Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 305
Filter
1.
Org Lett ; 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38984734

ABSTRACT

A new radical difluoromethylation was developed by using inexpensive and readily available difluoroacetic anhydride and N-phenyl-4-methylbenzenesulfonamide for the first time. The reaction of arylboronic acids with the new difluoromethylation reagent, N-phenyl-N-tosyldifluoroacetamide, proceeded smoothly in the presence of palladium catalyst to provide difluoromethylarenes in satisfactory to excellent yields. The electronic property (electron-donating or electron-withdrawing) of the substituent linked to the aromatic ring did not considerably influence the reactivity of arylboronic acid. Various groups, including the synthetically useful functional groups Cl, CN, and NO2, were tolerated well under the current reaction conditions.

2.
Anal Chem ; 96(24): 9808-9816, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38833718

ABSTRACT

Visualization of the mitochondrial state is crucial for tracking cell life processes and diagnosing disease, while fluorescent probes that can accurately assess mitochondrial status are currently scarce. Herein, a fluorescent probe named "SYN" was designed and prepared, which can target mitochondria via the mitochondrial membrane potential. Upon pathology or external stimulation, SYN can be released from the mitochondria and accumulate in the nucleolus to monitor the status of mitochondria. During this process, the brightness of the nucleolus can then serve as an indicator of mitochondrial damage. SYN has demonstrated excellent photostability in live cells as well as an extremely inert fluorescence response to bioactive molecules and the physiological pH environment of live cells. Spectroscopic titration and molecular docking studies have revealed that SYN can be lit up in nucleoli due to the high viscosity of the nucleus and the strong electrostatic interaction with the phosphate backbone of RNA. This probe is expected to be an exceptional tool based on its excellent imaging properties for tracking mitochondrial state in live cells.


Subject(s)
Cell Nucleolus , Fluorescent Dyes , Mitochondria , Mitochondria/metabolism , Mitochondria/chemistry , Humans , Fluorescent Dyes/chemistry , Cell Nucleolus/metabolism , HeLa Cells , Molecular Docking Simulation , Optical Imaging , Membrane Potential, Mitochondrial
3.
Biomed Pharmacother ; 176: 116858, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38850669

ABSTRACT

The roles and mechanisms of A-kinase anchoring protein 1 (AKAP1) in vascular smooth muscle cell (VSMC) phenotypic modulation and neointima formation are currently unknown. AKAP1 is a mitochondrial PKA-anchored protein and maintains mitochondrial homeostasis. This study aimed to investigate how AKAP1/PKA signaling plays a protective role in inhibiting VSMC phenotypic transformation and neointima formation by regulating mitochondrial fission. The results showed that both PDGF-BB treatment and balloon injury reduced the transcription, expression, and mitochondrial anchoring of AKAP1. In vitro, the overexpression of AKAP1 significantly inhibited PDGF-BB mediated VSMC proliferation and migration, whereas AKAP1 knockdown further aggravated VSMC phenotypic transformation. Additionally, in the balloon injury model in vivo, AKAP1 overexpression reduced neointima formation, the muscle fiber area ratio, and rat VSMC proliferation and migration. Furthermore, PDGF-BB and balloon injury inhibited Drp1 phosphorylation at Ser637 and promoted Drp1 activity and mitochondrial midzone fission; AKAP1 overexpression reversed these effects. AKAP1 overexpression also inhibited the distribution of mitochondria at the plasma membrane and the reduction of PKARIIß expression induced by PDGF-BB, as evidenced by an increase in mitochondria-plasma membrane distance as well as PKARIIß protein levels. Moreover, the PKA agonist promoted Drp1 phosphorylation (Ser637) and inhibited PDGF-BB-mediated mitochondrial fission, cell proliferation, and migration. The PKA antagonist reversed the increase in Drp1 phosphorylation (Ser637) and the decline in mitochondrial midzone fission and VSMC phenotypic transformation caused by AKAP1 overexpression. The results of this study reveal that AKAP1 protects VSMCs against phenotypic modulation by improving Drp1 phosphorylation at Ser637 through PKA and inhibiting mitochondrial fission, thereby preventing neointima formation.


