self-assembly method, and a series of xr-PW12/BiOCl-OVs heterojunction composites have been prepared. Acting as a robust support, ultrathin two-dimensional (2D) structure of BiOCl-OVs inhibits the aggregation of r-PW12 nanoparticles, enhancing the interfacial contact between r-PW12 and BiOCl. More importantly, the existence of oxygen vacancies (OVs) provides abundant active sites for efficient N2 adsorption and activation. In combination of the enhanced light absorption and promoted photogenerated carriers separation of xr-PW12/BiOCl-OVs heterojunction, under simulated solar light, the optimal 7r-PW12/BiOCl-OVs exhibits an excellent photocatalytic N2 fixation rate of 33.53 µmol g-1h-1 in pure water, without the need of sacrificial agents and co-catalysts. The reaction dynamics is also monitored by in situ FT-IR spectroscopy, and an associative distal pathway is identified. Our study demonstrates that construction of heteropoly blues-based heterojunction is a promising strategy for developing high-performance N2 reduction photocatalysts. It is anticipated that combining of different defects with heteropoly blues of different structures might provide more possibilities for designing highly efficient photocatalysis systems.

3.
Sleep Med ; 124: 346-353, 2024 Sep 29.
Article in English | MEDLINE | ID: mdl-39369579

ABSTRACT

OBJECTIVES: To examine the association between latent profiles of multi-dimensional sleep characteristics and overweight/obesity (OWO) in Chinese preschool children. STUDY DESIGN: The cross-sectional analysis included 3204 preschool children recruited from 24 kindergartens in Shanghai. Parents reported children's demographics and sleep characteristics, including sleep duration, timing and disturbances. Latent profile analysis (LPA) was used to identify sleep subtypes. Logistic regression models were used to evaluate the associations between sleep characteristics/subtypes and OWO. RESULTS: Short sleep duration, late bedtime, long social jetlag and sleep disturbances were significantly associated with increased OWO. However, when considering the interplay of sleep duration and timing, there was no significant association between sleep duration and OWO for children sleeping later than 22:00. Three sleep subtypes were identified based on children's sleep duration, timing and disturbances: "Average Sleepers" (n = 2107, 65.8 %), "Good Sleepers" (n = 481, 15.0 %), and "Poor Sleepers" (n = 616, 19.2 %). "Good Sleepers" had reduced odds of being OWO (AOR, 0.72; 95 % CI, 0.56-0.93) compared to "Average Sleepers", while "Poor Sleepers" showed an increased risk of OWO (AOR, 1.36; 95 % CI, 1.11-1.67). CONCLUSIONS: These findings highlight that improving multiple sleep characteristics simultaneously is a promising option to prevent and intervene childhood obesity.

4.
Nutrients ; 16(15)2024 Jul 25.
Article in English | MEDLINE | ID: mdl-39125291

ABSTRACT

The current study aimed to explore the combined and individual effects of vitamin D (VitD) status in three trimesters during pregnancy and cord blood (CB) on child growth trajectories from birth to 4 years of age. Pregnant women (n = 1100) were recruited between 2013 and 2016 in the Shanghai Birth Cohort (SBC) Study. A total of 959 mother-child dyads were included. VitD status was measured by LC-MS/MS at three trimesters (T1, T2, T3) and CB. Children's weight, length/height, and head circumference were assessed at birth, 42 days, 6, 12, 24 months, and 4 years of age, and standardized into z-scores [weight-for-age z-score (WAZ), length-for-age z-score (LAZ), head circumference-for-age z-score (HCZ) and weight-for-length z-score (WLZ)]. Using the group-based trajectory model (GBTM), the trajectories of the four growth parameters were categorized into discrete groups. The generalized estimating equation (GEE) was employed to analyze the mixed effect of 25(OH)D throughout pregnancy on growth trajectories. The association between 25(OH)D status and each growth trajectory group was examined by multivariable logistic regression. Each 10 ng/mL increase in 25(OH) throughout three trimesters was not associated with four anthropometric parameters. Each 10 ng/mL increase in VitD in T3 was associated with a lower risk in the WAZ high-increasing trajectory (aOR: 0.75; 95% CI: 0.62, 0.91; p < 0.01). Each 10 ng/mL increase in VitD in CB was associated with a lower risk in the WAZ high-increasing trajectory (aOR: 0.57; 95% CI: 0.43, 0.76; p < 0.01). No significant association was found between maternal or CB VitD and LAZ or HCZ. Three trimesters' VitD throughout pregnancy had no persistent effect on the offspring's growth trajectory. However, higher VitD status in the third trimester and CB related to a lower risk of high-increasing WAZ from birth to 4 years of age. Elevated VitD levels in late pregnancy and cord blood may protect against continuous early-life weight growth at high levels.


