Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 76
Filter
1.
Transl Oncol ; 50: 102148, 2024 Oct 09.
Article in English | MEDLINE | ID: mdl-39388959

ABSTRACT

Hepatocellular carcinoma (HCC) is still one of the leading causes of tumor-related deaths. Accumulating evidence indicates that immunogenic cell death (ICD) could occur in tumor cells. However, ICD-related studies are limited in HCC. This study collected HCC RNA sequencing data from the Cancer Genome Atlas, International Cancer Genome Consortium, and Gene Expression Omnibus databases. R software was used to analyze the expression of ICD in HCC and to screen essential genes with prognostic value. qRT-PCR and WB determined the mRNA and protein expressions of hub gene. Cell viability assay, Clonal formation assay, and Live/dead staining assay were employed to determine the gene functions. After cross-analysis of differentially expressed genes (DEGs) and ICD-related genes (ICDRGs), 7 differentially expressed ICDRGs were identified in HCC. Of them, HSP90AA1, with the most excellent prognostic value in HCC, was selected, whose expression was also validated in public cohorts, cell lines, and clinical tissue samples. High HSP90AA1 expression indicated an inferior prognosis of HCC, and HSP90AA1 knockdown significantly suppressed cell viability and chemotherapy resistance of HCC. ICD-related gene HSP90AA1 was an unfavorable factor for HCC, and high HSP90AA1 expression contributed to tumor cell survival and chemotherapy resistance.

2.
Arch Dermatol Res ; 316(10): 680, 2024 Oct 14.
Article in English | MEDLINE | ID: mdl-39400754

ABSTRACT

In this study we aimed to understand and summarize the clinical and pathological characteristics of cutaneous mixed tumors. A retrospective analysis was conducted on the clinical and pathological data of 20 patients diagnosed with cutaneous mixed tumors in our outpatient department between January 2014 and April 2024. The study comprised 20 patients with a male-to-female ratio of 3:2. The mean age of onset was 52.10 ± 15.46 years. All patients presented with solitary cutaneous lesions ranging from 2 to 30 mm in diameter. Notably, none of the patients received a preoperative diagnosis of cutaneous mixed tumor. The clinical manifestations of cutaneous mixed tumors are nonspecific, necessitating histopathological examination for a definitive diagnosis.


Subject(s)
Skin Neoplasms , Humans , Male , Female , Retrospective Studies , Skin Neoplasms/pathology , Skin Neoplasms/diagnosis , Skin Neoplasms/surgery , Middle Aged , Adult , Aged , Neoplasms, Complex and Mixed/pathology , Neoplasms, Complex and Mixed/diagnosis , Neoplasms, Complex and Mixed/surgery , Skin/pathology , Aged, 80 and over , Biopsy
3.
J Inflamm Res ; 17: 7195-7217, 2024.
Article in English | MEDLINE | ID: mdl-39411751

ABSTRACT

Purpose: We aimed to investigate whether peripheral blood biomarkers B2M related to immune response can serve as indicators of HAPE pathophysiological characteristics or disease progression. Patients and Methods: Bioinformatics technology was used to explore the peripheral blood pathophysiological mechanisms and immune hub genes related to the occurrence of HAPE. The hub gene was verified through animal experiments, and its function and correlation between its expression level and the diagnosis, treatment effect and prognosis of HAPE were explored. Results: The GSVA results showed that the occurrence of HAPE was related to the down-regulation of immune response pathways by RUNX3 and STING. WGCNA results showed that the peripheral blood immune gene module related to the development of HAPE was related to the decrease of immune function and the increase of immune checkpoint molecule PD-L1 gene expression, and the expression of immune checkpoint genes LILRB2 and SIGLEC15 increased. Cytoscape software, RT-qPCR and WB confirmed that the hub gene B2M is a specific peripheral blood biomarker of HAPE. ROC, DCA, RT-qPCR, HE and Masson results showed that the expression of peripheral blood B2M has the ability to indicate the diagnosis, treatment effect and prognosis of HAPE. The decreased expression of B2M protein in peripheral blood leukocytes may be a marker of HAPE. Single-gene GSEA confirmed that the reduced expression of B2M in peripheral blood may be involved in the down-regulation of the antigen presentation pathway mediated by MHC class I molecules, was positively correlated with the down-regulation of the TNF signaling pathway, and was negatively correlated with the expression of LILRB2 and SIGLEC15. Conclusion: The occurrence of HAPE may be related to decreased immune function and immune tolerance. Peripheral blood B2M may be involved in the related pathways, its expression level can prompt the diagnosis, treatment and prognosis of HAPE.