Subject(s)
A Kinase Anchor Proteins , Cell Proliferation , Dynamins , Mitochondrial Dynamics , Muscle, Smooth, Vascular , Neointima , Phenotype , Rats, Sprague-Dawley , Animals , A Kinase Anchor Proteins/metabolism , A Kinase Anchor Proteins/genetics , Mitochondrial Dynamics/drug effects , Muscle, Smooth, Vascular/metabolism , Muscle, Smooth, Vascular/pathology , Muscle, Smooth, Vascular/drug effects , Neointima/metabolism , Neointima/pathology , Dynamins/metabolism , Cell Proliferation/drug effects , Male , Rats , Myocytes, Smooth Muscle/metabolism , Myocytes, Smooth Muscle/drug effects , Myocytes, Smooth Muscle/pathology , Becaplermin/pharmacology , Cell Movement/drug effects , Signal Transduction , Cyclic AMP-Dependent Protein Kinases/metabolism , Phosphorylation , Cells, Cultured
4.
Mater Horiz ; 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38842407

ABSTRACT

Eukaryotic cells regulate various cellular processes through membrane-bound and membrane-less organelles, enabling active signal communication and material exchange. Lysosomes and lipid droplets are representative organelles, contributing to cell lipophagy when their interaction and metabolism are disrupted. Our limited understanding of the interacting behaviours and physicochemical properties of different organelles during lipophagy hinders accurate diagnosis and treatment of related diseases. In this contribution, we report a fluorescent probe, PTZ, engineered for dual-targeting of lipid droplets and lysosomes. PTZ can track liquid-liquid phase separation and respond to polarity shifts through ratiometric fluorescence emission, elucidating the lipophagy process from the perspective of organelle behavior and physicochemical properties. Leveraging on the multifunctionality of PTZ, we have successfully tracked the polarity and dynamic changes of lysosomes and lipid droplets during lipophagy. Furthermore, an unknown homogeneous transition of lipid droplets and lysosomes was discovered, which provided a new perspective for understanding lipophagy processes. And this work is expected to serve as a reference for diagnosis and treatment of lipophagy-related diseases.

5.
Adv Mater ; : e2403017, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38739121

ABSTRACT

A miniature laser with linear polarization is a long sought-after component of photonic integrated circuits. In particular, for multiwavelength polarization lasers, it supports simultaneous access to multiple, widely varying laser wavelengths in a small spatial region, which is of great significance for advancing applications such as optical computing, optical storage, and optical sensing. However, there is a trade-off between the size of small-scale lasers and laser performance, and multiwavelength co-gain of laser media and multicavity micromachining in the process of laser miniaturization remain as significant challenges. Herein, room-temperature linearly polarized multiwavelength lasers in the visible and near-infrared wavelength ranges are demonstrated, by fabricating random cavities scattered with silica in an Er-doped Cs2Ag0.4Na0.6In0.98Bi0.02Cl6 double-perovskite quantum dots gain membrane. By regulating the local symmetry and enabling effective energy transfer in nanocrystals, multiwavelength lasers with ultralow thresholds are achieved at room temperature. The maximum degree of polarization reaches 0.89. With their advantages in terms of miniaturization, ultralow power consumption, and adaptability for integration, these lasers offer a prospective light source for future photonic integrated circuits aimed at high-capacity optical applications.

6.
Insect Sci ; 2024 Apr 21.
Article in English | MEDLINE | ID: mdl-38643371

ABSTRACT

Spermatogenesis is critical for insect reproduction and the process is regulated by multiple genes. Glycosyltransferases have been shown to participate in the development of Drosophila melanogaster; however, their role in spermatogenesis is still unclear. In this study, we found that α1,4-galactosyltransferase 1 (α4GT1) was expressed at a significantly higher level in the testis than in the ovary of Drosophila. Importantly, the hatching rate was significantly decreased when α4GT1 RNA interference (RNAi) males were crossed with w1118 females, with only a few mature sperm being present in the seminal vesicle of α4GT1 RNAi flies. Immunofluorescence staining further revealed that the individualization complex (IC) in the testes from α4GT1 RNAi flies was scattered and did not move synchronically, compared with the clustered IC observed in the control flies. Terminal deoxyribonucleotide transferase (TdT)-mediated dUTP nick end labeling (TUNEL) assay showed that apoptosis signals in the sperm bundles of α4GT1 RNAi flies were significantly increased. Moreover, the expression of several individualization-related genes, such as Shrub, Obp44a and Hanabi, was significantly decreased, whereas the expression of several apoptosis-related genes, including Dronc and Drice, was significantly increased in the testes of α4GT1 RNAi flies. Together, these results suggest that α4GT1 may play dual roles in Drosophila spermatogenesis by regulating the sperm individualization process and maintaining the survival of sperm bundles.

