Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 182
Filter
1.
Alzheimers Dement ; 2024 Oct 11.
Article in English | MEDLINE | ID: mdl-39392215

ABSTRACT

INTRODUCTION: Recent technological advances have increased the risk that de-identified brain images could be re-identified from face imagery. The Alzheimer's Disease Neuroimaging Initiative (ADNI) is a leading source of publicly available de-identified brain imaging, who quickly acted to protect participants' privacy. METHODS: An independent expert committee evaluated 11 face-deidentification ("de-facing") methods and selected four for formal testing. RESULTS: Effects of de-facing on brain measurements were comparable across methods and sufficiently small to recommend de-facing in ADNI. The committee ultimately recommended mri_reface for advantages in reliability, and for some practical considerations. ADNI leadership approved the committee's recommendation, beginning in ADNI4. DISCUSSION: ADNI4 de-faces all applicable brain images before subsequent pre-processing, analyses, and public release. Trained analysts inspect de-faced images to confirm complete face removal and complete non-modification of brain. This paper details the history of the algorithm selection process and extensive validation, then describes the production workflows for de-facing in ADNI. HIGHLIGHTS: ADNI is implementing "de-facing" of MRI and PET beginning in ADNI4. "De-facing" alters face imagery in brain images to help protect privacy. Four algorithms were extensively compared for ADNI and mri_reface was chosen. Validation confirms mri_reface is robust and effective for ADNI sequences. Validation confirms mri_reface negligibly affects ADNI brain measurements.

2.
Alzheimers Res Ther ; 16(1): 204, 2024 Sep 16.
Article in English | MEDLINE | ID: mdl-39285454

ABSTRACT

BACKGROUND: The medial temporal lobe (MTL) is hypothesized to be relatively spared in early-onset Alzheimer's disease (EOAD). Yet, detailed examination of MTL subfields and drivers of atrophy in amnestic EOAD is lacking. METHODS: BioFINDER-2 participants with memory impairment, abnormal amyloid-ß and tau-PET were included. Forty-one amnestic EOAD individuals ≤65 years and, as comparison, late-onset AD (aLOAD, ≥70 years, n = 154) and amyloid-ß-negative cognitively unimpaired controls were included. MTL subregions and biomarkers of (co-)pathologies were measured. RESULTS: AD groups showed smaller MTL subregions compared to controls. Atrophy patterns were similar across AD groups: aLOAD showed thinner entorhinal cortices than aEOAD; aEOAD showed thinner parietal regions than aLOAD. aEOAD showed lower white matter hyperintensities than aLOAD. No differences in MTL tau-PET or transactive response DNA binding protein 43-proxy positivity were found. CONCLUSIONS: We found evidence for MTL atrophy in amnestic EOAD and overall similar levels to aLOAD of MTL tau pathology and co-pathologies.


Subject(s)
Alzheimer Disease , Atrophy , Positron-Emission Tomography , Temporal Lobe , Humans , Alzheimer Disease/pathology , Alzheimer Disease/diagnostic imaging , Atrophy/pathology , Male , Female , Aged , Temporal Lobe/pathology , Temporal Lobe/diagnostic imaging , Middle Aged , Magnetic Resonance Imaging , tau Proteins/metabolism , Age of Onset , Amyloid beta-Peptides/metabolism , Amnesia/pathology , Amnesia/diagnostic imaging , Aged, 80 and over
3.
Imaging Neurosci (Camb) ; 2: 1-30, 2024 May 01.
Article in English | MEDLINE | ID: mdl-39301426

ABSTRACT

Postmortem MRI allows brain anatomy to be examined at high resolution and to link pathology measures with morphometric measurements. However, automated segmentation methods for brain mapping in postmortem MRI are not well developed, primarily due to limited availability of labeled datasets, and heterogeneity in scanner hardware and acquisition protocols. In this work, we present a high-resolution dataset of 135 postmortem human brain tissue specimens imaged at 0.3 mm3 isotropic using a T2w sequence on a 7T whole-body MRI scanner. We developed a deep learning pipeline to segment the cortical mantle by benchmarking the performance of nine deep neural architectures, followed by post-hoc topological correction. We evaluate the reliability of this pipeline via overlap metrics with manual segmentation in 6 specimens, and intra-class correlation between cortical thickness measures extracted from the automatic segmentation and expert-generated reference measures in 36 specimens. We also segment four subcortical structures (caudate, putamen, globus pallidus, and thalamus), white matter hyperintensities, and the normal appearing white matter, providing a limited evaluation of accuracy. We show generalizing capabilities across whole-brain hemispheres in different specimens, and also on unseen images acquired at 0.28 mm3 and 0.16 mm3 isotropic T2*w fast low angle shot (FLASH) sequence at 7T. We report associations between localized cortical thickness and volumetric measurements across key regions, and semi-quantitative neuropathological ratings in a subset of 82 individuals with Alzheimer's disease (AD) continuum diagnoses. Our code, Jupyter notebooks, and the containerized executables are publicly available at the project webpage (https://pulkit-khandelwal.github.io/exvivo-brain-upenn/).