4.
Chemosphere ; 365: 143367, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39306113

ABSTRACT

In this study, we fabricated phosphorus-modified carbon felt electrode anodes for chloride oxidation in saline solutions to produce HClO via electrocatalysis, forming a compound fungicide saline applicable for debridement and disinfection. A low-cost phosphorus-modified carbon felt electrode (P@CF) with high chlorine evolution reaction activity was synthesized to address the reduced efficiency of CER and the solution's pH increase. Heteroatoms P and O were introduced into the carbon felt by phosphoric acid activation followed by heat treatment. The maximum active chlorine concentration on the P@CF electrode could reach 616.8 mg/L in 60 min under the optimal synthesis conditions of a phosphoric acid mass fraction of 30%, a phosphoric acid impregnation time of 3 h, and a heat treatment temperature of 300 °C. The active chlorine concentration was 1.8 times higher on the P@CF electrode compared to the original carbon felt electrode. The optimal reaction conditions for the generation of active chlorine were as follows: salt concentration of 9 g/L, voltage of 7 V, and electrode spacing of 2 cm as verified by response surfaces. This electrolysis reaction follows one-stage reaction kinetics. Subsequently, the disinfection efficacy of the produced disinfectants was examined. The prepared disinfectant was also compared to a commercially available hypochlorite disinfectant, showing similar disinfection effects on E. coli for both.


Subject(s)
Carbon , Disinfectants , Electrodes , Electrolysis , Hypochlorous Acid , Phosphorus , Disinfectants/chemistry , Hypochlorous Acid/chemistry , Carbon/chemistry , Phosphorus/chemistry , Disinfection/methods , Oxidation-Reduction , Chlorine/chemistry , Phosphoric Acids/chemistry
5.
Nat Commun ; 15(1): 7717, 2024 Sep 09.
Article in English | MEDLINE | ID: mdl-39251593

ABSTRACT

The ability to image tissues in three dimensions (3D) with label-free molecular contrast at the mesoscale would be a valuable capability in biology and biomedicine. Here, we introduce Raman spectral projection tomography (RSPT) for volumetric molecular imaging with optical sub-millimeter spatial resolution. We have developed a RSPT imaging instrument capable of providing 3D molecular contrast in transparent and semi-transparent samples. We also created a computational pipeline for multivariate reconstruction to extract label-free spatial molecular information from Raman projection data. Using these tools, we demonstrate imaging and visualization of phantoms of various complex shapes with label-free molecular contrast. Finally, we apply RSPT as a tool for imaging of molecular gradients and extracellular matrix heterogeneities in fixed and living tissue-engineered constructs and explanted native cartilage tissues. We show that there exists a favorable balance wherein employing Raman spectroscopy, with its advantages in live cell imaging and label-free molecular contrast, outweighs the reduction in imaging resolution and blurring caused by diffuse photon propagation. Thus, RSPT imaging opens new possibilities for label-free molecular monitoring of tissues.


Subject(s)
Imaging, Three-Dimensional , Molecular Imaging , Phantoms, Imaging , Spectrum Analysis, Raman , Spectrum Analysis, Raman/methods , Imaging, Three-Dimensional/methods , Animals , Molecular Imaging/methods , Tissue Engineering/methods , Humans , Tomography/methods , Cartilage/diagnostic imaging , Cartilage/metabolism , Extracellular Matrix/metabolism , Mice
6.
J Environ Manage ; 370: 122569, 2024 Sep 18.
Article in English | MEDLINE | ID: mdl-39299118

