ABSTRACT
Cotton Verticillium wilt (VW) is a devastating disease seriously affecting fiber yield and quality, and the most effective and economical prevention measure at present is selection and extension of Gossypium varieties harboring high resistance to VW. However, multiple attempts to improve the VW resistance of the most widely cultivated upland cottons have made little significant progress. The introduction of chromosome segment substitution lines (CSSLs) provide the practical solutions for merging the superior genes related with high yield and wide adaptation from Gossypium hirsutum and VW resistance and the excellent fiber quality from Gossypium barbadense. In this study, 300 CSSLs were chosen from the developed BC5F3:5 CSSLs constructed from CCRI36 (G. hirsutum) and Hai1 (G. barbadense) to conduct quantitative trait locus (QTL) mapping of VW resistance, and a total of 40 QTL relevant to VW disease index (DI) were identified. Phenotypic data were obtained from a 2-year investigation in two fields with two replications per year. All the QTL were distributed on 21 chromosomes, with phenotypic variation of 1.05%-10.52%, and 21 stable QTL were consistent in at least two environments. Based on a meta-analysis, 34 novel QTL were identified, while 6 loci were consistent with previously identified QTL. Meanwhile, 70 QTL hotspot regions were detected, including 44 novel regions. This study concentrates on QTL identification and screening for hotspot regions related with VW in the 300 CSSLs, and the results lay a solid foundation not only for revealing the genetic and molecular mechanisms of VW resistance but also for further fine mapping, gene cloning and molecular designing in breeding programs for resistant cotton varieties.
Subject(s)
Verticillium , Chromosomes, Plant/genetics , Gossypium/genetics , Phenotype , Plant Breeding , Quantitative Trait LociABSTRACT
Chromosome segment substitution lines (CSSLs) are ideal materials for identifying genetic effects. In this study, CSSL MBI7561 with excellent fiber quality that was selected from BC4F3:5 of CCRI45 (Gossypium hirsutum) × Hai1 (Gossypium barbadense) was used to construct 3 secondary segregating populations with 2 generations (BC5F2 and BC5F2:3). Eighty-one polymorphic markers related to 33 chromosome introgressive segments on 18 chromosomes were finally screened using 2292 SSR markers which covered the whole tetraploid cotton genome. A total of 129 quantitative trait loci (QTL) associated with fiber quality (103) and yield-related traits (26) were detected on 17 chromosomes, explaining 0.85-30.35% of the phenotypic variation; 39 were stable (30.2%), 53 were common (41.1%), 76 were new (58.9%), and 86 had favorable effects on the related traits. More QTL were distributed in the Dt subgenome than in the At subgenome. Twenty-five stable QTL clusters (with stable or common QTL) were detected on 22 chromosome introgressed segments. Finally, the 6 important chromosome introgressed segments (Seg-A02-1, Seg-A06-1, Seg-A07-2, Seg-A07-3, Seg-D07-3, and Seg-D06-2) were identified as candidate chromosome regions for fiber quality, which should be given more attention in future QTL fine mapping, gene cloning, and marker-assisted selection (MAS) breeding.
Subject(s)
Chromosomes, Plant/genetics , Gossypium/genetics , Quantitative Trait Loci/genetics , Chromosome Mapping/methods , Cotton Fiber , Crosses, Genetic , Genome, Plant/genetics , PhenotypeABSTRACT
BACKGROUND: Verticillium wilt (VW), also known as "cotton cancer," is one of the most destructive diseases in global cotton production that seriously impacts fiber yield and quality. Despite numerous attempts, little significant progress has been made in improving the VW resistance of upland cotton. The development of chromosome segment substitution lines (CSSLs) from Gossypium hirsutum × G. barbadense has emerged as a means of simultaneously developing new cotton varieties with high-yield, superior fiber, and resistance to VW. RESULTS: In this study, VW-resistant investigations were first conducted in an artificial greenhouse, a natural field, and diseased nursery conditions, resulting in the identification of one stably VW-resistant CSSL, MBI8255, and one VW-susceptible G. hirsutum, CCRI36, which were subsequently subjected to biochemical tests and transcriptome sequencing during V991 infection (0, 1, and 2 days after inoculation). Eighteen root samples with three replications were collected to perform multiple comparisons of enzyme activity and biochemical substance contents. The findings indicated that VW resistance was positively correlated with peroxidase and polyphenol oxidase activity, but negatively correlated with malondialdehyde content. Additionally, RNA sequencing was used for the same root samples, resulting in a total of 77,412 genes, of which 23,180 differentially expressed genes were identified from multiple comparisons between samples. After Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analysis on the expression profiles identified using Short Time-series Expression Miner, we found that the metabolic process in the biological process, as well as the pathways of phenylpropanoid biosynthesis and plant hormone signal transduction, participated significantly in the response to VW. Gene functional annotation and expression quantity analysis indicated the important roles of the phenylpropanoid metabolic pathway and oxidation-reduction process in response to VW, which also provided plenty of candidate genes related to plant resistance. CONCLUSIONS: This study concentrates on the preliminary response to V991 infection by comparing the VW-resistant CSSL and its VW-susceptible recurrent parent. Not only do our findings facilitate the culturing of new resistant varieties with high yield and superior performance, but they also broaden our understanding of the mechanisms of cotton resistance to VW.
