Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters








Database
Language
Publication year range
1.
BMC Med Imaging ; 24(1): 231, 2024 Sep 02.
Article in English | MEDLINE | ID: mdl-39223468

ABSTRACT

Recent improvements in artificial intelligence and computer vision make it possible to automatically detect abnormalities in medical images. Skin lesions are one broad class of them. There are types of lesions that cause skin cancer, again with several types. Melanoma is one of the deadliest types of skin cancer. Its early diagnosis is at utmost importance. The treatments are greatly aided with artificial intelligence by the quick and precise diagnosis of these conditions. The identification and delineation of boundaries inside skin lesions have shown promise when using the basic image processing approaches for edge detection. Further enhancements regarding edge detections are possible. In this paper, the use of fractional differentiation for improved edge detection is explored on the application of skin lesion detection. A framework based on fractional differential filters for edge detection in skin lesion images is proposed that can improve automatic detection rate of malignant melanoma. The derived images are used to enhance the input images. Obtained images then undergo a classification process based on deep learning. A well-studied dataset of HAM10000 is used in the experiments. The system achieves 81.04% accuracy with EfficientNet model using the proposed fractional derivative based enhancements whereas accuracies are around 77.94% when using original images. In almost all the experiments, the enhanced images improved the accuracy. The results show that the proposed method improves the recognition performance.


Subject(s)
Melanoma , Skin Neoplasms , Melanoma/diagnostic imaging , Humans , Skin Neoplasms/diagnostic imaging , Skin Neoplasms/pathology , Image Enhancement/methods , Image Interpretation, Computer-Assisted/methods , Deep Learning , Algorithms
2.
Comput Intell Neurosci ; 2020: 4705838, 2020.
Article in English | MEDLINE | ID: mdl-32908475

ABSTRACT

[This corrects the article DOI: 10.1155/2019/4629859.].

3.
Comput Intell Neurosci ; 2019: 4629859, 2019.
Article in English | MEDLINE | ID: mdl-31281335

ABSTRACT

In this paper, we address the problem of identifying brain haemorrhage which is considered as a tedious task for radiologists, especially in the early stages of the haemorrhage. The problem is solved using a deep learning approach where a convolutional neural network (CNN), the well-known AlexNet neural network, and also a modified novel version of AlexNet with support vector machine (AlexNet-SVM) classifier are trained to classify the brain computer tomography (CT) images into haemorrhage or nonhaemorrhage images. The aim of employing the deep learning model is to address the primary question in medical image analysis and classification: can a sufficient fine-tuning of a pretrained model (transfer learning) eliminate the need of building a CNN from scratch? Moreover, this study also aims to investigate the advantages of using SVM as a classifier instead of a three-layer neural network. We apply the same classification task to three deep networks; one is created from scratch, another is a pretrained model that was fine-tuned to the brain CT haemorrhage classification task, and our modified novel AlexNet model which uses the SVM classifier. The three networks were trained using the same number of brain CT images available. The experiments show that the transfer of knowledge from natural images to medical images classification is possible. In addition, our results proved that the proposed modified pretrained model "AlexNet-SVM" can outperform a convolutional neural network created from scratch and the original AlexNet in identifying the brain haemorrhage.


Subject(s)
Deep Learning , Hemorrhage , Machine Learning , Neural Networks, Computer , Humans , Intracranial Hemorrhages/diagnosis , Radiologists , Support Vector Machine
SELECTION OF CITATIONS
SEARCH DETAIL