7.
Mol Ecol ; 33(8): e17322, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38501589

ABSTRACT

The N6-methyladenosine (m6A) modification of RNA has been reported to remodel gene expression in response to environmental conditions; however, the biological role of m6A in social insects remains largely unknown. In this study, we explored the role of m6A in the division of labour by worker ants (Solenopsis invicta). We first determined the presence of m6A in RNAs from the brains of worker ants and found that m6A methylation dynamics differed between foragers and nurses. Depletion of m6A methyltransferase or chemical suppression of m6A methylation in foragers resulted in a shift to 'nurse-like' behaviours. Specifically, mRNAs of dopamine receptor 1 (Dop1) and dopamine transporter (DAT) were modified by m6A, and their expression increased dopamine levels to promote the behavioural transition from foragers to nurses. The abundance of Dop1 and DAT mRNAs and their stability were reduced by the inhibition of m6A modification caused by the silencing of Mettl3, suggesting that m6A modification in worker ants modulates dopamine synthesis, which regulates labour division. Collectively, our results provide the first example of the epitranscriptomic regulation of labour division in social insects and implicate m6A regulatory mechanism as a potential novel target for controlling red imported fire ants.


Subject(s)
Adenosine/analogs & derivatives , Ants , RNA , Humans , Animals , Dopamine/genetics , Dopamine/metabolism , Ants/genetics , RNA, Messenger/metabolism
8.
RSC Adv ; 14(15): 10255-10261, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38549794

ABSTRACT

Fluorescence imaging of organelles at the cellular level is important for studying biological processes. The development of a highly emissive fluorescent probe that operates under a suitable excitation light source is a key step in high-quality fluorescence imaging. For long-term, high-fidelity fluorescence imaging of mitochondria-related cellular processes using two-photon microscopy and stimulated emission depletion microscopy, we developed a new benzocoumarin-based cationic fluorescent probe (BS-CN) that is far-red emitting, water-soluble, photostable, and very bright in cells. BS-CN showed a remarkably high quantum yield of 0.35 and a large two-photon excited fluorescence action cross-section of 76 GM, enabling the long-term tracking of mitochondria in live cells. In addition, BS-CN exhibited a certain affinity for RNA and stained nucleoli in fixed cells. A comparative assessment of the photophysical properties and bioimaging performance of benzo[h]coumarin-pyridinium and the structurally similar styryl-pyridinium (BS-MN) clearly indicated the importance of structural rigidity for fluorescence efficiency.

9.
Anal Chem ; 2024 Feb 08.
Article in English | MEDLINE | ID: mdl-38330436

ABSTRACT

Normally, small-molecule fluorescent probes dependent on the mitochondrial membrane potential (MMP) are invalid for fixed cells and tissues, which limits their clinical applications when the fixation of pathological specimens is imperative. Given that mitochondrial morphology is closely associated with disease, we developed a long-chain mitochondrial probe for fixed cells and tissues, DMPQ-12, by installing a C12-alkyl chain into the quinoline moiety. In fixed cells stained with DMPQ-12, filament mitochondria and folded cristae were observed with confocal and structural illumination microscopy, respectively. In titration test with three major phospholipids, DMPQ-12 exhibited a stronger binding force to mitochondria-exclusive cardiolipin, revealing its targeting mechanism. Moreover, mitochondrial morphological changes in the three lesion models were clearly visualized in fixed cells. Finally, by DMPQ-12, three kinds of mitochondria with different morphologies were observed in situ in fixed muscle tissues. This work breaks the conventional concept that organic fluorescent probes only stain mitochondria with normal membrane potentials and opens new avenues for comprehensive mitochondrial investigations in research and clinical settings.

10.
Org Biomol Chem ; 22(6): 1141-1145, 2024 Feb 07.
Article in English | MEDLINE | ID: mdl-38214226

ABSTRACT

A strategy for direct synthesis of phenanthrenyl triflates from 1-biphenylyl-2-diazo-2-aryl ketones and triflic anhydride is described. The reaction of 1-biphenylyl-2-diazo-2-aryl ketones with triflic anhydride proceeded smoothly in the presence of 2,6-di-tert-butylpyridine under mild conditions to produce phenanthrenyl triflates in high to excellent yields. The phenanthrenyl triflate products were demonstrated to be utilized as coupling partners in various coupling reactions. The proposed mechanism involves an intramolecular Friedel-Crafts reaction of a vinyl cation intermediate formed in situ.