Subject(s)
Chromosomes, Plant/genetics , Gossypium/genetics , Gossypium/microbiology , Transcriptome/genetics , Verticillium/pathogenicity , Gene Expression Regulation, Plant/geneticsABSTRACT
BACKGROUND: How to develop new cotton varieties possessing high yield traits of Upland cotton and superior fiber quality traits of Sea Island cotton remains a key task for cotton breeders and researchers. While multiple attempts bring in little significant progresses, the development of Chromosome Segment Substitution Lines (CSSLs) from Gossypium barbadense in G. hirsutum background provided ideal materials for aforementioned breeding purposes in upland cotton improvement. Based on the excellent fiber performance and relatively clear chromosome substitution segments information identified by Simple Sequence Repeat (SSR) markers, two CSSLs, MBI9915 and MBI9749, together with the recurrent parent CCRI36 were chosen to conduct transcriptome sequencing during the development stages of fiber elongation and Secondary Cell Wall (SCW) synthesis (from 10DPA and 28DPA), aiming at revealing the mechanism of fiber development and the potential contribution of chromosome substitution segments from Sea Island cotton to fiber development of Upland cotton. RESULTS: In total, 15 RNA-seq libraries were constructed and sequenced separately, generating 705.433 million clean reads with mean GC content of 45.13% and average Q30 of 90.26%. Through multiple comparisons between libraries, 1801 differentially expressed genes (DEGs) were identified, of which the 902 up-regulated DEGs were mainly involved in cell wall organization and response to oxidative stress and auxin, while the 898 down-regulated ones participated in translation, regulation of transcription, DNA-templated and cytoplasmic translation based on GO annotation and KEGG enrichment analysis. Subsequently, STEM software was performed to explicate the temporal expression pattern of DEGs. Two peroxidases and four flavonoid pathway-related genes were identified in the "oxidation-reduction process", which could play a role in fiber development and quality formation. Finally, the reliability of RNA-seq data was validated by quantitative real-time PCR of randomly selected 20 genes. CONCLUSIONS: The present report focuses on the similarities and differences of transcriptome profiles between the two CSSLs and the recurrent parent CCRI36 and provides novel insights into the molecular mechanism of fiber development, and into further exploration of the feasible contribution of G. barbadense substitution segments to fiber quality formation, which will lay solid foundation for simultaneously improving fiber yield and quality of upland cotton through CSSLs.
