Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 109
Filter
1.
Food Chem ; 462: 140986, 2025 Jan 01.
Article in English | MEDLINE | ID: mdl-39208737

ABSTRACT

Harvest season exerts great influence on tea quality. Herein, the variations in non-volatile flavor substances in spring and summer fresh tea leaves of four varieties were comprehensively investigated by integrating UHPLC-Q-Exactive based lipidomics and metabolomics. A total of 327 lipids and 99 metabolites were detected, among which, 221 and 58 molecules were significantly differential. The molecular species of phospholipids, glycolipids and acylglycerolipids showed most prominent and structure-dependent seasonal changes, relating to polar head, unsaturation and total acyl length. Particularly, spring tea contained higher amount in aroma precursors of highly unsaturated glycolipids and phosphatidic acids. The contents of umami-enhancing amino acids and phenolic acids, e.g., theanine, theogallin and gallotannins, were increased in spring. Besides, catechins, theaflavins, theasinensins and flavone/flavonol glycosides showed diverse changes. These phytochemical differences covered key aroma precursors, tastants and colorants, and may confer superior flavor of black tea processed using spring leaves, which was verified by sensory evaluation.


Subject(s)
Camellia sinensis , Flavoring Agents , Lipidomics , Mass Spectrometry , Metabolomics , Plant Leaves , Seasons , Camellia sinensis/chemistry , Camellia sinensis/metabolism , Plant Leaves/chemistry , Plant Leaves/metabolism , Chromatography, High Pressure Liquid , Flavoring Agents/chemistry , Flavoring Agents/metabolism , Humans , Taste , Odorants/analysis , Lipids/analysis , Lipids/chemistry
2.
Food Chem ; 463(Pt 4): 141482, 2024 Oct 09.
Article in English | MEDLINE | ID: mdl-39388885

ABSTRACT

Spreading serves as a pivotal process in the flavor development of green tea. In this study, the effects of spreading under five light irradiation on the volatile and non-volatile metabolites of green tea were comprehensively investigated using intelligent sensory technologies integrated with targeted and non-targeted metabolomics analyses. The incorporation of yellow light irradiation into spreading process significantly improved the overall quality of green tea. A total of 71 volatile and 112 non-volatile metabolites were identified by GC-MS/MS and UHPLC-Q-Exactive/MS, respectively. Among them, 20 key odorants with OAVs exceeding 1 were screened out. Moreover, phenylethyl alcohol, ß-damascenone, ß-ionone, (E, Z)-2,6-nonadienal, linalool, and phenylacetaldehyde with higher OAVs were pivotal contributors to the aroma quality under different light irradiation. Additionally, 13 non-volatile metabolites with VIP > 1.2 were recognized as key differential metabolites under different light irradiation. The results provide technical support and theoretical guidance for enhancing the processing technology of green tea.

3.
Cell Signal ; 122: 111339, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39121973

ABSTRACT

BACKGROUND: Gastric cancer (GC) is a common cancer worldwide; however, its molecular and pathogenic mechanisms remain unclear. MicroRNAs (miRNAs), which target key genes in GC, are associated with tumor promotion or suppression. Therefore, identifying new miRNA mechanisms could improve the novel diagnostic and therapeutic strategies for patients with GC. METHODS: To explore the biological functions of miR-135b-5p in GC, bioinformatic analysis and in vitro functional assays, including colony formation, wound healing, Transwell, and EdU assays, were used to assess the proliferative, invasive, and migratory capacities of GC cells. Target genes were predicted using RNA-seq and online databases. Dual-luciferase reporter assay, fluorescence in situ hybridization and western blotting were used to confirm the regulatory relationship between miR-135b-5p and CLIP4. The role of CLIP4 in tumor progression was assessed using clinical samples and both in vitro and in vivo assays. The tumor-suppressive mechanism of CLIP4 in GC was elucidated using rescue assays. RESULTS: Our study identified that miR-135b-5p as one of the top three over-expressed miRNAs in GC tissues, with RT-qPCR confirming its upregulation. Functional analysis showed that upregulated miR-135b-5p promoted malignant phenotypes in GC cells. Mechanistic research indicated that miR-135b-5p acts as a cancer promoter by targeting CLIP4. Moreover, our study suggested that CLIP4 exerts its tumor-suppressive function by inhibiting the JAK2/STAT3 signaling pathway. CONCLUSION: This study reveals a novel mechanism by which miR-135b-5p exerts its tumor-promoting functions by targeting CLIP4. The tumor-suppressive function of CLIP4 by inactivating the JAK2/STAT3 pathway is also elucidated. Regulatory mechanism of CLIP4 by miR-135b-5p provides a promising novel therapeutic strategy for GC patients.