4.
Alzheimers Dement ; 2024 Sep 16.
Article in English | MEDLINE | ID: mdl-39279366

ABSTRACT

This paper for the 20th anniversary of the Alzheimer's Disease Neuroimaging Initiative (ADNI) provides an overview of magnetic resonance imaging (MRI) of medial temporal lobe (MTL) subregions in ADNI using a dedicated high-resolution T2-weighted sequence. A review of the work that supported the inclusion of this imaging modality into ADNI Phase 3 is followed by a brief description of the ADNI MTL imaging and analysis protocols and a summary of studies that have used these data. This review is supplemented by a new study that uses novel surface-based tools to characterize MTL neurodegeneration across biomarker-defined AD stages. This analysis reveals a pattern of spreading cortical thinning associated with increasing levels of tau pathology in the presence of elevated amyloid beta, with apparent epicenters in the transentorhinal region and inferior hippocampal subfields. The paper concludes with an outlook for high-resolution imaging of the MTL in ADNI Phase 4. HIGHLIGHTS: As of Phase 3, the Alzheimer's Disease Neuroimaging Initiative (ADNI) magnetic resonance imaging (MRI) protocol includes a high-resolution T2-weighted MRI scan optimized for imaging hippocampal subfields and medial temporal lobe (MTL) subregions. These scans are processed by the ADNI core to obtain automatic segmentations of MTL subregions and to derive morphologic measurements. More detailed granular examination of MTL neurodegeneration in response to disease progression is achieved by applying surface-based modeling techniques. Surface-based analysis of gray matter loss in MTL subregions reveals increasing and spatially expanding patterns of neurodegeneration with advancing stages of Alzheimer's disease (AD), as defined based on amyloid and tau positron emission tomography biomarkers in accordance with recently proposed criteria. These patterns closely align with post mortem literature on spread of pathological tau in AD, supporting the role of tau pathology in the presence of elevated levels of amyloid beta as the driver of neurodegeneration.

5.
Alzheimers Dement ; 2024 Sep 11.
Article in English | MEDLINE | ID: mdl-39258539

ABSTRACT

The magnetic resonance imaging (MRI) Core has been operating since Alzheimer's Disease Neuroimaging Initiative's (ADNI) inception, providing 20 years of data including reliable, multi-platform standardized protocols, carefully curated image data, and quantitative measures provided by expert investigators. The overarching purposes of the MRI Core include: (1) optimizing and standardizing MRI acquisition methods, which have been adopted by many multicenter studies and trials worldwide and (2) providing curated images and numeric summary values from relevant MRI sequences/contrasts to the scientific community. Over time, ADNI MRI has become increasingly complex. To remain technically current, the ADNI MRI protocol has changed substantially over the past two decades. The ADNI 4 protocol contains nine different imaging types (e.g., three dimensional [3D] T1-weighted and fluid-attenuated inversion recovery [FLAIR]). Our view is that the ADNI MRI data are a greatly underutilized resource. The purpose of this paper is to educate the scientific community on ADNI MRI methods and content to promote greater awareness, accessibility, and use. HIGHLIGHTS: The MRI Core provides multi-platform standardized protocols, carefully curated image data, and quantitative analysis by expert groups. The ADNI MRI protocol has undergone major changes over the past two decades to remain technically current. As of April 25, 2024, the following numbers of image series are available: 17,141 3D T1w; 6877 FLAIR; 3140 T2/PD; 6623 GRE; 3237 dMRI; 2846 ASL; 2968 TF-fMRI; and 2861 HighResHippo (see Table 1 for abbreviations). As of April 25, 2024, the following numbers of quantitative analyses are available: FreeSurfer 10,997; BSI 6120; tensor based morphometry (TBM) and TBM-SYN 12,019; WMH 9944; dMRI 1913; ASL 925; TF-fMRI NFQ 2992; and medial temporal subregion volumes 2726 (see Table 4 for abbreviations). ADNI MRI is an underutilized resource that could be more useful to the research community.