Subject(s)
Child Development , Fetal Blood , Vitamin D , Humans , Female , Fetal Blood/chemistry , Vitamin D/blood , Pregnancy , Child, Preschool , Infant , Infant, Newborn , Adult , China , Vitamin D Deficiency/blood , Vitamin D Deficiency/epidemiology , Longitudinal Studies , Male , Nutritional Status , Maternal Nutritional Physiological Phenomena , Birth Cohort
5.
Eur J Neurosci ; 60(6): 5189-5202, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39138595

ABSTRACT

Mathematical learning and ability are crucial for individual and national economic and technological development, but the neural mechanisms underlying advanced mathematical learning remain unclear. The current study used functional magnetic resonance imaging (fMRI) to investigate how brain networks were involved in advanced mathematical learning and transfer. We recorded fMRI data from 24 undergraduate students as they learned the advanced mathematical concept of a commutative mathematical group. After learning, participants were required to complete learning and transfer behavioural tests. Results of single-trial interindividual brain-behaviour correlation analysis found that brain activity in the semantic and visuospatial networks, and the functional connectivity within the semantic network during advanced mathematical learning were positively correlated with learning and transfer effects. Additionally, the functional connectivity between the semantic and visuospatial networks was negatively correlated with the learning and transfer effects. These findings suggest that advanced mathematical learning relies on both semantic and visuospatial networks.


Subject(s)
Magnetic Resonance Imaging , Semantics , Humans , Male , Female , Young Adult , Brain/physiology , Brain/diagnostic imaging , Learning/physiology , Adult , Nerve Net/physiology , Nerve Net/diagnostic imaging , Transfer, Psychology/physiology , Brain Mapping/methods , Mathematical Concepts
6.
Oncol Lett ; 28(3): 411, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38988450

ABSTRACT

Pituitary apoplexy (PA) is an emergency condition caused by sudden hemorrhage or infarction and characterized by sudden sella turcica compression, intracranial hypertension and meningeal stimulation. PA usually occurs secondary to pituitary adenomas and can serve as the initial manifestation of an undiagnosed pituitary adenoma in an individual. In the present study, a case of PA following surgery for cervical stump adenocarcinoma was reported. The patient experienced an abrupt onset of headache and drowsiness on postoperative day 1 (POD1), and developed blurred vision and blepharoptosis of the left eye on POD4. Pituitary MRI confirmed the diagnosis of PA, prompting the initial administration of hydrocortisone to supplement endogenous hormones, followed by trans-sphenoidal resection. At the six-week follow-up, the patient had fully recovered, with only mild residual blurring of vision. Diagnosing PA post-surgery can be a challenging task due to its symptomatic overlap with postoperative complications. The existing literature on PA after surgery was also reviewed, including the symptoms, time of onset, imageological examination, management, potential risk factors and outcome to improve on early detection and individualized treatment in the future.