Subject(s)
Gene Expression Regulation, Neoplastic , Janus Kinase 2 , MicroRNAs , STAT3 Transcription Factor , Signal Transduction , Stomach Neoplasms , Animals , Humans , Male , Mice , Carcinogenesis/genetics , Cell Line, Tumor , Cell Movement , Cell Proliferation , Janus Kinase 2/metabolism , Mice, Inbred BALB C , Mice, Nude , MicroRNAs/metabolism , MicroRNAs/genetics , rho GTP-Binding Proteins , STAT3 Transcription Factor/metabolism , Stomach Neoplasms/genetics , Stomach Neoplasms/pathology , Stomach Neoplasms/metabolism
4.
Food Res Int ; 192: 114773, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39147497

ABSTRACT

Withering is the first and key process that influences tea quality, with light quality being a key regulatory factor. However, effects of withering light quality (WLQ) on transformation and formation pathways of tea aroma and volatile metabolites (VMs) remain unclear. In the present study, four WLQs were set up to investigate their effects on tea aroma and VMs. The results showed that blue and red light reduced the grassy aroma and improved the floral and fruity aroma of tea. Based on GC-MS/MS, 83 VMs were detected. Through VIP, significant differences, and OAV analysis, 13 key differential VMs were screened to characterize the differential impacts of WLQ on tea aroma. Further analysis of the evolution and metabolic pathways revealed that glycoside metabolism was the key pathway regulating tea aroma through WLQ. Blue light withering significantly enhanced glycosides hydrolysis and amino acids deamination, which was beneficial for the enrichment of floral and fruity VMs, such as geraniol, citral, methyl salicylate, 2-methyl-butanal, and benzeneacetaldehyde, as well as the transformation of grassy VMs, such as octanal, naphthalene, and cis-3-hexenyl isovalerate, resulting in the formation of tea floral and fruity aroma. The results provide theoretical basis and technical support for the targeted processing of high-quality tea.


Subject(s)
Camellia sinensis , Gas Chromatography-Mass Spectrometry , Light , Metabolomics , Odorants , Tea , Volatile Organic Compounds , Volatile Organic Compounds/analysis , Volatile Organic Compounds/metabolism , Metabolomics/methods , Odorants/analysis , Tea/chemistry , Camellia sinensis/chemistry , Camellia sinensis/radiation effects , Camellia sinensis/metabolism , Glycosides/analysis , Glycosides/metabolism
5.
Food Chem ; 457: 140067, 2024 Nov 01.
Article in English | MEDLINE | ID: mdl-38959681

ABSTRACT

Round green tea (RGT) presents unique properties and is widely distributed in China, and during processing, it undergoes dynamic changes in non-volatile metabolites (NVMs), which are poorly understood. Utilizing UHPLC-Q-Exactive/MS analysis, this study comprehensively characterized 216 NVMs during RGT processing and identified fixation and pan-frying as key processes influencing NVMs. Additionally, 23 key differential NVMs were screened, with amino acid and flavonoid metabolism highlighted as key metabolic pathways for RGT taste and color quality. The impact of pan-frying degree on shape, color, and taste was also explored. Moderate pan-frying led to optimal results, including a tight and round shape, green and bright color, mellow and umami taste, and reduced astringent and bitter taste NVMs, including epigallocatechin gallate, procyanidin B2, myricetin 3-O-galactoside, quinic acid, strictinin, phenylalanine, and theobromine. This study addresses the NVM research gap in RGT processing, thus providing a technical foundation for the precision-oriented processing of high-quality tea.