11.
iScience ; 27(2): 108795, 2024 Feb 16.
Article in English | MEDLINE | ID: mdl-38292423

ABSTRACT

Macroautophagy/autophagy is a conserved process in eukaryotic cells to degrade and recycle damaged intracellular components. Higher level of autophagy in the brain has been observed, and autophagy dysfunction has an impact on neuronal health, but the molecular mechanism is unclear. In this study, we showed that overexpression of Toll-1 and Toll-7 receptors, as well as active Spätzle proteins in Drosophila S2 cells enhanced autophagy, and Toll-1/Toll-7 activated autophagy was dependent on Tube-Pelle-PP2A. Interestingly, Toll-1 but not Toll-7 mediated autophagy was dMyd88 dependent. Importantly, we observed that loss of functions in Toll-1 and Toll-7 receptors and PP2A activity in flies decreased autophagy level, resulting in the loss of dopamine (DA) neurons and reduced fly motion. Our results indicated that proper activation of Toll-1 and Toll-7 pathways and PP2A activity in the brain are necessary to sustain autophagy level for DA neuron survival.

12.
Org Lett ; 26(3): 664-669, 2024 Jan 26.
Article in English | MEDLINE | ID: mdl-38226908

ABSTRACT

A visible-light-driven iron-catalyzed C(sp3)-H amination of diphenylmethane derivatives with 1,2,3,4-tetrazoles under mild conditions has been developed. The reaction proceeds with photosensitizer-free conditions and features satisfactory to good yields. Mechanistic studies revealed that the reaction proceeded via an iron-nitrene intermediate, and H atom abstraction was the rate-determining step. Computational studies showed that the denitrogenation of 1,2,3,4-tetrazole depends on the conversion of the sextet ground state of 1,2,3,4-tetrazole-bounding iron species to the quartet spin state under visible-light irradiation.

13.
Surg Today ; 54(2): 186-194, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37516998

ABSTRACT

PURPOSE: To evaluate the clinical efficacy of immediate breast reconstruction with free or pedicled laparoscopically harvested omental flaps (LHOFs). METHODS: Between March 2011 and 2021, 82 patients who underwent immediate breast reconstruction with free or pediculated omental flaps were enrolled. Breast total or partial mastectomy, laparoscopic greater omentum harvest, and breast reconstruction were carried out in an orderly manner. Postoperative operative results, cosmetic outcomes, and complications were investigated. RESULTS: Seventeen cases of free LHOF and 65 cases of pedicled LHOF were performed. Cosmetic results were mostly satisfactory (61% excellent, 35% good), with a soft breast that was natural in appearance. Satisfaction investigation showed that 96.2% of patients were satisfied with the reconstructed breast. Uneventful follow-up showed no abdominal complications at the donor site, and the surface skin displayed no swelling. No major complications were found, except for three cases of necrosis. One patient developed slight hematoma. Two patients were found to have local recurrence, and one had distant metastasis. Twenty-four patients accepted radiotherapy, but no size reduction was noted after radiotherapy. We followed the patients to determine their survival status. All patients were alive, except for 1 in the free LHOF group who died 31.2 months after surgery. CONCLUSION: Immediate breast reconstruction with LHOF provides a soft reconstructed breast with relatively little donor-site deformity and is useful for breast tumor-specific immediate reconstruction.


Subject(s)
Breast Neoplasms , Mammaplasty , Humans , Female , Retrospective Studies , Mastectomy/methods , Follow-Up Studies , Breast Neoplasms/surgery , Breast Neoplasms/etiology , Surgical Flaps , Mammaplasty/methods , Treatment Outcome
14.
Genomics ; 116(1): 110758, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38065236

ABSTRACT

Testicular fusion of Spodoptera litura occures during metamorphosis, which benefits sperms development. Previous research identified involvement of ECM-integrin interaction pathways, MMPs in testicular fusion, but the regulatory mechanism remains unclear. RNA-seq was performed to analyze long non-coding RNAs (lncRNAs) and microRNAs (miRNAs) in testes, aiming to uncover potential regulatory mechanisms of testicular fusion. 2150 lncRNAs, 2742 targeted mRNAs, and 347 miRNAs were identified in testes at three different developmental stages. Up-regulated DElncRNAs and DEmRNAs, as well as down-regulated DEmiRNAs, were observed during testicular fusion, while the opposite expression pattern was observed after fusion. Enrichment analysis of DEmRNAs revealed that cAMP signal pathway, ECM remodeling enzymes, ECM-integrin interaction pathways, and cell adhesion molecules were potentially associated with testicular fusion. The identified DElncRNA-DEmiRNA-DEmRNA regulatory network related to cAMP signal pathway, ECM remodeling enzymes suggests their roles during testicular fusion. Our research will provide new targets for studying the mechanism of testicular fusion.