7.
Front Pharmacol ; 15: 1421130, 2024.
Article in English | MEDLINE | ID: mdl-38962315

ABSTRACT

Background: Desmopressin acetate (DDAVP) and behavioral interventions (BI) are cornerstone treatments for nocturnal enuresis (NE), a common pediatric urinary disorder. Despite the growing body of clinical studies on massage therapy for NE, comprehensive evaluations comparing the effectiveness of Tuina with DDAVP or BI are scarce. This study aims to explore the efficacy of Tuina in the management of NE. Methods: A systematic search of international databases was conducted using keywords pertinent to Tuina and NE. The inclusion criteria were limited to randomized controlled trials (RCTs) that evaluated NE treatments utilizing Tuina against DDAVP or BI. This meta-analysis included nine RCTs, comprising a total of 685 children, to assess both complete and partial response rates. Results: Tuina, used as a combination therapy, showed enhanced clinical efficacy and improved long-term outcomes relative to the control group. The therapeutic efficacy of Tuina was not directly associated with the number of acupoints used. Instead, employing between 11 and 20 acupoints appeared to have the most significant effect. Conclusion: The findings of this meta-analysis support the potential of Tuina as an adjunct therapy to enhance the sustained clinical efficacy of traditional treatments for NE. However, Tuina cannot completely replace DDAVP or BI in the management of NE. While this study illuminates some aspects of the effective acupoint combinations, further research is crucial to fully understand how Tuina acupoints contribute to the treatment of NE in children. Systematic Review Registration: https://www.crd.york.ac.uk/PROSPERO/display_record.php?RecordID=442644, identifier CRD42023442644.

8.
J Ethnopharmacol ; 335: 118605, 2024 Dec 05.
Article in English | MEDLINE | ID: mdl-39047882

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Galangin, a bioactive compound extracted from Alpinia officinarum Hance (Zingiberaceae), a plant with significant ethnopharmacological importance, has been used for thousands of years as a spice, condiment, and medicinal agent for various conditions, including gastrointestinal disorders. Although there is evidence suggesting its potential to improve gastric ulcers, the molecular mechanisms underlying its anti-ulcer properties are not fully understood. OBJECTIVE: of the Study: This study aimed to investigate the effects of galangin on ethanol-induced acute gastric mucosal injury (AGMI) in mice and elucidate its molecular mechanisms. MATERIALS AND METHODS: Sixty BALB/c mice were randomly assigned into two main groups: a normal control group (n = 10) and an ethanol-induced group (n = 50). After establishing the AGMI model in mice using a combination of 40% ethanol and anhydrous ethanol, the ethanol-induced group was further subdivided into five subgroups (n = 10): an omeprazole control group (20 mg/kg), an untreated ethanol group, and three treatment groups receiving high-dose (50 mg/kg) or low-dose (25 mg/kg) galangin or capsazepine (CPZ, 2 mg/kg). The protective effects of galangin were evaluated through mucosal injury indices, hematoxylin and eosin staining, and quantification of inflammatory markers (IL-1ß, IL-6, IL-8, and TNF-α). Oxidative stress levels and matrix metalloproteinase activity were measured using specific assay kits. Molecular docking was conducted to assess the binding affinity of galangin to key proteins within the transient receptor potential vanilloid 1 (TRPV1) pathway. Real-time fluorescence quantitative PCR (qPCR) was used to determine mRNA expression levels of TRPV1, calmodulin (CaM), substance P (SP), and CGRP in gastric tissues. Protein expression levels of TRPV1, nerve growth factor (NGF), tropomyosin receptor kinase A (TRKA), transforming growth factor beta (TGF-ß), cyclooxygenase-2 (COX-2), and nuclear factor kappa B (NF-κB) were assessed through Western blot analysis. In cellular experiments, Culture of Human Gastric Epithelial Cells (GES-1) were treated with various concentrations of galangin after 7% ethanol induction. Cell proliferation, apoptosis, and migration were evaluated using Hoechst 33258 staining and transwell migration assays. TRPV1 protein expression was detected using immunofluorescence, and the expression levels of Bcl-2, BCL2-Associated X (BAX), and Caspase-3 were quantified by qPCR. Additionally, specific probe kits were used to measure intracellular calcium ions (Ca2+) and mitochondrial membrane potential. RESULTS: The findings indicate that galangin significantly improved mucosal pathology by reducing ulcer indices and inflammatory levels, while enhancing superoxide dismutase (SOD) activity and decreasing malondialdehyde (MDA) concentration. Galangin also reduced matrix metalloproteinase-2 (MMP-2), m metalloproteinase-9 (MMP-9) levels, promoting mucosal repair. At the cellular level, galangin decreased intracellular calcium ion concentration and mitigated the decline in mitochondrial membrane potential, enhance the restoration of mucosal cells, increased migration and proliferation, and reduced apoptosis. Molecularly, galangin demonstrated favorable binding to TRPV1, NGF, TRKA, TGF-ß, COX-2, and NF-κB, and reversed the elevated expression of these proteins. Additionally, galangin downregulated the mRNA expression of TRPV1, CaM, SP, CGRP, BAX, and Caspase-3 in gastric tissues/cells, while upregulating Bcl-2 mRNA expression. CONCLUSION: Galangin mitigates AGMI by inhibiting the overactivation of the TRPV1 pathway, thereby blocking aberrant signal transduction. This study suggests that galangin has therapeutic potential against ethanol-induced AGMI and may be a viable alternative for the treatment of alcohol-induced gastric mucosal injuries.


