Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters








Publication year range
1.
Haematologica ; 108(5): 1244-1258, 2023 05 01.
Article in English | MEDLINE | ID: mdl-36325888

ABSTRACT

Persistence of residual disease after induction chemotherapy is a strong predictor of relapse in acute lymphoblastic leukemia (ALL). The bone marrow microenvironment may support escape from treatment. Using three-dimensional fluorescence imaging of ten primary ALL xenografts we identified sites of predilection in the bone marrow for resistance to induction with dexamethasone, vincristine and doxorubicin. We detected B-cell precursor ALL cells predominantly in the perisinusoidal space at early engraftment and after chemotherapy. The spatial distribution of T-ALL cells was more widespread with contacts to endosteum, nestin+ pericytes and sinusoids. Dispersion of T-ALL cells in the bone marrow increased under chemotherapeutic pressure. A subset of slowly dividing ALL cells was transiently detected upon shortterm chemotherapy, but not at residual disease after chemotherapy, challenging the notion that ALL cells escape treatment by direct induction of a dormant state in the niche. These lineage-dependent differences point to niche interactions that may be more specifically exploitable to improve treatment.


Subject(s)
Burkitt Lymphoma , Leukemia, Biphenotypic, Acute , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma , Precursor Cell Lymphoblastic Leukemia-Lymphoma , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma , Humans , Bone Marrow , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Precursor Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Burkitt Lymphoma/drug therapy , Tumor Microenvironment
2.
Cells ; 11(17)2022 09 02.
Article in English | MEDLINE | ID: mdl-36078153

ABSTRACT

Genetic variants in α-actinin-2 (ACTN2) are associated with several forms of (cardio)myopathy. We previously reported a heterozygous missense (c.740C>T) ACTN2 gene variant, associated with hypertrophic cardiomyopathy, and characterized by an electro-mechanical phenotype in human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs). Here, we created with CRISPR/Cas9 genetic tools two heterozygous functional knock-out hiPSC lines with a second wild-type (ACTN2wt) and missense ACTN2 (ACTN2mut) allele, respectively. We evaluated their impact on cardiomyocyte structure and function, using a combination of different technologies, including immunofluorescence and live cell imaging, RNA-seq, and mass spectrometry. This study showed that ACTN2mut presents a higher percentage of multinucleation, protein aggregation, hypertrophy, myofibrillar disarray, and activation of both the ubiquitin-proteasome system and the autophagy-lysosomal pathway as compared to ACTN2wt in 2D-cultured hiPSC-CMs. Furthermore, the expression of ACTN2mut was associated with a marked reduction of sarcomere-associated protein levels in 2D-cultured hiPSC-CMs and force impairment in engineered heart tissues. In conclusion, our study highlights the activation of proteolytic systems in ACTN2mut hiPSC-CMs likely to cope with ACTN2 aggregation and therefore directs towards proteopathy as an additional cellular pathology caused by this ACTN2 variant, which may contribute to human ACTN2-associated cardiomyopathies.


Subject(s)
Actinin , Cardiomyopathy, Hypertrophic , Protein Aggregation, Pathological , Actinin/genetics , Actinin/metabolism , Cardiomyopathy, Hypertrophic/genetics , Cardiomyopathy, Hypertrophic/metabolism , Humans , Induced Pluripotent Stem Cells/metabolism , Myocytes, Cardiac/metabolism , Protein Aggregation, Pathological/genetics , Protein Aggregation, Pathological/metabolism , Sarcomeres/metabolism
4.
J Mol Cell Cardiol ; 157: 77-89, 2021 08.
Article in English | MEDLINE | ID: mdl-33957110