ABSTRACT

Regarding curtailing carbon emissions in wastewater treatment, the high-rate contact stabilization (HiCS) process outperforms others in removing dissolved organic matter (DOM) but struggles with poor settling performance. To boost operation performance and clarify the correlation between process parameters, DOM variations, effluent quality, and microbial metabolism within the HiCS system, the impacts of sludge properties on sludge settlement and organic matter (OM) capture efficiency were explored, and soluble fluorescent components in the DOM and extracellular polymeric substances (EPS) were identified and scrutinized. Results unveil that the feast/famine (F/F) regime in the HiCS process predominantly governs sludge activation in the stabilization phase, influencing sludge properties such as morphology characteristics, biological activity, and EPS secretion. At the same hydraulic retention time, reducing the sludge retention time (SRT) led to looser and smaller activated sludge flocs, increased microbial activity, and higher EPS production, particularly protein content in loosely bound EPS (LB-PN), which adversely impacted settling performance. High-throughput sequencing revealed that richness and diversity of the microbial community decreased with SRT. Acidobacteriota and Patescibacteria, associated with nitrifying and denitrifying bacteria, significantly decreased. EPS-producing Firmicutes increased, enhancing EPS secretion, while filamentous Chloroflexi decreased, aligning with a reduced organic mineralization rate. Settlement and biological activity emerged as key factors affecting OM recovery, peaking at 43.97% with a 4-day SRT. The ratio of the sum of tryptophan-like and tyrosine-like components to fulvic-like components ((C1+C2)/C3) was proposed as a fluorescence indicator, serving as a hub to connect operational parameters, F/F regime, sludge status and process performance. When this ratio falls within the range of 1.04-1.36 during the stabilization phase, HiCS sludge achieves optimal status for OM capture with low aeration energy consumption.

7.
Adv Sci (Weinh) ; : e2404396, 2024 Sep 09.
Article in English | MEDLINE | ID: mdl-39248388

ABSTRACT

Temporomandibular joint osteoarthritis (TMJOA) is a commonly encountered degenerative joint disease in oral and maxillofacial surgery. Recent studies have shown that the excessive unbalanced activation of Wnt/ß-catenin signaling is connected with the pathogenesis of TMJOA and due to the inability to inhibit the over-activated Wnt pathway, while Wnt16-deficient mice has a more severe Knee OA. However, the efficacy of direct intra-TMJ injection of Wnt16 for the relief of TMJOA is still not directly confirmed. Moreover, small-molecule drugs such as Wnt16 usually exhibit short-lived efficacy and poor treatment adherence. Therefore, in order to obtain a stable release of Wnt16 both in the short and long term, this study fabricates a double-layer slow-release Wnt16 carrier based on mesoporous silica nanospheres (MSNs) encased within hyaluronic acid (HA) hydrogels. The biofunctional hydrogel HA/Wnt16@MSN is analyzed both in vitro and in vivo to evaluate the treatment of TMJOA. As a result, it shows superior pro-cartilage matrix restoration and inhibition of osteoclastogenesis ability, and effectively inhibits the over-activation of the Wnt/ß-catenin pathway. Taken together, biofunctional hydrogel HA/Wnt16@MSN is a promising candidate for the treatment of TMJOA.

8.
Article in English | MEDLINE | ID: mdl-39162294

ABSTRACT

The funding details have been incorporated upon author's request in the funding section of this article titled "B2M is a Biomarker Associated With Immune Infiltration In High Altitude Pulmonary Edema ," 2024, 27(1), 168-185 [1]. Details of the error and a correction are provided here. Original: This work was supported by grants from the Chongqing Natural Science Gene General Project (No. YWRYPYG). Corrected: This work was supported by General Project of Chongqing Natural Science Foundation cstc2020jcyj-msxmX0227. We regret the error and apologize to the readers. The original article can be found online at www.eurekaselect.com/article/131669.

9.
Eur J Pharmacol ; 979: 176820, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-39032765

ABSTRACT

Ferroptosis, an iron-dependent lipid peroxidation-driven cell death pathway, has been linked to the development of Alzheimer's disease (AD). However, the role of ferroptosis in the pathogenesis of AD remains unclear. Cerebroprotein hydrolysate-I (CH-I) is a mixture of peptides with neurotrophic effects that improves cognitive deficits and reduces amyloid burden. The present study investigated the ferroptosis-induced signalling pathways and the neuroprotective effects of CH-I in the brains of AD transgenic mice. Seven-month-old male APPswe/PS1dE9 (APP/PS1) transgenic mice were treated with intraperitoneal injections of CH-I and saline for 28 days. The Morris water maze test was used to assess cognitive function. CH-I significantly improved cognitive deficits and attenuated beta-amyloid (Aß) aggregation and tau phosphorylation in the hippocampus of APP/PS1 mice. RNA sequencing revealed that multiple genes and pathways, including ferroptosis-related pathways, were involved in the neuroprotective effects of CH-I. The increased levels of lipid peroxidation, ferrous ions, reactive oxygen species (ROS), and altered expression of ferroptosis-related genes (recombinant solute carrier family 7, member 11 (SLC7A11), spermidine/spermine N1-acetyltransferase 1 (SAT1) and glutathione peroxidase 4 (GPX4)) were significantly alleviated after CH-I treatment. Quantitative real-time PCR and western blotting were performed to investigate the expression of key ferroptosis-related genes and the p53/SAT1/arachidonic acid 15-lipoxygenase (ALOX15) signalling pathway. The p53/SAT1/ALOX15 signalling pathway was found to be involved in mediating ferroptosis, and the activation of this pathway was significantly suppressed in AD by CH-I. CH-I demonstrated neuroprotective effects against AD by attenuating ferroptosis and the p53/SAT1/ALOX15 signalling pathway, thus providing new targets for AD treatment.