Subject(s)
Ethanol , Flavonoids , Gastric Mucosa , Mice, Inbred BALB C , Signal Transduction , Stomach Ulcer , TRPV Cation Channels , Animals , Flavonoids/pharmacology , TRPV Cation Channels/metabolism , Gastric Mucosa/drug effects , Gastric Mucosa/metabolism , Gastric Mucosa/pathology , Gastric Mucosa/injuries , Signal Transduction/drug effects , Male , Mice , Stomach Ulcer/drug therapy , Stomach Ulcer/chemically induced , Stomach Ulcer/metabolism , Molecular Docking Simulation , Anti-Ulcer Agents/pharmacology , Cell Line , Oxidative Stress/drug effects , Humans , Apoptosis/drug effects
9.
Front Microbiol ; 15: 1391558, 2024.
Article in English | MEDLINE | ID: mdl-38846565

ABSTRACT

Sanghuangprous vaninii is a medicinal macrofungus cultivated extensively in China. Both the mycelia and fruiting bodies of S. vaninii have remarkable therapeutic properties, but it remains unclear whether the mycelia may serve as a substitute for the fruiting bodies. Furthermore, S. vaninii is a perennial fungus with therapeutic components that vary significantly depending on the growing year of the fruiting bodies. Hence, it is critical to select an appropriate harvest stage for S. vaninii fruiting bodies for a specific purpose. With the aid of Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP), metabolomics based on ultra-high performance liquid chromatography coupled to triple quadrupole mass spectrometry (UHPLC-QQQ-MS) was used to preliminarily determine 81 key active metabolites and 157 active pharmaceutical metabolites in S. vaninii responsible for resistance to the six major diseases. To evaluate the substitutability of the mycelia and fruiting bodies of S. vaninii and to select an appropriate harvest stage for the fruiting bodies of S. vaninii, we analyzed the metabolite differences, especially active metabolite differences, among the mycelia and fruiting bodies during three different harvest stages (1-year-old, 2-year-old, and 3-year-old). Moreover, we also determined the most prominent and crucial metabolites in each sample of S. vaninii. These results suggested that the mycelia show promise as a substitute for the fruiting bodies of S. vaninii and that extending the growth year does not necessarily lead to higher accumulation levels of active metabolites in the S. vaninii fruiting bodies. This study provided a theoretical basis for developing and using S. vaninii.

10.
Int J Environ Health Res ; : 1-9, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38753525

ABSTRACT

Circadian rhythm (24-hour period of physiological and behavioral changes) is the basis of the overall health, including mood and health. This study aimed to explore the influence of circadian rhythm and sleep schedules on depressive symptoms in Chinese adolescents. In this cross-sectional study, 841 middle school students were recruited and divided into two groups (depressive group, DG, n = 210, and control group, n = 631) depending on the total score of The Center for Epidemiological Studies Depression Scale for Children (CES-DC). The circadian rhythm and sleep quality among adolescents were evaluated by using the Biological Rhythms Interview of Assessment in Neuropsychiatry (BRIAN) and Self-rating scale of Sleep (SRSS) scales. Furthermore, correlation analysis and logistic regression analysis were used to determine the effects of demographic factors, sleeping arrangement, sleep quality, and circadian rhythm on depressive symptoms. The DG group's CES-DC, BRIAN and SRSS scores were significantly higher than the control group's. Higher scores of BRIAN and SRSS were risk factors for depressive symptoms in Chinese adolescents. Attending a day school and waking up later on weekends may be weak protective factors. Our results suggest that circadian rhythm disturbance, sleep quality, and sleeping arrangement have a significant influence on depressive symptoms among adolescents in China.