Subject(s)
Chromosomes, Plant/genetics , Cotton Fiber , Gene Expression Profiling , Gossypium/growth & development , Gossypium/genetics , Hybridization, Genetic , Cell Wall/metabolism , Gossypium/cytology , Phenotype , Reproducibility of ResultsABSTRACT
Hai1, a Gossypium barbadense L. variety with super fiber quality, and CCRI36 and Zhong221, two upland cotton cultivars (Gossypium hirsutum L.), were used as recurrent parents to develop two backcross combinations of CCRI36xHai1 and Zhong221xHai1. Fiber quality of inter-crossing bolls and self-crossing bolls were analyzed from different generations of the two combinations. The results showed that there existed significant difference in the average value, pole difference and CV% of fiber quality traits, and no significant correlation in fiber quality traits between inter-crossing bolls (BC2F0) and self-crossing bolls (BC1F1) from male parent plants. There existed no significant difference in the average value, pole difference and CV% of fiber quality traits between inter-crossing bolls (BC2F0) and self-crossing bolls from the recurrent parents when BC1F1 plants were used as male parents and the recurrent parents (CCRI36, Zhong221) as female parents. The results also showed that average value, pole difference and CV% of fiber traits of inter-crossing bolls (BC3F0) were close to those of the female parents (BC2F1). When BC2F1 populations were used as female parents and the recurrent parents (CCRI36, Zhong221) were used as male parents, there were extremely significant positive correlation for fiber length, strength, micronaire value and elongation, except for fiber uniformity between inter-crossing bolls (BC3F0) and self-crossing bolls (BC2F1). So, fiber quality of inter-crossing bolls were close to those of self-crossing bolls of maternal plants and the male parent pollen genotype had no prominent effect to fiber quality traits of inter-crossing bolls. Fiber quality traits were controlled mainly by maternal plant genotype, while the contemporary seed embryonal genotype showed no significant effects for fiber quality.
Subject(s)
Cotton Fiber , Gossypium/anatomy & histology , Gossypium/genetics , Genotype , Hybridization, GeneticABSTRACT
Twenty cross combinations were produced using a complete diallel-mating system with five varieties or lines that differed in fiber properties in Upland cotton to determine the inheritance and breeding merits of superior fiber properties. Evaluations of parents and F1 ' s were conducted in two years. The results showed that fiber length uniformity was greatly affected by environmental factors, whereas the other fiber properties were mainly controlled by genetic factors. There were no significant interaction effect of environment with genotype for fiber strength or length, but there were significant environment interactions with additive and maternal affects for Micronaire, and with the dominance effects for elongation. There were no maternal effect, and additive effects predominated for the all fiber properties. Additive heritability was high for fiber strength and length, 77.6% and 73.2% respectively; for Micronaire, it was 45.2%, while the dominance effect was 11.5%, which was the highest among fiber properties. Micronaire had significant heterosis over mid-parent based on population mean (3.2%), while the other fiber properties showed no heterosis. Therefore, the performance of fiber properties in F1 ' s can be predicted from the average value of both parents. Since the additive heritability of strength, length, and fineness of fiber were high, these traits can be selected in early generations in breeding for high quality fiber properties.
Subject(s)
Cotton Fiber , Crosses, Genetic , Gossypium/genetics , Hybrid Vigor/genetics , Multifactorial Inheritance/genetics , Breeding , Environment , Genes, Plant/genetics , Gossypium/growth & development , PhenotypeABSTRACT
The modern textile industry depends on the improvement of fiber quality, especially strength to meet the needs of higher spinning speed. Inheritance of super quality fiber properties in Upland cotton was conducted in the present paper. P1, P2, F1, B1, B2 and F2 of eight crosses from five parents with different fiber strength, i.e. 7235 x TM1, TM1 x 7235, HS42 x TM1, PD69 x TM1, MD51 x TM1, 7235 x HS42, 7235 x PD69 and HS42 x PD69, and F2:3 for 7235 x TM1, were used in the study. The materials were planted in Nanjing or Hainan in 1998 and 1999, the individual plant fiber samples were tested with HVI system in Cotton Research Institute of CAAS at Anyang. The segregation analysis methods for major genes plus polygene mixed inheritance model developed by Gai were used to identify the genetic system of fiber qualities. The results from joint analyses of multiple segregating generations as well as single segregating generations, especially for F2:3, showed one major gene plus polygene mixed inheritance model in all fiber quality characters. The heritability values of major gene in F2 of 7235 x TM1 with great parent difference were estimated as 19.6% for fiber strength, 32.0% for micronaire and 13.9% for fiber length, but little in B1 and B2 for fiber qualities. The fiber length showed high and positive dominant effect, but negative value or zero of major or polygene dominant effects for other fiber qualities. Therefore, Mid-parent value or tendency to lower parent in F1 for most of fiber qualities lead to low selection efficiency, which suggests that molecular assisted selection should be considered at first in the improvement of fiber qualities.