Subject(s)
Alzheimer Disease , Arachidonate 15-Lipoxygenase , Cognitive Dysfunction , Ferroptosis , Mice, Transgenic , Signal Transduction , Tumor Suppressor Protein p53 , Animals , Ferroptosis/drug effects , Tumor Suppressor Protein p53/metabolism , Signal Transduction/drug effects , Male , Mice , Cognitive Dysfunction/drug therapy , Cognitive Dysfunction/metabolism , Arachidonate 15-Lipoxygenase/metabolism , Alzheimer Disease/metabolism , Alzheimer Disease/drug therapy , Amyloid beta-Protein Precursor/genetics , Amyloid beta-Protein Precursor/metabolism , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Acetyltransferases/metabolism , Acetyltransferases/genetics , Disease Models, Animal , Presenilin-1/genetics , Hippocampus/drug effects , Hippocampus/metabolism , Amyloid beta-Peptides/metabolism
10.
Tissue Cell ; 89: 102472, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39003914

ABSTRACT

Cerebral ischemia-reperfusion injury involves a series of pathophysiological processes that occur when blood supply is restored after cerebral vascular obstruction, leading to neuronal damage. The AMPK/ERK1/2 signaling pathway has been identified as crucial in this process, although the exact mechanisms underlying the induction of ischemia-reperfusion injury remain unclear. In this study, we investigated the involvement of the AMPK/ERK1/2 signaling pathway in neuronal oxidative stress damage following cerebral ischemia-reperfusion by establishing animal and cell models. Our experimental results demonstrated that cerebral ischemia-reperfusion leads to oxidative stress damage, including cell apoptosis and mitochondrial dysfunction. Moreover, further experiments showed that inhibition of AMPK and ERK1/2 activity, using U0126 and Compound C respectively, could alleviate oxidative stress-induced cellular injury, improve mitochondrial morphology and function, reduce reactive oxygen species levels, increase superoxide dismutase levels, and suppress apoptosis. These findings clearly indicate the critical role of the AMPK/ERK1/2 signaling pathway in regulating oxidative stress damage and cerebral ischemia-reperfusion injury. The discoveries in this study provide a theoretical basis for further research and development of neuroprotective therapeutic strategies targeting the AMPK/ERK1/2 signaling pathway.


Subject(s)
AMP-Activated Protein Kinases , Brain Ischemia , MAP Kinase Signaling System , Neurons , Oxidative Stress , Reperfusion Injury , Animals , Reperfusion Injury/metabolism , Reperfusion Injury/pathology , AMP-Activated Protein Kinases/metabolism , Neurons/metabolism , Neurons/pathology , Brain Ischemia/metabolism , Brain Ischemia/pathology , Apoptosis , Male , Mitochondria/metabolism , Mitochondria/pathology , Reactive Oxygen Species/metabolism , Rats , Rats, Sprague-Dawley , Mitogen-Activated Protein Kinase 3/metabolism
11.
World J Gastrointest Oncol ; 16(7): 2941-2951, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39072162