ABSTRACT

Hypertrophic cardiomyopathy (HCM) patients are at increased risk of ventricular arrhythmias and sudden cardiac death, which can occur even in the absence of structural changes of the heart. HCM mouse models suggest mutations in myofilament components to affect Ca2+ homeostasis and thereby favor arrhythmia development. Additionally, some of them show indications of pro-arrhythmic changes in cardiac electrophysiology. In this study, we explored arrhythmia mechanisms in mice carrying a HCM mutation in Mybpc3 (Mybpc3-KI) and tested the translatability of our findings in human engineered heart tissues (EHTs) derived from CRISPR/Cas9-generated homozygous MYBPC3 mutant (MYBPC3hom) in induced pluripotent stem cells (iPSC) and to left ventricular septum samples obtained from HCM patients. We observed higher arrhythmia susceptibility in contractility measurements of field-stimulated intact cardiomyocytes and ventricular muscle strips as well as in electromyogram recordings of Langendorff-perfused hearts from adult Mybpc3-KI mice than in wild-type (WT) controls. The latter only occurred in homozygous (Hom-KI) but not in heterozygous (Het-KI) mouse hearts. Both Het- and Hom-KI are known to display pro-arrhythmic increased Ca2+ myofilament sensitivity as a direct consequence of the mutation. In the electrophysiological characterization of the model, we observed smaller repolarizing K+ currents in single cell patch clamp, longer ventricular action potentials in sharp microelectrode recordings and longer ventricular refractory periods in Langendorff-perfused hearts in Hom-KI, but not Het-KI. Interestingly, reduced K+ channel subunit transcript levels and prolonged action potentials were already detectable in newborn, pre-hypertrophic Hom-KI mice. Human iPSC-derived MYBPC3hom EHTs, which genetically mimicked the Hom-KI mice, did exhibit lower mutant mRNA and protein levels, lower force, beating frequency and relaxation time, but no significant alteration of the force-Ca2+ relation in skinned EHTs. Furthermore, MYBPC3hom EHTs did show higher spontaneous arrhythmic behavior, whereas action potentials measured by sharp microelectrode did not differ to isogenic controls. Action potentials measured in septal myectomy samples did not differ between patients with HCM and patients with aortic stenosis, except for the only sample with a MYBPC3 mutation. The data demonstrate that increased myofilament Ca2+ sensitivity is not sufficient to induce arrhythmias in the Mybpc3-KI mouse model and suggest that reduced K+ currents can be a pro-arrhythmic trigger in Hom-KI mice, probably already in early disease stages. However, neither data from EHTs nor from left ventricular samples indicate relevant reduction of K+ currents in human HCM. Therefore, our study highlights the species difference between mouse and human and emphasizes the importance of research in human samples and human-like models.


Subject(s)
Biomarkers , Cardiomyopathy, Hypertrophic/etiology , Cardiomyopathy, Hypertrophic/physiopathology , Disease Susceptibility , Electrophysiology , Translational Research, Biomedical , Action Potentials/drug effects , Animals , Calcium/metabolism , Cardiomyopathy, Hypertrophic/diagnosis , Cardiomyopathy, Hypertrophic/metabolism , Carrier Proteins/genetics , Disease Models, Animal , Gene Expression , Humans , Induced Pluripotent Stem Cells/metabolism , Mice , Mice, Knockout , Myocardial Contraction/drug effects , Myocardial Contraction/genetics , Myocardium/metabolism , Myocytes, Cardiac/cytology , Myocytes, Cardiac/metabolism , Potassium/metabolism , Potassium Channels/genetics , Potassium Channels/metabolism
5.
Cells ; 9(1)2020 01 20.
Article in English | MEDLINE | ID: mdl-31968557

ABSTRACT

Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) represent an unlimited source of human CMs that could be a standard tool in drug research. However, there is concern whether hiPSC-CMs express all cardiac ion channels at physiological level and whether they might express non-cardiac ion channels. In a control hiPSC line, we found large, "noisy" outward K+ currents, when we measured outward potassium currents in isolated hiPSC-CMs. Currents were sensitive to iberiotoxin, the selective blocker of big conductance Ca2+-activated K+ current (IBK,Ca). Seven of 16 individual differentiation batches showed a strong initial repolarization in the action potentials (AP) recorded from engineered heart tissue (EHT) followed by very early afterdepolarizations, sometimes even with consecutive oscillations. Iberiotoxin stopped oscillations and normalized AP shape, but had no effect in other EHTs without oscillations or in human left ventricular tissue (LV). Expression levels of the alpha-subunit (KCa1.1) of the BKCa correlated with the presence of oscillations in hiPSC-CMs and was not detectable in LV. Taken together, individual batches of hiPSC-CMs can express sarcolemmal ion channels that are otherwise not found in the human heart, resulting in oscillating afterdepolarizations in the AP. HiPSC-CMs should be screened for expression of non-cardiac ion channels before being applied to drug research.