Subject(s)
Camellia sinensis , Metabolomics , Taste , Tea , Camellia sinensis/chemistry , Camellia sinensis/metabolism , Tea/chemistry , Chromatography, High Pressure Liquid , Humans , Cooking , China , Flavonoids/metabolism , Flavonoids/analysis , Flavonoids/chemistry
6.
Toxicol Mech Methods ; 34(8): 926-935, 2024 Oct.
Article in English | MEDLINE | ID: mdl-38922301

ABSTRACT

Urolithiasis is one of the most prevalent benign urological disorders globally with a high incidence rate. Male Sprague-Dawley rats were chemically induced to have urolithiasis and treated with triptonide and the standard antiurolithic drug cystone. Kidney weight was measured to detect calculi formation, and urinary parameters such as pH, 24-h urine volume, and protein content were measured to analyze the urolithiasis induction in rats. The inorganic ions, organic solutes, antioxidant levels, and inflammatory cytokines were measured in the experimental rats. Triptonide treatment significantly modulated the urinary pH, decreased the protein concentration, and increased the urinary outflow in urolithiasis induced rats. It also significantly decreased the urinary excretion of calcium and phosphorous and increased the excretion of magnesium, potassium, sodium, creatinine, and uric acid. SOD, CAT, and GPx levels were increased in triptonide-treated rats, and it significantly reduced the MDA levels. Triptonide treatment also decreased the levels of inflammatory cytokines and prevented the renal tissue from inflammation. To conclude, our results prove that triptonide significantly prevents calculi formation and protects renal tissue from urolithiasis-induced damage in rats. Further studies may prove triptonide a potent alternative to currently available antiurolithic drugs.


Subject(s)
Ethylene Glycol , Kidney , Rats, Sprague-Dawley , Urolithiasis , Animals , Urolithiasis/chemically induced , Urolithiasis/prevention & control , Urolithiasis/drug therapy , Urolithiasis/pathology , Male , Kidney/drug effects , Kidney/pathology , Kidney/metabolism , Ethylene Glycol/toxicity , Cytokines/metabolism , Urological Agents/pharmacology , Rats , Antioxidants/pharmacology , Triterpenes/pharmacology , Triterpenes/therapeutic use , Disease Models, Animal , Oxidative Stress/drug effects
7.
Food Chem ; 458: 140226, 2024 Nov 15.
Article in English | MEDLINE | ID: mdl-38943961

ABSTRACT

Shaking constitutes a pivotal technique for enhancing black tea quality; nevertheless, its impact on the transformation mechanism of non-volatile metabolites (NVMs) in black tea remains obscure. The present study aimed to investigate the impact of shaking-withering methods (SWM) and traditional-withering methods (TWM) on black tea quality and NVMs conversion. A total of 57 NVMs and 14 objective quantitative indicators were obtained. SWM enhanced sweetness and umami taste, as well as appearance and liquor color brightness of black tea. Eight key differential NVMs were identified by multivariate statistical and dose over threshold value analysis. Metabolic pathway and evolution law analysis revealed that SWM enhanced the oxidation of catechins and flavonol glycosides, promoted the decarboxylation of glutamic acid, then facilitated the formation of theaflavin-3,3'-digallate, finally enhanced the taste and color quality of black tea. This study offers theoretical guidance and technical support for the targeted processing of high-quality black tea.