ABSTRACT

BACKGROUND: Subphrenic carcinoma has been identified as a significant risk factor for the thermal ablation of intrahepatic tumors, resulting in a high rate of residual tumor recurrence. Some studies have proposed that combination treatment with transarterial chemoembolization (TACE) followed by radiofrequency ablation is both feasible and safe for tumors in the subphrenic region. However, research specifically examining the therapeutic outcomes of combination therapy using TACE and microwave ablation (TACE-MWA) in subphrenic tumors is lacking. AIM: To evaluate the efficacy and safety of TACE-MWA in patients with subphrenic hepatocellular carcinoma (HCC). METHODS: Between December 2017 and December 2021, 49 patients diagnosed with HCC ≤ 6 cm, who received TACE-MWA, were included in this retrospective cohort study. These patients were classified into subphrenic and non-subphrenic groups based on the distance between the diaphragm and the tumor margin. The rates of local tumor progression (LTP), progression-free survival (PFS), and overall survival (OS) were compared between the two groups. Complications were evaluated by using a grading system developed by the Society of Interventional Radiology. RESULTS: After a median follow-up time of 38 mo, there were no significant differences in LTP between the subphrenic and non-subphrenic groups (27.3% and 22.2% at 5 years, respectively; P = 0.66), PFS (55.5% at 5 years in both groups; P = 0.91), and OS (85.0% and 90.9% in the subphrenic and non-subphrenic groups at 5 years; P = 0.57). However, a significantly higher rate of LTP was observed in subphrenic HCC > 3 cm compared to those ≤ 3 cm (P = 0.085). The dosage of iodized oil [hazard ratio (HR): 1.52; 95% confidence interval (CI): 1.11-2.08; P = 0.009] and multiple tumors (HR: 13.22; 95%CI: 1.62-107.51; P = 0.016) were independent prognostic factors for LTP. There were no significant differences in complication rates between the two groups (P = 0.549). CONCLUSION: Combined TACE and MWA was practical and safe for managing subphrenic HCC. The efficacy and safety levels did not vary significantly when tumors outside the subphrenic region were treated.

12.
Int J Gen Med ; 17: 2203-2221, 2024.
Article in English | MEDLINE | ID: mdl-38774724

ABSTRACT

Purpose: To study the relationship between LARS1 expression and immune infiltration and prognosis in hepatocellular carcinoma (HCC). Patients and Methods: The clinical characteristics together with LARS1 expression levels were obtained from the TCGA database. Immunohistochemistry confirmed LARS1 expression levels in paraneoplastic and tumor tissues. To investigate LARS1-related downstream molecules, a network of protein-protein interactions (PPIs) and the Gene Ontology (GO)/Kyoto Encyclopedia of Genes and Genomes (KEGG) were built. Furthermore, gene set enrichment analysis (GSEA) was used to analyze the pathways associated with LARS1 expression, whereas Single-sample GSEA (ssGSEA) was applied to perform an association study between immune infiltration and LARS1 gene expression. The TISCH Database and the TISIDB database were used to compare the difference of LARS1 expression in hepatocellular carcinoma and immunomodulators. Results: In comparison to that in normal tissues, the LARS1 expression level was elevated in tumor tissues. LARS1 expression exhibited substantial correlation with AFP, Histologic grade, pathologic stage, Residual tumor, and Vascular invasion in HCC. Higher LARS1 expression in HCC was linked to lower progression-free survival (PFS), disease-specific survival (DSS), and overall survival (OS). According to the GO/KEGG study, the important biological process (neutral lipid metabolic process), cellular component (triglyceride-rich plasma lipoprotein), molecular functions (lipase inhibitor activity), and KEGG pathway (cholesterol metabolism) could be a probable function mechanism in promoting HCC. Various pathways as per GSEA revealed that they were enriched in samples with elevated LARS1 expression. The expression level of LARS1 in malignant tumor cells after immunotherapy was significantly higher than that before immunotherapy. LARS1 was also remarkably linked to the infiltration level and the immunomodulators. Conclusion: LARS1 can be used as a biomarker of HCC, which is associated to immune infiltration of HCC.

13.
J Med Virol ; 96(3): e29468, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38415499

ABSTRACT

Cervical human papillomavirus (HPV) infection is believed to increase the risks of pregnancy failure and abortion, however, whether the uterine cavity HPV infection reduces pregnancy rate or increases miscarriage rate remains unclarified in infertile women undergoing assisted reproductive technology (ART) treatment. Therefore, we aimed to assess ART outcomes in the presence of intrauterine HPV. This was a hospital-based multicenter (five reproductive medicine centers) matched cohort study. This study involved 4153 infertile women undergoing in vitro fertilization (IVF) or intracytoplasmic sperm injection treatment in five reproductive medicine centers between October 2018 and 2020. The spent embryo transfer media sample with endometrium tissue were collected and performed with flow-through hybridization and gene chips to detect HPV DNA. According to basic characteristics, HPV-positive and negative patients were matched in a ratio of 1:4 by age, body mass index transfer timing, transfer type, and number of embryos transferred. The primary outcome was pregnancy and clinical miscarriage rates in the transfer cycle underwent HPV detection. 92 HPV-positive and 368 HPV-negative patients were screened and analyzed statistically. Univariate analysis showed uterine cavity HPV infection resulted in lower rates of ongoing pregnancy (31.5% vs. 44.6%; p = 0.023), implantation (32.3% vs. 43.1%; p = 0.026), biochemical pregnancy (47.8% vs. 62.5%; p = 0.010), and clinical pregnancy (40.2% vs. 54.3%; p = 0.015) compared with HPV negative group. The infertile female with positive HPV also had a slightly higher frequency of biochemical miscarriage (15.9% vs. 13.0%; p = 0.610) and clinical miscarriage (24.3% vs. 15.5%; p = 0.188). These findings suggest that HPV infection in the uterine cavity is a high risk for ART failure. HPV screening is recommended before ART treatment, which may be benefit to improving pregnancy outcome.