11.
Int J Gen Med ; 17: 1789-1805, 2024.
Article in English | MEDLINE | ID: mdl-38711823

ABSTRACT

Purpose: This study focuses on evaluating the prognostic value of the NDC80 kinetochore complex in ovarian cancer (OC) using the Gene Expression Omnibus (GEO) database and the Cancer Genome Atlas (TCGA) database and reveals the relationship between the NDC80 complex and immune infiltrates in OC. Methods: We collected data on NDC80 complex expression levels in both OC tissues and non-OC ovarian tissues from the University of California Santa Cruz Xena and GEO databases. The clinicopathological characteristics correlated with overall survival were analyzed using Cox regression and the Kaplan-Meier method. Gene Ontology analysis, Kyoto Encyclopedia of Genes and Genomes analysis, gene set enrichment analysis and CIBERSORT were performed using data from TCGA database. Immunohistochemical staining was used to verify the higher expression level of NUF2 protein in OC in vitro. Meanwhile, we utilized the Tumor Immune Estimation Resource to analyze the correlation between the NDC80 complex and immunocyte infiltration. Results: The NDC80 complex expression level was prominently higher in OC tissues than in non-OC ovarian tissues and correlated with advanced histologic grade characteristics. Gene expression profiling interactive analysis and the Kaplan-Meier survival curve uncovered a close relationship between high expression of the NDC80 complex and poor overall survival in OC patients. The univariate Cox regression hazard model produced age, pathologic stage, tumor status, primary therapy outcome, SPC24 expression level, and Karnofsky performance score as prognostic factors for OC patients. NDC80 complex expression levels were highly associated with immune cell infiltration, showing NK CD56 bright cells and NK cells with a negative correlation and T helper 2 cells with a positive correlation (P<0.05). Conclusion: These findings provide evidence that an increased expression level of the NDC80 complex is closely associated with the progression of OC and could also serve as a novel target of immunotherapy in OC.

12.
Front Microbiol ; 15: 1361117, 2024.
Article in English | MEDLINE | ID: mdl-38601932

ABSTRACT

Tricholoma bakamatsutake is a delicious and nutritious ectomycorrhizal fungus. However, its cultivation is hindered owing to limited studies on its symbiotic relationships. The symbiotic relationship between T. bakamatsutake and its host is closely related to the shiro, a complex network composed of mycelium, mycorrhizal roots, and surrounding soil. To explore the symbiotic relationship between T. bakamatsutake and its host, soil samples were collected from T. bakamatsutake shiro (Tb) and corresponding Q. mongolica rhizosphere (CK) in four cities in Liaoning Province, China. The physicochemical properties of all the soil samples were then analyzed, along with the composition and function of the fungal and bacterial communities. The results revealed a significant increase in total potassium, available nitrogen, and sand in Tb soil compared to those in CK soil, while there was a significant decrease in pH, total nitrogen, total phosphorus, available phosphorus, and silt. The fungal community diversity in shiro was diminished, and T. bakamatsutake altered the community structure of its shiro by suppressing other fungi, such as Russula (ectomycorrhizal fungus) and Penicillium (phytopathogenic fungus). The bacterial community diversity in shiro increased, with the aggregation of mycorrhizal-helper bacteria, such as Paenibacillus and Bacillus, and plant growth-promoting bacteria, such as Solirubrobacter and Streptomyces, facilitated by T. bakamatsutake. Microbial functional predictions revealed a significant increase in pathways associated with sugar and fat catabolism within the fungal and bacterial communities of shiro. The relative genetic abundance of carboxylesterase and gibberellin 2-beta-dioxygenase in the fungal community was significantly increased, which suggested a potential symbiotic relationship between T. bakamatsutake and Q. mongolica. These findings elucidate the microbial community and relevant symbiotic environment to better understand the relationship between T. bakamatsutake and Q. mongolica.