Subject(s)
Camellia sinensis , Metabolomics , Taste , Tea , Tea/chemistry , Camellia sinensis/chemistry , Camellia sinensis/metabolism , Flavoring Agents/chemistry , Flavoring Agents/metabolism , Humans , Food Handling , Catechin/metabolism , Catechin/chemistry , Catechin/analysis , Quality Control
8.
Food Chem X ; 23: 101519, 2024 Oct 30.
Article in English | MEDLINE | ID: mdl-38933990

ABSTRACT

In the present study, the comprehensive quality of Congou black tea (CBT) including aroma, taste, and liquid color was investigated by a combination of gas chromatography electronic nose (GC-E-Nose), electronic tongue (E-tongue), and electronic eye (E-eye). An excellent discrimination of different quality grades of CBT was accomplished through the fusion of GC-E-Nose, E-tongue, and E-eye combined with orthogonal partial least squares discriminant analysis, with parameters of R2Y = 0.803 and Q2 = 0.740. Moreover, the quantitative evaluation of CBT quality was successfully achieved by partial least squares regression analysis, with the absolute error within 1.39 point, and the relative error within 1.62%. Additionally, 12 key variables were screened out by stepwise multiple linear regression analysis, which significantly contributed to the comprehensive quality score of CBT. Our results suggest that the fusion of multiple intelligent sensory technologies offers great potential and practicability in the quality evaluation of black tea.

9.
Food Chem X ; 22: 101432, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38764783

ABSTRACT

Aroma plays a pivotal role in the quality of black tea. However, the acceptability of black tea is greatly limited by the green off-flavor (GOF) resulting from the inappropriate processing control. In this study, the key odorants causing GOF were investigated by volatolomics, and their dynamic changes and formation pathways were in-depth understood. Significant alterations in volatile metabolites were observed in the withering stage. A total of 14 key odorants were identified as contributors to GOF, including 2-methylpropanal, 3-methylbutanal, 1-hexanol, nonanal, (E, E)-2,4-heptadienal, benzaldehyde, linalool, (E, E)-3,5-octadiene-2-one, ß-cyclocitral, phenylacetaldehyde, (E, E)-2,4-nonadienal, methyl salicylate, geraniol, and ß-ionone. Among them, (E, E)-2,4-heptadienal (OAV = 3913), characterized by fatty, green, and oily aromas, was considered to be the most important contributor causing GOF. Moreover, it was found that lipid degradation served as the primary metabolic pathway for GOF. This study provides a theoretical foundation for off-flavor control and quality improvement of black tea.

10.
Food Res Int ; 187: 114330, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38763633

ABSTRACT

Processing technology plays a crucial role in the formation of tea aroma. The dynamic variations in volatile metabolites across different processing stages of fresh scent green tea (FSGT) were meticulously tracked utilizing advanced analytical techniques such as GC-E-Nose, GC-MS, and GC × GC-TOFMS. A total of 244 volatile metabolites were identified by GC-MS and GC × GC-TOFMS, among which 37 volatile compounds were concurrently detected by both methods. Spreading and fixation stages were deemed as pivotal processes for shaping the volatile profiles in FSGT. Notably, linalool, heptanal, 2-pentylfuran, nonanal, ß-myrcene, hexanal, 2-heptanone, pentanal, 1-octen-3-ol, and 1-octanol were highlighted as primary contributors to the aroma profiles of FSGT by combining odor activity value assessment. Furthermore, lipid degradation and glycoside hydrolysis were the main pathways for aroma formation of FSGT. The results not only elucidate the intricate variations in volatile metabolites but also offer valuable insights into enhancing the processing techniques for improved aroma quality of green tea.


Subject(s)
Food Handling , Gas Chromatography-Mass Spectrometry , Odorants , Tea , Volatile Organic Compounds , Volatile Organic Compounds/analysis , Volatile Organic Compounds/metabolism , Gas Chromatography-Mass Spectrometry/methods , Odorants/analysis , Tea/chemistry , Food Handling/methods , Electronic Nose , Aldehydes/analysis , Aldehydes/metabolism , Acyclic Monoterpenes/metabolism , Acyclic Monoterpenes/analysis , Camellia sinensis/chemistry , Camellia sinensis/metabolism , Ketones/analysis , Ketones/metabolism , Octanols
11.
Food Chem ; 453: 139628, 2024 Sep 30.
Article in English | MEDLINE | ID: mdl-38761731