Subject(s)
MicroRNAs , RNA, Long Noncoding , Male , Animals , MicroRNAs/genetics , MicroRNAs/metabolism , Testis/metabolism , Spodoptera/genetics , Spodoptera/metabolism , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Integrins/genetics , Gene Regulatory Networks
15.
Insect Sci ; 31(1): 79-90, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37465843

ABSTRACT

Spermatogenesis is a critical part of reproduction in insects; however, its molecular mechanism is still largely unknown. In this study, we identified a testis-specific gene CG3526 in Drosophila melanogaster. Bioinformatics analysis showed that CG3526 contains a zinc binding domain and 2 C2 H2 type zinc fingers, and it is clustered to the vertebrate really interesting new gene (RING) family E3 ubiquitin-protein ligases. When CG3526 was knocked down by RNA interference (RNAi), the testis became much smaller in size, and the apical tip exhibited a sharp and thin end instead of the blunt and round shape in the control testis. More importantly, compared to the control flies, only a few mature sperm were present in the seminal vesicle of C587-Gal4 > CG3526 RNAi flies. Immunofluorescence staining of the testis from CG3526 RNAi flies showed that the homeostasis of testis stem cell niche was disrupted, cell distribution in the apical tip was scattered, and the process of spermatogenesis was not completed. Furthermore, we found that the phenotype of CG3526 RNAi flies' testis was similar to that of testis of Stat92E RNAi flies, the expression level of CG3526 was significantly downregulated in the Stat92EF06346 mutant flies, and the promoter activity of CG3526 was upregulated by STAT92E. Taken together, our results indicated that CG3526 is a downstream effector gene in the JAK-STAT signaling pathway that plays a key role in the spermatogenesis of Drosophila.


Subject(s)
Drosophila Proteins , Drosophila melanogaster , Male , Animals , Drosophila melanogaster/genetics , Drosophila melanogaster/metabolism , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Semen/metabolism , Spermatogenesis/genetics , Testis/metabolism , Drosophila/metabolism
16.
Org Lett ; 25(49): 8834-8838, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-38054743

ABSTRACT

An efficient visible-light-driven iron-catalyzed decarboxylative C-N coupling reaction of alkyl carboxylic acids with NaNO2 under mild conditions was developed. The reaction proceeds under photosensitizer-free conditions and features good to excellent yields, broad functional group tolerance, and an easy operation procedure. Preliminary mechanistic investigations showed that visible-light-driven iron catalysis not only achieved oxidative decarboxylation of alkyl carboxylic acids to alkyl radicals but also promoted the reduction of NO2- to NO, thus leading to the C-N radical coupling reaction.

17.
Chem Commun (Camb) ; 59(95): 14177-14180, 2023 Nov 28.
Article in English | MEDLINE | ID: mdl-37961762

ABSTRACT

An efficient visible-light-induced iron-catalyzed reduction of nitroarenes to anilines by using N-ethylmorpholine (NEM) as a reductant under mild conditions has been developed. The reaction proceeds with photosensitizer-free conditions and features good to excellent yields and broad functional group tolerance. Preliminary mechanistic investigations showed that this reaction was conducted via ligand-to-metal (NEM to Fe3+) charge transfer and nitro triplet biradical-induced hydrogen atom transfer processes.

18.
Vet Sci ; 10(11)2023 Oct 24.
Article in English | MEDLINE | ID: mdl-37999453

ABSTRACT

The spread of antibiotic resistance genes (ARGs) in the environment exacerbates the contamination of these genes; therefore, the role plants play in the transmission of resistance genes in the food chain requires further research. Giant pandas consume different bamboo parts at different times, which provides the possibility of investigating how a single food source can affect the variation in the spread of ARGs. In this study, metagenomic analysis and the Comprehensive Antibiotic Resistance Database (CARD) database were used to annotate ARGs and the differences in gut microbiota ARGs during the consumption of bamboo shoots, leaves, and culms by captive giant pandas. These ARGs were then compared to investigate the impact of bamboo part consumption on the spread of ARGs. The results showed that the number of ARGs in the gut microbiota of the subjects was highest during the consumption of bamboo leaves, while the variety of ARGs was highest during the consumption of shoots. Escherichia coli, which poses a higher risk of ARG dissemination, was significantly higher in the leaf group, while Klebsiella, Enterobacter, and Raoultella were significantly higher in the shoot group. The ARG risk brought by bamboo shoots and leaves may originate from soil and environmental pollution. It is recommended to handle the feces of giant pandas properly and regularly monitor the antimicrobial and virulence genes in their gut microbiota to mitigate the threat of antibiotic resistance.