6.
Acta Neuropathol ; 148(1): 37, 2024 Sep 03.
Article in English | MEDLINE | ID: mdl-39227502

ABSTRACT

The medial temporal lobe (MTL) is a hotspot for neuropathology, and measurements of MTL atrophy are often used as a biomarker for cognitive decline associated with neurodegenerative disease. Due to the aggregation of multiple proteinopathies in this region, the specific relationship of MTL atrophy to distinct neuropathologies is not well understood. Here, we develop two quantitative algorithms using deep learning to measure phosphorylated tau (p-tau) and TDP-43 (pTDP-43) pathology, which are both known to accumulate in the MTL and are associated with MTL neurodegeneration. We focus on these pathologies in the context of Alzheimer's disease (AD) and limbic predominant age-related TDP-43 encephalopathy (LATE) and apply our deep learning algorithms to distinct histology sections, on which MTL subregions were digitally annotated. We demonstrate that both quantitative pathology measures show high agreement with expert visual ratings of pathology and discriminate well between pathology stages. In 140 cases with antemortem MR imaging, we compare the association of semi-quantitative and quantitative postmortem measures of these pathologies in the hippocampus with in vivo structural measures of the MTL and its subregions. We find widespread associations of p-tau pathology with MTL subregional structural measures, whereas pTDP-43 pathology had more limited associations with the hippocampus and entorhinal cortex. Quantitative measurements of p-tau pathology resulted in a significantly better model of antemortem structural measures than semi-quantitative ratings and showed strong associations with cortical thickness and volume. By providing a more granular measure of pathology, the quantitative p-tau measures also showed a significant negative association with structure in a severe AD subgroup where semi-quantitative ratings displayed a ceiling effect. Our findings demonstrate the advantages of using quantitative neuropathology to understand the relationship of pathology to structure, particularly for p-tau, and motivate the use of quantitative pathology measurements in future studies.


Subject(s)
Alzheimer Disease , Temporal Lobe , tau Proteins , Humans , Alzheimer Disease/pathology , Temporal Lobe/pathology , Temporal Lobe/diagnostic imaging , Male , Female , Aged , tau Proteins/metabolism , Aged, 80 and over , Deep Learning , DNA-Binding Proteins/metabolism , Atrophy/pathology , Middle Aged , Magnetic Resonance Imaging/methods
7.
bioRxiv ; 2024 May 23.
Article in English | MEDLINE | ID: mdl-38826413

ABSTRACT

Background: Volumetry of subregions in the medial temporal lobe (MTL) computed from automatic segmentation in MRI can track neurodegeneration in Alzheimer's disease. However, image quality may vary in MRI. Poor quality MR images can lead to unreliable segmentation of MTL subregions. Considering that different MRI contrast mechanisms and field strengths (jointly referred to as "modalities" here) offer distinct advantages in imaging different parts of the MTL, we developed a muti-modality segmentation model using both 7 tesla (7T) and 3 tesla (3T) structural MRI to obtain robust segmentation in poor-quality images. Method: MRI modalities including 3T T1-weighted, 3T T2-weighted, 7T T1-weighted and 7T T2-weighted (7T-T2w) of 197 participants were collected from a longitudinal aging study at the Penn Alzheimer's Disease Research Center. Among them, 7T-T2w was used as the primary modality, and all other modalities were rigidly registered to the 7T-T2w. A model derived from nnU-Net took these registered modalities as input and outputted subregion segmentation in 7T-T2w space. 7T-T2w images most of which had high quality from 25 selected training participants were manually segmented to train the multi-modality model. Modality augmentation, which randomly replaced certain modalities with Gaussian noise, was applied during training to guide the model to extract information from all modalities. To compare our proposed model with a baseline single-modality model in the full dataset with mixed high/poor image quality, we evaluated the ability of derived volume/thickness measures to discriminate Amyloid+ mild cognitive impairment (A+MCI) and Amyloid- cognitively unimpaired (A-CU) groups, as well as the stability of these measurements in longitudinal data. Results: The multi-modality model delivered good performance regardless of 7T-T2w quality, while the single-modality model under-segmented subregions in poor-quality images. The multi-modality model generally demonstrated stronger discrimination of A+MCI versus A-CU. Intra-class correlation and Bland-Altman plots demonstrate that the multi-modality model had higher longitudinal segmentation consistency in all subregions while the single-modality model had low consistency in poor-quality images. Conclusion: The multi-modality MRI segmentation model provides an improved biomarker for neurodegeneration in the MTL that is robust to image quality. It also provides a framework for other studies which may benefit from multimodal imaging.