Subject(s)
Action Potentials , Artifacts , Induced Pluripotent Stem Cells/metabolism , Myocytes, Cardiac/metabolism , Potassium Channels, Calcium-Activated/metabolism , Action Potentials/physiology , Adult , Cell Line , Computer Simulation , Humans , Peptides/toxicity , Tissue Engineering
6.
Biochim Biophys Acta Mol Cell Res ; 1867(3): 118432, 2020 03.
Article in English | MEDLINE | ID: mdl-30831130

ABSTRACT

Autophagy (greek auto: self; phagein: eating) is a highly conserved process within eukaryotes that degrades long-lived proteins and organelles within lysosomes. Its accurate and constant operation in basal conditions ensures cellular homeostasis by degrading damaged cellular components and thereby acting not only as a quality control but as well as an energy supplier. An increasing body of evidence indicates a major role of autophagy in the regulation of cardiac homeostasis and function. In this review, we describe the different forms of mammalian autophagy, their regulations and monitoring with a specific emphasis on the heart. Furthermore, we address the role of autophagy in several forms of cardiomyopathy and the options for therapy.


Subject(s)
Autophagy/genetics , Cardiomyopathies/genetics , Homeostasis/genetics , Lysosomes/genetics , Cardiomyopathies/metabolism , Cardiomyopathies/pathology , Energy Metabolism/genetics , Humans , Lysosomes/metabolism , Proteolysis
7.
EMBO Mol Med ; 11(12): e11115, 2019 12.
Article in English | MEDLINE | ID: mdl-31680489

ABSTRACT

Hypertrophic cardiomyopathy (HCM) is a cardiac genetic disease accompanied by structural and contractile alterations. We identified a rare c.740C>T (p.T247M) mutation in ACTN2, encoding α-actinin 2 in a HCM patient, who presented with left ventricular hypertrophy, outflow tract obstruction, and atrial fibrillation. We generated patient-derived human-induced pluripotent stem cells (hiPSCs) and show that hiPSC-derived cardiomyocytes and engineered heart tissues recapitulated several hallmarks of HCM, such as hypertrophy, myofibrillar disarray, hypercontractility, impaired relaxation, and higher myofilament Ca2+ sensitivity, and also prolonged action potential duration and enhanced L-type Ca2+ current. The L-type Ca2+ channel blocker diltiazem reduced force amplitude, relaxation, and action potential duration to a greater extent in HCM than in isogenic control. We translated our findings to patient care and showed that diltiazem application ameliorated the prolonged QTc interval in HCM-affected son and sister of the index patient. These data provide evidence for this ACTN2 mutation to be disease-causing in cardiomyocytes, guiding clinical therapy in this HCM family. This study may serve as a proof-of-principle for the use of hiPSC for personalized treatment of cardiomyopathies.


Subject(s)
Actinin/genetics , Cardiomyopathy, Hypertrophic/genetics , Animals , Disease Models, Animal , Humans , Long QT Syndrome/genetics , Mutation , Precision Medicine
8.
Stem Cell Reports ; 11(6): 1378-1390, 2018 12 11.
Article in English | MEDLINE | ID: mdl-30416051

ABSTRACT

Cardiomyocytes (CMs) generated from human induced pluripotent stem cells (hiPSCs) are under investigation for their suitability as human models in preclinical drug development. Antiarrhythmic drug development focuses on atrial biology for the treatment of atrial fibrillation. Here we used recent retinoic acid-based protocols to generate atrial CMs from hiPSCs and establish right atrial engineered heart tissue (RA-EHT) as a 3D model of human atrium. EHT from standard protocol-derived hiPSC-CMs (Ctrl-EHT) and intact human muscle strips served as comparators. RA-EHT exhibited higher mRNA and protein concentrations of atrial-selective markers, faster contraction kinetics, lower force generation, shorter action potential duration, and higher repolarization fraction than Ctrl-EHTs. In addition, RA-EHTs but not Ctrl-EHTs responded to pharmacological manipulation of atrial-selective potassium currents. RA- and Ctrl-EHTs' behavior reflected differences between human atrial and ventricular muscle preparations. Taken together, RA-EHT is a model of human atrium that may be useful in preclinical drug screening.


Subject(s)
Heart Atria/anatomy & histology , Models, Cardiovascular , Tissue Engineering/methods , 4-Aminopyridine/pharmacology , Action Potentials/drug effects , Biomarkers/metabolism , Cell Count , Cell Differentiation/drug effects , Cell Differentiation/genetics , Cell Line , Cell Size/drug effects , Gene Expression Regulation/drug effects , Heart Atria/cytology , Humans , Kinetics , Myocardial Contraction/drug effects , Organ Specificity/drug effects , Organ Specificity/genetics , Potassium Channel Blockers/pharmacology , Potassium Channels/metabolism , Receptors, Muscarinic/metabolism , Tretinoin/pharmacology
9.
Circ Heart Fail ; 10(10)2017 Oct.
Article in English | MEDLINE | ID: mdl-29021349