Subject(s)
Abortion, Spontaneous , Infertility, Female , Papillomavirus Infections , Pregnancy , Humans , Male , Female , Papillomavirus Infections/diagnosis , Infertility, Female/therapy , Human Papillomavirus Viruses , Cohort Studies , Semen , Embryo Transfer/methods , Reproductive Techniques, Assisted , Fertilization in Vitro , Treatment Failure
14.
J Dermatol Sci ; 113(3): 93-102, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38383230

ABSTRACT

BACKGROUND: Aberrant keratinocytes differentiation has been demonstrated to be associated with a number of skin diseases. The roles of lncRNAs in keratinocytes differentiation remain to be largely unknown. OBJECTIVE: Here we aim to investigate the role of lnc-DC in regulating epidermal keratinocytes differentiation. METHODS: Expression of lnc-DC in the skin was queried in AnnoLnc and verified by FISH. The lncRNA expression profiles during keratinocytes differentiation were reanalyzed and verified by qPCR and FISH. Gene knock-down and over-expression were used to explore the role of lnc-DC in keratinocytes differentiation. The downstream target of lnc-DC was screened by whole transcriptome sequencing. CUT&RUN assay and siRNAs transfection was used to reveal the regulatory effect of GRHL3 on lnc-DC. The mechanism of lnc-DC regulating ZNF750 was revealed by RIP assay and RNA stability assay. RESULTS: Lnc-DC was biasedly expressed in skin and up-regulated during epidermal keratinocytes differentiation. Knockdown lnc-DC repressed epidermal keratinocytes differentiation while over-express lnc-DC showed the opposite effect. GRHL3, a well-known transcription factor regulating keratinocytes differentiation, could bind to the promoter of lnc-DC and regulate its expression. By whole transcriptome sequencing, we identified that ZNF750 was a downstream target of lnc-DC during keratinocytes differentiation. Mechanistically, lnc-DC interacted with RNA binding protein IGF2BP2 to stabilize ZNF750 mRNA and up- regulated its downstream targets TINCR and KLF4. CONCLUSION: Our study revealed the novel role of GRHL3/lnc-DC/ZNF750 axis in regulating epidermal keratinocytes differentiation, which may provide new therapeutic targets of aberrant keratinocytes differentiation related skin diseases.


Subject(s)
RNA, Long Noncoding , Skin Diseases , Humans , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Transcription Factors/metabolism , Keratinocytes/metabolism , Skin/metabolism , Skin Diseases/metabolism , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , RNA-Binding Proteins/metabolism , Tumor Suppressor Proteins/metabolism
15.
Chemosphere ; 350: 141158, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38199496

ABSTRACT

Anaerobic ammonia oxidation (ANAMMOX), a sustainable biological process, is promising to remove NH4+-N from municipal sewage. In this study, results showed that the anammox granular sludge morphology changes with the alternation of dissolved oxygen (DO), mainly attributing to the adhesion of calcium ions (Ca2+) to the surface of sludge particles. Diverse characterization methods revealed that gray adhesions in the form of hydroxyapatite covered the original holes on the anammox granular sludge surface, including scanning Electron Microscopy (SEM), digital camera images, Energy Dispersive Spectrometer (EDS), and X-ray diffraction (XRD). Ex-situ degradation of NH4+-N and NO2--N yielded diverse outcomes. The protein to polysaccharide ratio (PN/PS) in the total extracellular polymeric substances (EPS) across 4 size groups demonstrated a decrease under O2 exposure. Microbial community analysis indicated norank_f_A4b and Nitrolancea being the most abundant genus under O2 exposure at day 1 and day 100, respectively. These findings offer an effective strategy to prevent size-larger granular sludge from deteriorating through changing DO and Ca2+ in municipal wastewater in ANAMMOX.