8.
Nat Commun ; 15(1): 4803, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38839876

ABSTRACT

Our current understanding of the spread and neurodegenerative effects of tau neurofibrillary tangles (NFTs) within the medial temporal lobe (MTL) during the early stages of Alzheimer's Disease (AD) is limited by the presence of confounding non-AD pathologies and the two-dimensional (2-D) nature of conventional histology studies. Here, we combine ex vivo MRI and serial histological imaging from 25 human MTL specimens to present a detailed, 3-D characterization of quantitative NFT burden measures in the space of a high-resolution, ex vivo atlas with cytoarchitecturally-defined subregion labels, that can be used to inform future in vivo neuroimaging studies. Average maps show a clear anterior to poster gradient in NFT distribution and a precise, spatial pattern with highest levels of NFTs found not just within the transentorhinal region but also the cornu ammonis (CA1) subfield. Additionally, we identify granular MTL regions where measures of neurodegeneration are likely to be linked to NFTs specifically, and thus potentially more sensitive as early AD biomarkers.


Subject(s)
Alzheimer Disease , Magnetic Resonance Imaging , Neurofibrillary Tangles , Temporal Lobe , tau Proteins , Humans , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Temporal Lobe/diagnostic imaging , Temporal Lobe/metabolism , Temporal Lobe/pathology , tau Proteins/metabolism , Male , Female , Aged , Magnetic Resonance Imaging/methods , Neurofibrillary Tangles/metabolism , Neurofibrillary Tangles/pathology , Aged, 80 and over , Autopsy , Neuroimaging/methods , Middle Aged , Postmortem Imaging
9.
bioRxiv ; 2024 May 21.
Article in English | MEDLINE | ID: mdl-38826333

ABSTRACT

Background: The medial temporal lobe (MTL) is hypothesized to be relatively spared in early-onset Alzheimer's disease (EOAD). Yet, detailed examination of MTL subfield volumes and drivers of atrophy in amnestic EOAD is lacking. Methods: BioFINDER-2 participants with memory impairment, abnormal amyloid-ß status and tau-PET were included. Forty-one EOAD individuals aged ≤65 years and, as comparison, late-onset AD (LOAD, ≥70 years, n=154) and Aß-negative cognitively unimpaired controls were included. MTL subregions and biomarkers of (co-)pathologies were measured. Results: AD groups showed smaller MTL subregions compared to controls. Atrophy patterns were similar across AD groups, although LOAD showed thinner entorhinal cortices compared to EOAD. EOAD showed lower WMH compared to LOAD. No differences in MTL tau-PET or transactive response DNA binding protein 43-proxy positivity was found. Conclusions: We found in vivo evidence for MTL atrophy in amnestic EOAD and overall similar levels to LOAD of MTL tau pathology and co-pathologies.

10.
J Med Imaging (Bellingham) ; 11(3): 036001, 2024 May.
Article in English | MEDLINE | ID: mdl-38751729

ABSTRACT

Purpose: Deformable medial modeling is an inverse skeletonization approach to representing anatomy in medical images, which can be used for statistical shape analysis and assessment of patient-specific anatomical features such as locally varying thickness. It involves deforming a pre-defined synthetic skeleton, or template, to anatomical structures of the same class. The lack of software for creating such skeletons has been a limitation to more widespread use of deformable medial modeling. Therefore, the objective of this work is to present an open-source user interface (UI) for the creation of synthetic skeletons for a range of medial modeling applications in medical imaging. Approach: A UI for interactive design of synthetic skeletons was implemented in 3D Slicer, an open-source medical image analysis application. The steps in synthetic skeleton design include importation and skeletonization of a 3D segmentation, followed by interactive 3D point placement and triangulation of the medial surface such that the desired branching configuration of the anatomical structure's medial axis is achieved. Synthetic skeleton design was evaluated in five clinical applications. Compatibility of the synthetic skeletons with open-source software for deformable medial modeling was tested, and representational accuracy of the deformed medial models was evaluated. Results: Three users designed synthetic skeletons of anatomies with various topologies: the placenta, aortic root wall, mitral valve, cardiac ventricles, and the uterus. The skeletons were compatible with skeleton-first and boundary-first software for deformable medial modeling. The fitted medial models achieved good representational accuracy with respect to the 3D segmentations from which the synthetic skeletons were generated. Conclusions: Synthetic skeleton design has been a practical challenge in leveraging deformable medial modeling for new clinical applications. This work demonstrates an open-source UI for user-friendly design of synthetic skeletons for anatomies with a wide range of topologies.