ABSTRACT

BACKGROUND: Alterations in autophagy have been reported in hypertrophic cardiomyopathy (HCM) caused by Danon disease, Vici syndrome, or LEOPARD syndrome, but not in HCM caused by mutations in genes encoding sarcomeric proteins, which account for most of HCM cases. MYBPC3, encoding cMyBP-C (cardiac myosin-binding protein C), is the most frequently mutated HCM gene. METHODS AND RESULTS: We evaluated autophagy in patients with HCM carrying MYBPC3 mutations and in a Mybpc3-targeted knockin HCM mouse model, as well as the effect of autophagy modulators on the development of cardiomyopathy in knockin mice. Microtubule-associated protein 1 light chain 3 (LC3)-II protein levels were higher in HCM septal myectomies than in nonfailing control hearts and in 60-week-old knockin than in wild-type mouse hearts. In contrast to wild-type, autophagic flux was blunted and associated with accumulation of residual bodies and glycogen in hearts of 60-week-old knockin mice. We found that Akt-mTORC1 (mammalian target of rapamycin complex 1) signaling was increased, and treatment with 2.24 mg/kg·d rapamycin or 40% caloric restriction for 9 weeks partially rescued cardiomyopathy or heart failure and restored autophagic flux in knockin mice. CONCLUSIONS: Altogether, we found that (1) autophagy is altered in patients with HCM carrying MYBPC3 mutations, (2) autophagy is impaired in Mybpc3-targeted knockin mice, and (3) activation of autophagy ameliorated the cardiac disease phenotype in this mouse model. We propose that activation of autophagy might be an attractive option alone or in combination with another therapy to rescue HCM caused by MYBPC3 mutations.


Subject(s)
Autophagy/physiology , Cardiomyopathies/genetics , Cardiomyopathy, Hypertrophic/genetics , Carrier Proteins/genetics , Mutation/genetics , Myocardium/metabolism , Animals , Cardiomyopathies/metabolism , Disease Models, Animal , Gene Knock-In Techniques/methods , Genotype , Heart Failure/genetics , Heart Failure/metabolism , Humans , Mice, Transgenic , Phenotype
10.
J Exp Med ; 210(11): 2289-304, 2013 Oct 21.
Article in English | MEDLINE | ID: mdl-24081948

ABSTRACT

Differentiation arrest is a hallmark of acute leukemia. Genomic alterations in B cell differentiation factors such as PAX5, IKZF1, and EBF-1 have been identified in more than half of all cases of childhood B precursor acute lymphoblastic leukemia (ALL). Here, we describe a perturbed epigenetic and transcriptional regulation of ZNF423 in ALL as a novel mechanism interfering with B cell differentiation. Hypomethylation of ZNF423 regulatory sequences and BMP2 signaling result in transactivation of ZNF423α and a novel ZNF423ß-isoform encoding a nucleosome remodeling and histone deacetylase complex-interacting domain. Aberrant ZNF423 inhibits the transactivation of EBF-1 target genes and leads to B cell maturation arrest in vivo. Importantly, ZNF423 expression is associated with poor outcome of ETV6-RUNX1-negative B precursor ALL patients. Our work demonstrates that ALL is more than a genetic disease and that epigenetics may uncover novel mechanisms of disease with prognostic implications.


Subject(s)
B-Lymphocytes/pathology , Cell Differentiation , Core Binding Factor Alpha 2 Subunit/metabolism , DNA-Binding Proteins/metabolism , Oncogene Proteins, Fusion/metabolism , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/pathology , Animals , B-Lymphocytes/metabolism , Bone Morphogenetic Protein 2/metabolism , Cell Differentiation/genetics , Cell Lineage/genetics , DNA Methylation/genetics , DNA-Binding Proteins/chemistry , DNA-Binding Proteins/genetics , Disease-Free Survival , Gene Expression Profiling , Gene Expression Regulation, Leukemic , Hematopoietic Stem Cells/metabolism , Mi-2 Nucleosome Remodeling and Deacetylase Complex/metabolism , Mice , Neoplasm Proteins/genetics , Neoplasm Proteins/metabolism , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/genetics , Prognosis , Protein Binding/genetics , Protein Isoforms/metabolism , Protein Structure, Tertiary , Proteins , Signal Transduction/genetics , Smad Proteins/metabolism , Trans-Activators/genetics , Transcriptional Activation/genetics , Up-Regulation/genetics
SELECTION OF CITATIONS
SEARCH DETAIL