13.
Environ Int ; 185: 108563, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38461776

ABSTRACT

BACKGROUND: Pregnant women in the Shanghai Birth Cohort (SBC) of China faced dual threats of per- and polyfluoroalkyl substances (PFAS) exposure and vitamin D (VD) insufficiency, potentially impacting offspring neurodevelopment. However, little is known about whether maternal VD status modifies PFAS-related neurodevelopment effect. OBJECTIVES: To explore the modifying role of maternal VD status in the effect of prenatal PFAS exposure on childhood neurodevelopment. METHODS: We included 746 mother-child pairs from the SBC. Ten PFAS congeners and VD levels were measured in maternal blood samples collected during the first and second trimester respectively. At 2 years of age, toddlers underwent neurodevelopment assessments using Bayley-III Scales. Multivariate linear, logistic regression, and weighted quantile sum approach were used to estimate associations of Bayley-III scores with individual and mixture PFAS. We stratified participants into VD sufficient and insufficient groups and further balanced PFAS differences between these groups by matching all PFAS levels. We fitted the same statistical models in each VD group before and after matching. RESULTS: Nearly half (46.5 %) of pregnant women were VD insufficient (<30 ng/mL). In the overall population, PFAS exposure was associated with lower language scores and an increased risk for neurodevelopmental delay, but higher cognitive scores. However, adverse associations with PFAS were mainly observed in the VD sufficient group, while the VD insufficient group showed positive cognitive score associations. Higher PFAS concentrations were found in the VD sufficient group compared to the VD insufficient group. Post-matching, adverse associations in the VD sufficient group were nullified, whereas in the VD insufficient group, positive associations disappeared and adverse associations becoming more pronounced. CONCLUSION: In this Chinese birth cohort, high prenatal PFAS exposure and low maternal VD levels collectively heighten the risk of adverse childhood neurodevelopment. However, disentangling PFAS and VD interrelationships is crucial to avoid paradoxical findings.


Subject(s)
Alkanesulfonic Acids , Environmental Pollutants , Fluorocarbons , Prenatal Exposure Delayed Effects , Humans , Female , Pregnancy , Child, Preschool , Child , Prenatal Exposure Delayed Effects/epidemiology , Vitamin D , Fluorocarbons/toxicity , China/epidemiology , Vitamins , Environmental Pollutants/adverse effects
14.
Neuron ; 112(9): 1498-1517.e8, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38430912

ABSTRACT

Recognizing the affective states of social counterparts and responding appropriately fosters successful social interactions. However, little is known about how the affective states are expressed and perceived and how they influence social decisions. Here, we show that male and female mice emit distinct olfactory cues after experiencing distress. These cues activate distinct neural circuits in the piriform cortex (PiC) and evoke sexually dimorphic empathic behaviors in observers. Specifically, the PiC → PrL pathway is activated in female observers, inducing a social preference for the distressed counterpart. Conversely, the PiC → MeA pathway is activated in male observers, evoking excessive self-grooming behaviors. These pathways originate from non-overlapping PiC neuron populations with distinct gene expression signatures regulated by transcription factors and sex hormones. Our study unveils how internal states of social counterparts are processed through sexually dimorphic mechanisms at the molecular, cellular, and circuit levels and offers insights into the neural mechanisms underpinning sex differences in higher brain functions.


Subject(s)
Empathy , Sex Characteristics , Animals , Male , Female , Mice , Empathy/physiology , Piriform Cortex/physiology , Piriform Cortex/metabolism , Cues , Mice, Inbred C57BL , Affect/physiology , Neurons/physiology , Neurons/metabolism , Behavior, Animal/physiology
15.
Gene ; 909: 148265, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38346459

ABSTRACT

MicroRNAs (miRNAs) have emerged as important regulators of gene expression, and the deregulation of their activity has been linked to the onset and progression of a variety of human malignancies. Among these miRNAs, miR-136-5p has attracted significant attention due to its diverse roles in cancer biology. Mostly, miR-136-5p is downregulated in malignancies. It could inhibit viability, proliferation, migration, invasion and promote apoptosis of tumor cells. This review article provides a comprehensive overview of the current understanding of miR-136-5p in different sorts of human cancers: genital tumors, head and neck tumors, tumors from the digestive and urinary systems, skin cancers, neurologic tumors, pulmonary neoplasms and other cancers by discussing its molecular mechanisms, functional roles, and impact in chemotherapies. In conclusion, miR-136-5p could be a promising new biomarker and potential clinical therapeutic target.