11.
Alzheimers Dement ; 20(6): 4147-4158, 2024 06.
Article in English | MEDLINE | ID: mdl-38747539

ABSTRACT

INTRODUCTION: Typical MRI measures of neurodegeneration have limited sensitivity in early disease stages. Diffusion MRI (dMRI) microstructural measures may allow for detection in preclinical stages. METHODS: Participants had dMRI and either beta-amyloid PET or plasma biomarkers of Alzheimer's pathology within 18 months of MRI. Microstructure was measured in portions of the medial temporal lobe (MTL) with high neurofibrillary tangle (NFT) burden based on a previously developed post mortem 3D-map. Regressions examined relationships between microstructure and markers of Alzheimer's pathology in preclinical disease and then across disease stages. RESULTS: There was higher isometric volume fraction in amyloid-positive compared to amyloid-negative cognitively unimpaired individuals in high tangle MTL regions. Similarly, plasma biomarkers and 18F-flortaucipir were associated with microstructural changes in preclinical disease. Additional microstructural effects were seen across disease stages. DISCUSSION: Combining a post mortem atlas of NFT pathology with microstructural measures allows for detection of neurodegeneration in preclinical Alzheimer's disease. Highlights Typical markers of neurodegeneration are not sensitive in preclinical Alzheimer's. dMRI measured microstructure in regions with high NFT. Microstructural changes occur in medial temporal regions in preclinical disease. Microstructural changes occur in other typical Alzheimer's regions in later stages. Combining post mortem pathology atlases with in vivo MRI is a powerful framework.


Subject(s)
Alzheimer Disease , Biomarkers , Gray Matter , Positron-Emission Tomography , Temporal Lobe , Humans , Alzheimer Disease/pathology , Alzheimer Disease/diagnostic imaging , Temporal Lobe/pathology , Temporal Lobe/diagnostic imaging , Male , Female , Aged , Gray Matter/pathology , Gray Matter/diagnostic imaging , Biomarkers/blood , Amyloid beta-Peptides/metabolism , Neurofibrillary Tangles/pathology , Diffusion Magnetic Resonance Imaging
12.
Hippocampus ; 34(5): 241-260, 2024 May.
Article in English | MEDLINE | ID: mdl-38415962

ABSTRACT

The medial temporal lobe (MTL) cortex, located adjacent to the hippocampus, is crucial for memory and prone to the accumulation of certain neuropathologies such as Alzheimer's disease neurofibrillary tau tangles. The MTL cortex is composed of several subregions which differ in their functional and cytoarchitectonic features. As neuroanatomical schools rely on different cytoarchitectonic definitions of these subregions, it is unclear to what extent their delineations of MTL cortex subregions overlap. Here, we provide an overview of cytoarchitectonic definitions of the entorhinal and parahippocampal cortices as well as Brodmann areas (BA) 35 and 36, as provided by four neuroanatomists from different laboratories, aiming to identify the rationale for overlapping and diverging delineations. Nissl-stained series were acquired from the temporal lobes of three human specimens (two right and one left hemisphere). Slices (50 µm thick) were prepared perpendicular to the long axis of the hippocampus spanning the entire longitudinal extent of the MTL cortex. Four neuroanatomists annotated MTL cortex subregions on digitized slices spaced 5 mm apart (pixel size 0.4 µm at 20× magnification). Parcellations, terminology, and border placement were compared among neuroanatomists. Cytoarchitectonic features of each subregion are described in detail. Qualitative analysis of the annotations showed higher agreement in the definitions of the entorhinal cortex and BA35, while the definitions of BA36 and the parahippocampal cortex exhibited less overlap among neuroanatomists. The degree of overlap of cytoarchitectonic definitions was partially reflected in the neuroanatomists' agreement on the respective delineations. Lower agreement in annotations was observed in transitional zones between structures where seminal cytoarchitectonic features are expressed less saliently. The results highlight that definitions and parcellations of the MTL cortex differ among neuroanatomical schools and thereby increase understanding of why these differences may arise. This work sets a crucial foundation to further advance anatomically-informed neuroimaging research on the human MTL cortex.