19.
Atherosclerosis ; 387: 117391, 2023 12.
Article in English | MEDLINE | ID: mdl-38029612

ABSTRACT

BACKGROUND AND AIMS: The pathological roles and mechanisms of Rho-specific guanine nucleotide dissociation inhibitor 3 (RhoGDI3) in vascular smooth muscle cell (VSMC) phenotypic modulation and neointima formation are currently unknown. This study aimed to investigate how RhoGDI3 regulates the Nod-like receptor protein 3 (NLRP3) inflammasome in platelet-derived growth factor-BB (PDGF-BB)-induced neointima formation. METHODS: For in vitro assays, human aortic VSMCs (HA-VSMCs) were transfected with pcDNA3.1-GDI3 and RhoGDI3 siRNA to overexpress and knockdown RhoGDI3, respectively. HA-VSMCs were also treated with an NLRP3 inhibitor (CY-09) or agonist (NSS). Protein transcription and expression, cell proliferation and migration, Golgi morphology, and protein binding and colocalization were measured. For the in vivo assays, balloon injury (BI) rats were injected with recombinant adenovirus carrying RhoGDI3 shRNA. Carotid arterial morphology, protein expression and colocalization, and activation of the NLRP3 inflammasome were measured. RESULTS: PDGF-BB treatment induced transcription and expression of RhoGDI3 through PDGF receptor αß (PDGFRαß) rather than PDGFRαα or PDGFRßß in HA-VSMCs. RhoGDI3 suppression blocked PDGF-BB-induced VSMC phenotypic transformation. In contrast, RhoGDI3 overexpression further promoted PDGF-BB-induced VSMC dedifferentiation. The in vivo results also confirmed that RhoGDI3 expressed in VSMCs participated in neointima formation and muscle fiber and collagen deposition caused by balloon injury. In addition, PDGF-BB increased binding of RhoGDI3 to NLRP3 and apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC) at the trans-Golgi membrane, which depended on the normal Golgi network. However, recruitment of NLRP3 and ASC to the trans-Golgi network after PDGF-BB treatment was independent of RhoGDI3. Moreover, RhoGDI3 knockdown significantly inhibited ASC expression and NLRP3 inflammasome assembly and activation and reduced NLRP3 protein stability in PDGF-BB-treated HA-VSMCs. Inhibiting NLRP3 effectively prevented PDGF-BB-induced VSMC phenotypic modulation, and an NLRP3 agonist reversed the decline in VSMC phenotypic transformation caused by RhoGDI3 knockdown. Furthermore, RhoGDI3 suppression reduced the protein levels and assembly of NLRP3 and ASC, and the activation of the NLRP3 inflammasome in VSMCs in a rat balloon injury model. CONCLUSIONS: The results of this study reveal a novel mechanism through which RhoGDI3 regulates VSMC phenotypic modulation and neointima formation by activating the NLRP3 inflammasome.


Subject(s)
Inflammasomes , Neointima , Animals , Humans , Rats , Becaplermin/pharmacology , Becaplermin/metabolism , Cell Movement , Cell Proliferation , Cells, Cultured , Inflammasomes/metabolism , Muscle, Smooth, Vascular/metabolism , Myocytes, Smooth Muscle/metabolism , Neointima/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , NLR Proteins/metabolism , Rats, Sprague-Dawley , rho Guanine Nucleotide Dissociation Inhibitor gamma/metabolism , trans-Golgi Network
20.
Org Lett ; 25(40): 7344-7348, 2023 Oct 13.
Article in English | MEDLINE | ID: mdl-37791683

ABSTRACT

A visible-light-driven, photocatalyst-free, air-promoted, α-substituted reaction of amines with varying nucleophiles is described. The amine substrate aggregates formed in situ through physical π-π stacking by H2O regulation in organic solvent can absorb visible light and then generate iminium ion intermediates, which undergo nucleophilic substitution reactions with varying nucleophiles to afford α-substituted amines. This reaction features catalyst-free, good functional group tolerance, simple operation procedure, and green reaction conditions.

SELECTION OF CITATIONS
SEARCH DETAIL