Subject(s)
Head and Neck Neoplasms , MicroRNAs , Humans , Cell Line, Tumor , MicroRNAs/genetics , MicroRNAs/metabolism , Head and Neck Neoplasms/genetics , Gene Expression Regulation, Neoplastic , Cell Proliferation/genetics , Cell Movement/genetics
16.
Heliyon ; 10(4): e25298, 2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38370222

ABSTRACT

-Equipping lithium-ion batteries with a reasonable thermal fault diagnosis can avoid thermal runaway and ensure the safe and reliable operation of the batteries. This research built a lithium-ion battery thermal fault diagnosis model that optimized the original mask region-based convolutional neural network based on the battery dataset in both parameters and structure. The model processes the thermal images of the battery surface, identifies problematic batteries, and locates the problematic regions. A backbone network is used to process the battery thermal images and extract feature information. Through the RPN network, the thermal feature is classified and regressed, and the Mask branch is used to ultimately determine the faulty battery's location. Additionally, we have optimized the original mask region-based convolutional neural network based on the battery dataset in both parameters and structure. The improved LBIP-V2 performs better than LBIP-V1 in most cases. We tested the performance of LBIP on the single-cell battery dataset, the 1P3S battery pack dataset, and the flattened 1P3S battery pack dataset. The results show that the recognition accuracy of LBIP exceeded 95 %. At the same time, we simulated the failure of the 1P3S battery pack within 0-15 min and tested the effectiveness of LBIP in real-time battery fault diagnosis. The results indicate that LBIP can effectively respond to online faults with a confidence level of over 98 %.

17.
Pediatr Res ; 95(5): 1372-1378, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38200323

ABSTRACT

BACKGROUND: Large-for-gestational age (LGA), a marker of fetal overgrowth, has been linked to obesity in adulthood. Little is known about how infancy growth trajectories affect adiposity in early childhood in LGA. METHODS: In the Shanghai Birth Cohort, we followed up 259 LGA (birth weight >90th percentile) and 1673 appropriate-for-gestational age (AGA, 10th-90th percentiles) children on body composition (by InBody 770) at age 4 years. Adiposity outcomes include body fat mass (BFM), percent body fat (PBF), body mass index (BMI), overweight/obesity, and high adiposity (PBF >85th percentile). RESULTS: Three weight growth trajectories (low, mid, and high) during infancy (0-2 years) were identified in AGA and LGA subjects separately. BFM, PBF and BMI were progressively higher from low- to mid-to high-growth trajectories in both AGA and LGA children. Compared to the mid-growth trajectory, the high-growth trajectory was associated with greater increases in BFM and the odds of overweight/obesity or high adiposity in LGA than in AGA children (tests for interactions, all P < 0.05). CONCLUSIONS: Weight trajectories during infancy affect adiposity in early childhood regardless of LGA or not. The study is the first to demonstrate that high-growth weight trajectory during infancy has a greater impact on adiposity in early childhood in LGA than in AGA subjects. IMPACT: Large-for-gestational age (LGA), a marker of fetal overgrowth, has been linked to obesity in adulthood, but little is known about how weight trajectories during infancy affect adiposity during early childhood in LGA subjects. The study is the first to demonstrate a greater impact of high-growth weight trajectory during infancy (0-2 years) on adiposity in early childhood (at age 4 years) in subjects with fetal overgrowth (LGA) than in those with normal birth size (appropriate-for-gestational age). Weight trajectory monitoring may be a valuable tool in identifying high-risk LGA children for close follow-ups and interventions to decrease the risk of obesity.

18.
Bioorg Chem ; 144: 107090, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38218070

ABSTRACT

Clinical experiences of herbal medicine (HM) have been used to treat a variety of human intractable diseases. As the treatment of diseases using HM is characterized by multi-components and multi-targets, it is difficult to determine the bio-active components, explore the molecular targets and reveal the mechanisms of action. Metabolomics is frequently used to characterize the effect of external disturbances on organisms because of its unique advantages on detecting changes in endogenous small-molecule metabolites. Its systematicity and integrity are consistent with the effective characteristics of HM. After HM intervention, metabolomics can accurately capture and describe the behavior of endogenous metabolites under the disturbance of functional compounds, which will be used to decode the bioactive ingredients of HM and expound the molecular targets. Metabolomics can provide an approach for explaining HM, addressing unclear clinical efficacy and undefined mechanisms of action. In this review, the metabolomics strategy and its applications in HM are systematically introduced, which offers valuable insights for metabolomics methods to characterizing the pharmacological effects and molecular targets of HM.