Subject(s)
Temporal Lobe , Humans , Temporal Lobe/pathology , Neuroanatomy/methods , Male , Parahippocampal Gyrus/pathology , Parahippocampal Gyrus/diagnostic imaging , Female , Aged , Entorhinal Cortex/pathology , Entorhinal Cortex/anatomy & histology , Laboratories , Aged, 80 and over
14.
Neurobiol Aging ; 135: 79-90, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38262221

ABSTRACT

We used indirect brain mapping with virtual lesion tractography to test the hypothesis that the extent of white matter tract disconnection due to white matter hyperintensities (WMH) is associated with corresponding tract-specific cognitive performance decrements. To estimate tract disconnection, WMH masks were extracted from FLAIR MRI data of 481 cognitively intact participants in the Alzheimer's Disease Neuroimaging Initiative (ADNI) and used as regions of avoidance for fiber tracking in diffusion MRI data from 50 healthy young participants from the Human Connectome Project. Estimated tract disconnection in the right inferior fronto-occipital fasciculus, right frontal aslant tract, and right superior longitudinal fasciculus mediated the effects of WMH volume on executive function. Estimated tract disconnection in the left uncinate fasciculus mediated the effects of WMH volume on memory and in the right frontal aslant tract on language. In a subset of ADNI control participants with amyloid data, positive status increased the probability of periventricular WMH and moderated the relationship between WMH burden and tract disconnection in executive function performance.


Subject(s)
Alzheimer Disease , Connectome , White Matter , Humans , Alzheimer Disease/pathology , White Matter/pathology , Cognition , Neuroimaging , Magnetic Resonance Imaging/methods
15.
Alzheimers Dement ; 20(3): 1586-1600, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38050662

ABSTRACT

INTRODUCTION: Variability in relationship of tau-based neurofibrillary tangles (T) and neurodegeneration (N) in Alzheimer's disease (AD) arises from non-specific nature of N, modulated by non-AD co-pathologies, age-related changes, and resilience factors. METHODS: We used regional T-N residual patterns to partition 184 patients within the Alzheimer's continuum into data-driven groups. These were compared with groups from 159 non-AD (amyloid "negative") patients partitioned using cortical thickness, and groups in 98 patients with ante mortem MRI and post mortem tissue for measuring N and T, respectively. We applied the initial T-N residual model to classify 71 patients in an independent cohort into predefined groups. RESULTS: AD groups displayed spatial T-N mismatch patterns resembling neurodegeneration patterns in non-AD groups, similarly associated with non-AD factors and diverging cognitive outcomes. In the autopsy cohort, limbic T-N mismatch correlated with TDP-43 co-pathology. DISCUSSION: T-N mismatch may provide a personalized approach for determining non-AD factors associated with resilience/vulnerability in AD.


Subject(s)
Alzheimer Disease , Resilience, Psychological , Humans , Alzheimer Disease/pathology , tau Proteins , Neurofibrillary Tangles/pathology , Magnetic Resonance Imaging , Amyloid beta-Peptides
16.
bioRxiv ; 2024 Jan 03.
Article in English | MEDLINE | ID: mdl-37292729

ABSTRACT

The medial temporal lobe (MTL) cortex, located adjacent to the hippocampus, is crucial for memory and prone to the accumulation of certain neuropathologies such as Alzheimer's disease neurofibrillary tau tangles. The MTL cortex is composed of several subregions which differ in their functional and cytoarchitectonic features. As neuroanatomical schools rely on different cytoarchitectonic definitions of these subregions, it is unclear to what extent their delineations of MTL cortex subregions overlap. Here, we provide an overview of cytoarchitectonic definitions of the cortices that make up the parahippocampal gyrus (entorhinal and parahippocampal cortices) and the adjacent Brodmann areas (BA) 35 and 36, as provided by four neuroanatomists from different laboratories, aiming to identify the rationale for overlapping and diverging delineations. Nissl-stained series were acquired from the temporal lobes of three human specimens (two right and one left hemisphere). Slices (50 µm thick) were prepared perpendicular to the long axis of the hippocampus spanning the entire longitudinal extent of the MTL cortex. Four neuroanatomists annotated MTL cortex subregions on digitized (20X resolution) slices with 5 mm spacing. Parcellations, terminology, and border placement were compared among neuroanatomists. Cytoarchitectonic features of each subregion are described in detail. Qualitative analysis of the annotations showed higher agreement in the definitions of the entorhinal cortex and BA35, while definitions of BA36 and the parahippocampal cortex exhibited less overlap among neuroanatomists. The degree of overlap of cytoarchitectonic definitions was partially reflected in the neuroanatomists' agreement on the respective delineations. Lower agreement in annotations was observed in transitional zones between structures where seminal cytoarchitectonic features are expressed more gradually. The results highlight that definitions and parcellations of the MTL cortex differ among neuroanatomical schools and thereby increase understanding of why these differences may arise. This work sets a crucial foundation to further advance anatomically-informed human neuroimaging research on the MTL cortex.