ABSTRACT

Umami taste is a key criteria of green tea quality evaluation. The aim of this study was to comprehensively explore the key umami taste contributors in Longjing tea. The taste and molecular profiles of 36 Longjing green tea infusions were characterized by sensory quantitative descriptive analysis and LC-MS based metabolomics, respectively. By uni-/multi-variate statistical analysis, 84 differential compounds were screened among tea infusions with varied umami perceptions. Among them, 17 substances were identified as candidate umami-enhancing compounds, which showed significant positive correlations with umami intensities. Their natural concentrations were accurately quantified, and their umami taste-modifying effects were further investigated by taste addition into glutamic acid solution. Glutamic acid, aspartic acid, glutamine, theanine, phenylalanine, histidine, theogallin, galloylglucose, 1,2,6-trigalloylglucose significantly enhanced the umami taste. This study uncovered for the first time of some bitter amino acids and galloylglucose homologous series as important umami-enhancers, which provided a novel perspective into the tea taste.


Subject(s)
Camellia sinensis , Metabolomics , Taste , Tea , Tea/chemistry , Humans , Camellia sinensis/chemistry , Camellia sinensis/metabolism , Flavoring Agents/chemistry , Flavoring Agents/metabolism , Male , Adult , Mass Spectrometry , Female , Plant Extracts/chemistry , Plant Extracts/metabolism , Plant Extracts/analysis , Chromatography, High Pressure Liquid
12.
Foods ; 13(5)2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38472841

ABSTRACT

Aroma is an indispensable factor that substantially impacts the quality assessment of black tea. This study aims to uncover the dynamic alterations in the sweet and floral aroma black tea (SFABT) throughout various manufacturing stages using a comprehensive analytical approach integrating gas chromatography electronic nose, gas chromatography-ion mobility spectrometry (GC-IMS), and gas chromatography-mass spectrometry (GC-MS). Notable alterations in volatile components were discerned during processing, predominantly during the rolling stage. A total of 59 typical volatile compounds were identified through GC-IMS, whereas 106 volatile components were recognized via GC-MS throughout the entire manufacturing process. Among them, 14 volatile compounds, such as linalool, ß-ionone, dimethyl sulfide, and 1-octen-3-ol, stood out as characteristic components responsible for SFABT with relative odor activity values exceeding one. This study serves as an invaluable theoretical platform for strategic controllable processing of superior-quality black tea.

13.
Food Res Int ; 178: 113876, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38309897

ABSTRACT

The species and contents of ɑ-dicarbonyls in commercial black tea were examined, along with the effects of the manufacturing process and drying temperature on the formation of ɑ-dicarbonyls. Ten ɑ-dicarbonyls were quantified in commercial and in-process black tea samples by using UPLC-MS/MS and their derived quinoxalines. The ɑ-dicarbonyls content in commercial black tea decreased significantly (p < 0.05) in the following order: 3-deoxyglucosone > glucosone > 3-deoxypentosone = threosone > galactosone ≥ methylglyoxal = glyoxal ≥ 3-deoxygalactosone = 3-deoxythreosone = diacetyl. Except for 3-deoxyglucosone and 3-deoxygalactosone, a further eight ɑ-dicarbonyls were identified in all manufacturing steps of black tea. Except for the drying step, the rolling and fermenting played important roles in the formation of ɑ-dicarbonyls. The total contents of ɑ-dicarbonyls in black tea infusion ranged from 16.48 to 75.32 µg/g based on our detected ten ɑ-dicarbonyls.