Subject(s)
Drugs, Chinese Herbal , Plants, Medicinal , Humans , Drugs, Chinese Herbal/pharmacology , Metabolomics/methods
19.
Elife ; 132024 Jan 29.
Article in English | MEDLINE | ID: mdl-38284752

ABSTRACT

Plants have evolved sophisticated mechanisms to regulate gene expression to activate immune responses against pathogen infections. However, how the translation system contributes to plant immunity is largely unknown. The evolutionarily conserved thiolation modification of transfer RNA (tRNA) ensures efficient decoding during translation. Here, we show that tRNA thiolation is required for plant immunity in Arabidopsis. We identify a cgb mutant that is hyper-susceptible to the pathogen Pseudomonas syringae. CGB encodes ROL5, a homolog of yeast NCS6 required for tRNA thiolation. ROL5 physically interacts with CTU2, a homolog of yeast NCS2. Mutations in either ROL5 or CTU2 result in loss of tRNA thiolation. Further analyses reveal that both transcriptome and proteome reprogramming during immune responses are compromised in cgb. Notably, the translation of salicylic acid receptor NPR1 is reduced in cgb, resulting in compromised salicylic acid signaling. Our study not only reveals a regulatory mechanism for plant immunity but also uncovers an additional biological function of tRNA thiolation.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Saccharomyces cerevisiae/genetics , Arabidopsis/metabolism , Mutation , RNA, Transfer/genetics , RNA, Transfer/metabolism , Plant Immunity/genetics , Salicylic Acid/metabolism , Gene Expression Regulation, Plant , Plant Diseases/genetics
20.
Sci Total Environ ; 915: 170095, 2024 Mar 10.
Article in English | MEDLINE | ID: mdl-38224892

ABSTRACT

OBJECTIVE: The fetal brain is particularly plastic, and may be concurrently affected by chemical exposure and malnutritional factors. Selenium is essential for the developing brain, and excess manganese exposure may exert neurotoxic effects. However, few epidemiological studies have evaluated the interaction of manganese and selenium assessed in different prenatal stages on postnatal neurodevelopmental trajectories. METHODS: This study contained 1024 mother-child pairs in the Shanghai-birth-cohort study from 2013 to 2016 recruited since early/before pregnancy with complete data on manganese and selenium levels in different prenatal stages and infant neurodevelopmental trajectories. Whole blood manganese and selenium in early pregnancy and around birth were measured by inductively-coupled-plasma-mass-spectrometry (ICP-MS), children's cognitive development was evaluated at 6, 12, and 24 months of age using Age & Stage-Questionnaire (ASQ)-3 and Bayley-III. Multiple linear regression was used to investigate the interaction of prenatal selenium and manganese on neurodevelopmental trajectories. RESULTS: The prenatal manganese and selenium levels were 1.82 ± 0.98 µg/dL and 13.53 ± 2.70 µg/dL for maternal blood in early pregnancy, and 5.06 ± 1.67 µg/dL and 11.81 ± 3.35 µg/dL for umbilical cord blood, respectively. Higher prenatal Se levels were associated with better neurocognitive performances or the consistently-high-level trajectory (P < 0.05), with more significant associations observed in early pregnancy than around birth. However, such positive relationships became non-significant or even adverse in high (vs. low) manganese status, and the effect differences between low and high manganese were more significant in early pregnancy. CONCLUSIONS: Prenatal Selenium was positively associated with child neurodevelopment, but prenatal high manganese may mitigate such favorable effects. The effects were mainly observed in earlier prenatal stage.


Subject(s)
Prenatal Exposure Delayed Effects , Selenium , Infant , Pregnancy , Female , Humans , Manganese/toxicity , Prenatal Exposure Delayed Effects/chemically induced , Cohort Studies , China , Child Development , Maternal Exposure
SELECTION OF CITATIONS
SEARCH DETAIL