Subject(s)
Anaerobic Ammonia Oxidation , Sewage , Bioreactors , Wastewater , Hydroxyapatites , Nitrogen , Oxidation-Reduction , Denitrification
16.
Sci Total Environ ; 915: 169847, 2024 Mar 10.
Article in English | MEDLINE | ID: mdl-38185169

ABSTRACT

Autotrophic denitrification (AD) without carbon source is an inevitable choice for denitrification of municipal wastewater under the carbon peaking and carbon neutrality goals. This study first employed sulfur-tourmaline-AD (STAD) as an innovative nitrate removal trial technique in wastewater. STAD demonstrated a 2.23-fold increase in nitrate­nitrogen (NO3--N) removal rate with reduced nitrite­nitrogen (NO2--N) accumulation, effectively removing 99 % of nitrogen pollutants compared to sulfur denitrification. Some denitrifiers microorganisms that could secrete tyrosine, tryptophan, and aromatic protein (extracellular polymeric substances (EPS)). Moreover, according to the EPS composition and characteristics analysis, the secretion of loosely bound extracellular polymeric substances (LB-EPS) that bound to the bacterial endogenous respiration and enriched microbial abundance, was produced more in the STAD system, further improving the system stability. Furthermore, the addition of tourmaline (Tm) facilitated the discovery of a new genus (Paracoccus) that enhanced nitrate decomposition. Applying optimal electron donors through metabolic pathways and the microbial community helps to strengthen the AD process and treat low carbon/nitrogen ratio wastewater efficiently.


Subject(s)
Denitrification , Silicates , Wastewater , Nitrates , Electrons , Sulfur/metabolism , Nitrogen , Carbon , Bioreactors/microbiology
17.
Comb Chem High Throughput Screen ; 27(1): 168-185, 2024.
Article in English | MEDLINE | ID: mdl-37165489

ABSTRACT

BACKGROUND: High altitude pulmonary edema (HAPE) is a serious mountain sickness with certain mortality. Its early diagnosis is very important. However, the mechanism of its onset and progression is still controversial. AIM: This study aimed to analyze the HAPE occurrence and development mechanism and search for prospective biomarkers in peripheral blood. METHODS: The difference genes (DEGs) of the Control group and the HAPE group were enriched by gene ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis, and then GSEA analysis was performed. After identifying the immune-related hub genes, QPCR was used to verify and analyze the hub gene function and diagnostic value with single-gene GSEA and ROC curves, and the drugs that acted on the hub gene was found in the CTD database. Immune infiltration and its association with the hub genes were analyzed using CIBERSORT. Finally, WGCNA was employed to investigate immune invasion cells' significantly related gene modules, following enrichment analysis of their GO and KEGG. RESULTS: The dataset enrichment analysis, immune invasion analysis and WGCNA analysis showed that the occurrence and early progression of HAPE were unrelated to inflammation. The hub genes associated with immunity obtained with MCODE algorithm of Cytoscape were JAK2 and B2M.. RT-qPCR and ROC curves confirmed that the hub gene B2M was a specific biomarker of HAPE and had diagnostic value, and single-gene GSEA analysis confirmed that it participated in MHC I molecule-mediated antigen presentation ability decreased, resulting in reduced immunity. CONCLUSION: Occurrence and early progression of high altitude pulmonary edema may not be related to inflammation. B2M may be a new clinical potential biomarker for HAPE for early diagnosis and therapeutic evaluation as well as therapeutic targets, and its decrease may be related to reduced immunity due to reduced ability of MCH I to participate in antigen submission.


Subject(s)
Altitude Sickness , Hypertension, Pulmonary , Pulmonary Edema , Humans , Altitude Sickness/diagnosis , Altitude Sickness/genetics , Altitude , Biomarkers , Inflammation , Computational Biology
18.
World J Clin Cases ; 11(22): 5224-5235, 2023 Aug 06.
Article in English | MEDLINE | ID: mdl-37621586