Subject(s)
Camellia sinensis , Tea , Maillard Reaction , Chromatography, Liquid , Tandem Mass Spectrometry , Glyoxal/analysis
14.
J Agric Food Chem ; 72(3): 1419-1428, 2024 Jan 24.
Article in English | MEDLINE | ID: mdl-38206567

ABSTRACT

Vitamin C, also known as ascorbic acid, is an essential vitamin that cannot be synthesized by the human body and must be acquired through our diet. At present, the precursor of vitamin C, 2-keto-l-gulonic acid (2-KGA), is typically produced via a two-step fermentation process utilizing three bacterial strains. The second step of this traditional two-step fermentation method involves mixed-culture fermentation employing 2-KGA-producing bacteria (Ketogulonicigenium vulgare) along with associated bacteria. Because K. vulgare has defects in various metabolic pathways, associated bacteria are needed to provide key substances to promote K. vulgare growth and 2-KGA production. Unlike previous reviews where the main focus was the interaction between associated bacteria and K. vulgare, this Review presents the latest scientific research from the perspective of the metabolic pathways associated with 2-KGA production by K. vulgare and the mechanism underlying the interaction between K. vulgare and the associated bacteria. In addition, the dehydrogenases that are responsible for 2-KGA production, the 2-KGA synthesis pathway, strategies for simplifying 2-KGA production via a one-step fermentation route, and, finally, future prospects and research goals in vitamin C production are also presented.


Subject(s)
Ascorbic Acid , Sugar Acids , Humans , Fermentation , Sugar Acids/metabolism , Ascorbic Acid/metabolism , Vitamins
15.
Food Chem ; 439: 138154, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38071844

ABSTRACT

Drying temperature (DT) considerably affects the flavor of black tea (BT); however, its influence on non-volatile metabolites (NVMs) and their correlations remain unclear. In this study, an objective quantification technique and widely targeted metabolomics were applied to explore the effects of DT (130 °C, 110 °C, 90 °C, and 70 °C) on BT flavor and NVMs conversion. BT with a DT of 90 °C presented the highest umami, sweetness, overall taste, and brightness color values. Using the weighted gene co-expression network and multiple factor analysis, 455 sensory trait-related NVMs were explored across six key modules. Moreover, 169 differential NVMs were screened, and flavonoids, phenolic acids, amino acids, organic acids, and lipids were identified as key differential NVMs affecting the taste and color attributes of BT in response to DT. These findings enrich the BT processing theory and offer technical support for the precise and targeted processing of high-quality BT.


Subject(s)
Camellia sinensis , Tea , Tea/chemistry , Temperature , Camellia sinensis/chemistry , Flavonoids/analysis , Metabolomics/methods
16.
Hum Cell ; 37(1): 85-100, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37751026

ABSTRACT

In recent years, with the continuous in-depth exploration of the molecular mechanisms of tumorigenesis, numerous potential new targets for cancer treatment have been identified, some of which have been further developed in clinical practice and have produced positive outcomes. Notably, researchers' initial motivation for studying copper metabolism in cancer stems from the fact that copper is a necessary trace element for organisms and is closely connected to body growth and metabolism. Moreover, over the past few decades, considerable progress has been made in understanding the molecular processes and correlations between copper and cancer. Certain achievements have been made in the development and use of relevant clinical medications. The concept of "cuproptosis," a novel concept that differs from previous forms of cell death, was first proposed by a group of scientists last year, offering fresh perspectives on the targeting capabilities of copper in the treatment of cancer. In this review, we introduced the fundamental physiological functions of copper, the key components of copper metabolism, and a summary of the current research contributions on the connection between copper and cancer. In addition, the development of new copper-based nanomaterials and their associated mechanisms of action are discussed. Finally, we described how the susceptibility of cancer cells to this metallic nutrition could be leveraged to further improve the existing cancer treatment paradigm in the new setting.


Subject(s)
Copper , Neoplasms , Humans , Copper/metabolism , Copper/therapeutic use , Neoplasms/drug therapy , Carcinogenesis
17.
Food Chem X ; 20: 100989, 2023 Dec 30.
Article in English | MEDLINE | ID: mdl-38144743

ABSTRACT

Rolling represents an essential stage in congou black tea processing. However, the influence of rolling pressure on tea flavor and non-volatile compounds remains unclear. Herein, a combination of untargeted metabolomics, tea pigments quantification, E-tongue, colorimeter and sensory evaluation was used to evaluate the effect of rolling pressure on black tea quality. As the rolling pressure increased, theaflavins (TFs), thearubigins (TRs), and theabrownins (TBs) significantly elevated. The tea metabolic profiles fluctuated and 47 metabolites were identified as key differential metabolites including flavan-3-ols, flavonol/flavone glycosides, phenolic acids, amino acids. These substances altered possibly due to the variations in enzymatic oxidation of tea phenolics and amino acids. Overall, black tea with moderate rolling pressure presented higher sweetness, lower bitterness, and higher quality index (10 TFs + TRs)/TBs. The results were verified by a validation batch. This study provided new insights into the regulation of rolling pressure and a guidance for black tea processing.