17.
Plast Reconstr Surg ; 153(3): 667-677, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-37036329

ABSTRACT

BACKGROUND: Objective assessment of craniofacial surgery outcomes in a pediatric population is challenging because of the complexity of patient presentations, diversity of procedures performed, and rapid craniofacial growth. There is a paucity of robust methods to quantify anatomical measurements by age and objectively compare craniofacial dysmorphology and postoperative outcomes. Here, the authors present data in developing a racially and ethnically sensitive anthropomorphic database, providing plastic and craniofacial surgeons with "normal" three-dimensional anatomical parameters with which to appraise and optimize aesthetic and reconstructive outcomes. METHODS: Patients with normal craniofacial anatomy undergoing head magnetic resonance imaging (MRI) scans from 2008 to 2021 were included in this retrospective study. Images were used to construct composite (template) images with diffeomorphic image registration method using the Advanced Normalization Tools package. Composites were thresholded to generate binary three-dimensional segmentations used for anatomical measurements in Materalise Mimics. RESULTS: High-resolution MRI scans from 130 patients generated 12 composites from an average of 10 MRI sequences each: four 3-year-olds, four 4-year-olds, and four 5-year-olds (two male, two female, two Black, and two White). The average head circumference of 3-, 4-, and 5-year-old composites was 50.3, 51.5, and 51.7 cm, respectively, comparable to normative data published by the World Health Organization. CONCLUSIONS: Application of diffeomorphic registration-based image template algorithm to MRI is effective in creating composite templates to represent "normal" three-dimensional craniofacial and soft-tissue anatomy. Future research will focus on development of automated computational tools to characterize anatomical normality, generation of indices to grade preoperative severity, and quantification of postoperative results to reduce subjectivity bias.


Subject(s)
Algorithms , Image Processing, Computer-Assisted , Humans , Child , Male , Female , Child, Preschool , Retrospective Studies , Image Processing, Computer-Assisted/methods , Cephalometry/methods , Magnetic Resonance Imaging/methods , Imaging, Three-Dimensional/methods
18.
Front Neurol ; 14: 1245886, 2023.
Article in English | MEDLINE | ID: mdl-37900607

ABSTRACT

Frontotemporal dementia (FTD) is a spectrum of clinically and pathologically heterogenous neurodegenerative dementias. Clinical and anatomical variants of FTD have been described and associated with underlying frontotemporal lobar degeneration (FTLD) pathology, including tauopathies (FTLD-tau) or TDP-43 proteinopathies (FTLD-TDP). FTD patients with predominant degeneration of anterior temporal cortices often develop a language disorder of semantic knowledge loss and/or a social disorder often characterized by compulsive rituals and belief systems corresponding to predominant left or right hemisphere involvement, respectively. The neural substrates of these complex social disorders remain unclear. Here, we present a comparative imaging and postmortem study of two patients, one with FTLD-TDP (subtype C) and one with FTLD-tau (subtype Pick disease), who both developed new rigid belief systems. The FTLD-TDP patient developed a complex set of values centered on positivity and associated with specific physical and behavioral features of pigs, while the FTLD-tau patient developed compulsive, goal-directed behaviors related to general themes of positivity and spirituality. Neuroimaging showed left-predominant temporal atrophy in the FTLD-TDP patient and right-predominant frontotemporal atrophy in the FTLD-tau patient. Consistent with antemortem cortical atrophy, histopathologic examinations revealed severe loss of neurons and myelin predominantly in the anterior temporal lobes of both patients, but the FTLD-tau patient showed more bilateral, dorsolateral involvement featuring greater pathology and loss of projection neurons and deep white matter. These findings highlight that the regions within and connected to anterior temporal lobes may have differential vulnerability to distinct FTLD proteinopathies and serve important roles in human belief systems.