ABSTRACT

BACKGROUND: Most physicians consider molars with chronic apical periodontitis (CAP) lesions as contraindications for immediate implant placement. At the patient's request, we perform immediate implant placement of the mandibular molars with CAP in clinical practice. AIM: To retrospectively analyze and compare the 5-year outcomes of immediate implant placement of the mandibular molars with CAP and those without obvious inflammation. METHODS: The clinical data of patients with immediate implant placement of the mandibular molars in the Department of Oral and Maxillofacial Surgery, the Affiliated Hospital of Qingdao University, from June 2015 to June 2017 were collected. The patients were divided into CAP (n = 52) and no-CAP (n = 45) groups. Changes in bone mineral density and bone mass around implants were analyzed 5 years after implant restoration. RESULTS: At 5 years after implantation, the peri-implant bone mineral density was 528.2 ± 78.8 Hounsfield unit (HU) in the CAP group and 562.6 ± 82.9 HU in the no-CAP group (P = 0.126). Marginal bone resorption around implants did not differ significantly between the two groups, including buccal (P = 0.268) or lingual (P = 0.526) resorption in the vertical direction or buccal (P = 0.428) or lingual (P = 0.560) resorption in the horizontal direction. Changes in the peri-implant jump space did not differ significantly between the two groups, including the buccal (P = 0.247) or lingual (P = 0.604) space in the vertical direction or buccal (P = 0.527) or lingual (P = 0.707) space in the horizontal direction. The gray value of cone-beam computed tomography measured using Image J software can reflect the bone mineral density. In the CAP area, the gray values of the bone tissue immediately and 5 years after implant placement differed significantly from those of the surrounding bone tissue (P < 0.01). CONCLUSION: The results of this study suggest that immediate implant placement of the mandibular molars with CAP can achieve satisfactory 5-year clinical results, without significant differences in the complications, survival rate, or bone tissue condition from the no-CAP mandibular molars.

19.
Sensors (Basel) ; 23(13)2023 Jun 30.
Article in English | MEDLINE | ID: mdl-37447900

ABSTRACT

Accurate detection and timely treatment of component defects in substations is an important measure to ensure the safe operation of power systems. In this study, taking substation meters as an example, a dataset of common meter defects, such as a fuzzy or damaged dial on the meter and broken meter housing, is constructed from the images of manual inspection in power systems. There are several challenges involved in accurately detecting defects in substation meter images, such as the complex background, different meter sizes and large differences in the shapes of meter defects. Therefore, this paper proposes the PHAM-YOLO (Parallel Hybrid Attention Mechanism You Only Look Once) network for automatic detection of substation meter defects. In order to make the network pay attention to the key areas against the complex background of the meter defect images and the differences between different defect features, a Parallel Hybrid Attention Mechanism (PHAM) module is designed and added to the backbone of YOLOv5. PHAM integration of local and non-local correlation information can highlight these differences while remaining focused on the meter defect features. To improve the expressive ability of the feature map, a Spatial Pyramid Pooling Fast (SPPF) module is introduced, which pools the input feature map using a continuous fixed convolution kernel, fusing the feature maps of different receptive fields. Bounding box regression (BBR) is the key way to determine object positioning performance in defect detection. EIOU (Efficient Intersection over Union) is, therefore, introduced as a boundary loss function to solve the ambiguity of the CIOU (Complete Intersection Over Union) loss function, making the BBR regression more accurate. The experimental results show that the Average Precision Mean (mAP), Precision (P) and Recall (R) of the proposed PHAM-YOLO network in the dataset are 78.3%, 78.3%, and 79.9%, respectively, with mAP being improved by 2.7% compared to the original model and higher than SSD, Fast R-CNN, etc.


Subject(s)
Algorithms , Records , Spine
20.
IEEE Trans Pattern Anal Mach Intell ; 45(10): 12085-12097, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37285254

ABSTRACT

The cost efficiency of model inference is critical to real-world machine learning (ML) applications, especially for delay-sensitive tasks and resource-limited devices. A typical dilemma is: in order to provide complex intelligent services (e.g., smart city), we need inference results of multiple ML models, but the cost budget (e.g., GPU memory) is not enough to run all of them. In this work, we study underlying relationships among black-box ML models and propose a novel learning task: model linking, which aims to bridge the knowledge of different black-box models by learning mappings (dubbed model links) between their output spaces. We propose the design of model links which supports linking heterogeneous black-box ML models. Also, in order to address the distribution discrepancy challenge, we present adaptation and aggregation methods of model links. Based on our proposed model links, we developed a scheduling algorithm, named MLink. Through collaborative multi-model inference enabled by model links, MLink can improve the accuracy of obtained inference results under the cost budget. We evaluated MLink on a multi-modal dataset with seven different ML models and two real-world video analytics systems with six ML models and 3,264 hours of video. Experimental results show that our proposed model links can be effectively built among various black-box models. Under the budget of GPU memory, MLink can save 66.7% inference computations while preserving 94% inference accuracy, which outperforms multi-task learning, deep reinforcement learning-based scheduler and frame filtering baselines.

SELECTION OF CITATIONS
SEARCH DETAIL