18.
Food Chem X ; 20: 101007, 2023 Dec 30.
Article in English | MEDLINE | ID: mdl-38144830

ABSTRACT

Shaking is an innovative technology employed in black tea processing to enhance flavor. However, the effects of shaking on the evolutionary mechanisms of volatile metabolites (VMs) remain unclear. In this study, we compared the effects of a shaking-withering method with those of traditional withering on the flavor and VMs transformation of black tea. The results showed that black tea treated with shaking exhibited excellent quality with floral and fruity aroma. Based on gas chromatography-tandem mass spectrometry, 128 VMs (eight categories) were detected. Combining variable importance projection with odor activity value analysis, eight key differential VMs were identified. Shaking could promote the oxidative degradation of fatty acids and carotenoids and modulate the biosynthesis of terpenoids to facilitate the formation of floral/fruity VMs (such as (Z)-hexanoic acid-3-hexenyl ester, ethyl hexanoate, trans-ß-ionone, and decanal). Our findings provide theoretical guidance for the production of high-quality black tea with floral and fruity aromas.

19.
Food Chem X ; 19: 100844, 2023 Oct 30.
Article in English | MEDLINE | ID: mdl-37780241

ABSTRACT

Despite the importance of fixation in determining green tea quality, its role in reducing the bitter and astringent taste of this beverage remains largely unknown. Herein, an electromagnetic roller-hot-air-steam triple-coupled fixation (ERHSF) device was developed, and its operating parameters were optimized (steam volume: 20 kg/h; hot-air temperature: 90 °C; hot-air blower speed: 1200 r/min). Compared with conventional fixation treated samples, the ratio of tea polyphenols to free amino acids and ester-catechins to simple-catechins in ERHSF-treated samples was reduced by 11.0% and 3.2%, reducing bitterness and astringency of green tea; amino acids, soluble sugars, and chlorophyll contents were significantly increased, enhancing the freshness, sweetness, and greenness; the color indexes, such as L/L* value of brightness and -a/-a* value of greenness, were also improved, and ERHSF-treated samples had the highest sensory scores. These results provided theoretical support and technical guidance for precise quality improvement of summer-autumn green tea.

20.
Front Bioeng Biotechnol ; 11: 1251298, 2023.
Article in English | MEDLINE | ID: mdl-37711449

ABSTRACT

Introduction: Trehalose is a significant rare sugar known for its stable properties and ability to protect biomolecules from environmental factors. Methods: In this study, we present a novel approach utilizing a scaffold protein-mediated assembly method for the formation of a trehalose bi-enzyme complex. This complex consists of maltooligosyltrehalose synthase (MTSase) and maltooligosyltrehalose trehalohydrolase (MTHase), which work in tandem to catalyze the substrate and enhance the overall catalytic efficiency. Utilizing the specific interaction between cohesin and dockerin, this study presents the implementation of an assembly, an analysis of its efficiency, and an exploration of strategies to enhance enzyme utilization through the construction of a bi-enzyme complex under optimal conditions in vitro. Results and Discussion: The bi-enzyme complex demonstrated a trehalose production level 1.5 times higher than that of the free enzyme mixture at 40 h, with a sustained upward trend. Compared to free enzyme mixtures, the adoption of a scaffold protein-mediated bi-enzyme complex may improve cascade reactions and catalytic effects, thus presenting promising prospects.

SELECTION OF CITATIONS
SEARCH DETAIL