19.
Brain Commun ; 5(5): fcad245, 2023.
Article in English | MEDLINE | ID: mdl-37767219

ABSTRACT

Functional disruption of the medial temporal lobe-dependent networks is thought to underlie episodic memory deficits in aging and Alzheimer's disease. Previous studies revealed that the anterior medial temporal lobe is more vulnerable to pathological and neurodegenerative processes in Alzheimer's disease. In contrast, cognitive and structural imaging literature indicates posterior, as opposed to anterior, medial temporal lobe vulnerability in normal aging. However, the extent to which Alzheimer's and aging-related pathological processes relate to functional disruption of the medial temporal lobe-dependent brain networks is poorly understood. To address this knowledge gap, we examined functional connectivity alterations in the medial temporal lobe and its immediate functional neighbourhood-the Anterior-Temporal and Posterior-Medial brain networks-in normal agers, individuals with preclinical Alzheimer's disease and patients with Mild Cognitive Impairment or mild dementia due to Alzheimer's disease. In the Anterior-Temporal network and in the perirhinal cortex, in particular, we observed an inverted 'U-shaped' relationship between functional connectivity and Alzheimer's stage. According to our results, the preclinical phase of Alzheimer's disease is characterized by increased functional connectivity between the perirhinal cortex and other regions of the medial temporal lobe, as well as between the anterior medial temporal lobe and its one-hop neighbours in the Anterior-Temporal system. This effect is no longer present in symptomatic Alzheimer's disease. Instead, patients with symptomatic Alzheimer's disease displayed reduced hippocampal connectivity within the medial temporal lobe as well as hypoconnectivity within the Posterior-Medial system. For normal aging, our results led to three main conclusions: (i) intra-network connectivity of both the Anterior-Temporal and Posterior-Medial networks declines with age; (ii) the anterior and posterior segments of the medial temporal lobe become increasingly decoupled from each other with advancing age; and (iii) the posterior subregions of the medial temporal lobe, especially the parahippocampal cortex, are more vulnerable to age-associated loss of function than their anterior counterparts. Together, the current results highlight evolving medial temporal lobe dysfunction in Alzheimer's disease and indicate different neurobiological mechanisms of the medial temporal lobe network disruption in aging versus Alzheimer's disease.

20.
Neurology ; 101(4): e370-e385, 2023 07 25.
Article in English | MEDLINE | ID: mdl-37258299

ABSTRACT

BACKGROUND AND OBJECTIVES: Sleep disordered breathing (SDB) has been related to amyloid deposition and an increased dementia risk. However, how SDB relates to medial temporal lobe neurodegeneration and subsequent episodic memory impairment is unclear. Our objective was to investigate the impact of amyloid positivity on the associations between SDB severity, medial temporal lobe subregions, and episodic memory performance in cognitively unimpaired older adults. METHODS: Data were acquired between 2016 and 2020 in the context of the Age-Well randomized controlled trial of the Medit-Aging European project. Participants older than 65 years who were free of neurologic, psychiatric, or chronic medical diseases were recruited from the community. They completed a neuropsychological evaluation, in-home polysomnography, a Florbetapir PET, and an MRI, including a specific high-resolution assessment of the medial temporal lobe and hippocampal subfields. Multiple linear regressions were conducted to test interactions between amyloid status and SDB severity on the volume of MTL subregions, controlling for age, sex, education, and the ApoE4 status. Secondary analyses aimed at investigating the links between SDB, MTL subregional atrophy, and episodic memory performance at baseline and at a mean follow-up of 20.66 months in the whole cohort and in subgroups stratified according to amyloid status. RESULTS: We included 122 cognitively intact community-dwelling older adults (mean age ± SD: 69.40 ± 3.85 years, 77 women, 26 Aß+ individuals) in baseline analyses and 111 at follow-up. The apnea-hypopnea index interacted with entorhinal (ß = -0.81, p < 0.001, pη2 = 0.19), whole hippocampal (ß = -0.61, p < 0.001, pη2 = 0.10), subiculum (ß = -0.56, p = 0.002, pη2 = 0.08), CA1 (ß = -0.55, p = 0.002, pη2 = 0.08), and DG (ß = -0.53, p = 0.003, pη2 = 0.08) volumes such that a higher sleep apnea severity was related to lower MTL subregion volumes in amyloid-positive individuals, but not in those who were amyloid negative. In the whole cohort, lower whole hippocampal (r = 0.27, p = 0.005) and CA1 (r = 0.28, p = 0.003) volumes at baseline were associated with worse episodic memory performance at follow-up. DISCUSSION: Overall, we showed that SDB was associated with MTL atrophy in cognitively asymptomatic older adults engaged in the Alzheimer continuum, which may increase the risk of developing memory impairment over time. TRIAL REGISTRATION INFORMATION: ClinicalTrials.gov Identifier: NCT02977819.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Humans , Female , Aged , Temporal Lobe/metabolism , Acrylates , Amyloid/metabolism , Magnetic Resonance Imaging , Amyloidogenic Proteins , Atrophy , Positron-Emission Tomography , Amyloid beta-Peptides/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL