Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 39
Filter
1.
Indian J Orthop ; 58(6): 762-770, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38812861

ABSTRACT

Study design: The GAP score predicted post-operative mechanical complications more effectively whereas SRS-Schwab classification improved evaluation of postoperative PROMs. Objective: The study compared the GAP Score and SRS-Schwab Classification in predicting surgical outcomes for adult spinal deformity (ASD) and elucidated whether both systems should be included in the preoperative planning. Materials and methods: Radiographic measurements and health-related quality of life scores at baseline, 6 weeks after surgery, and the last follow-up were collected from a cohort of 69 ASD patients subjected to long segment spinal fusion surgery after they were grouped by GAP score and SRS-Schwab classification respectively. Fisher's exact test and receiver operator characteristic (ROC) curve analysis was used to compare the incidence of mechanical complications and the discriminant capacity during revision surgery between the two groups. Postoperative patient-reported outcomes measures (PROMs) were compared by one-way ANOVA, and the proportions of MCID achieved for PROMs compared by chi-square test between the two groups. Results: The overall incidence of mechanical complications and revision surgery were 42% and 8.7%. Both GAP score and its categories predicted mechanical complications and revision surgery, but the GAP score system could not predict the improvements of PROMs. The SRS-Schwab classification could predict the occurrence of postoperative mechanical complications and improvements of postoperative PROMs between the aligned, moderately misaligned and severely misaligned groups (P < 0.05). Conclusion: Hence, a comprehensive surgical strategy for postoperative planning may improve patients' quality of life and minimize mechanical complications.

2.
Int J Clin Oncol ; 29(6): 744-754, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38584210

ABSTRACT

BACKGROUND: According to the latest classification of thyroid tumors released by the WHO in 2022, primary squamous cell carcinoma of the thyroid (PSCCTh) is classified as anaplastic thyroid carcinoma (ATC). The objective of this study was to determine the differences in characteristics between ATC and PSCCTh and develop a nomogram to predict overall survival patients with the redefined anaplastic thyroid carcinoma (rATC). METHODS: Patients diagnosed with ATC and PSCCTh between 2000 and 2018 from the Surveillance, Epidemiology, and End Results (SEER) database were enrolled and randomly divided into a training cohort and a validation cohort with a ratio of 7:3. Overall survival (OS) and cancer-specific survival (CSS) was estimated using the Kaplan-Meier method and compared using log-rank tests. The univariate and multivariate Cox proportional hazards regression analyses were used to determine independent prognostic factors of rATC patients. We then developed and validated nomograms to predict the 3-, 6- and 12-month OS of rATC and the results were evaluated by C-index and calibration curves. RESULTS: After application of the inclusion and exclusion criteria, a total of 1338 ATC and 127 PSCCTh patients were included in the study. Further, OS and CSS of patients with PSCCTh were better than that of patients with ATC. Prognostic factors were not identical for the two cancers. Multivariate Cox model analysis indicated that age, tumor size, metastasis, surgery, radiotherapy, chemotherapy are independent prognostic factors for CSS in patients with ATC; while for patients with PSCCTh, the corresponding factors are age, and surgery. We selected six survival predictors (age, tumor size, metastasis, surgery, radiation, and, chemotherapy) for nomogram construction. The C-indexes in the training and validation cohort were 0.740 and 0.778, respectively, reflecting the good discrimination ability of the model. The calibration curves also showed good consistency in the probability of 3-, 6-, and 12-month OS between the actual observation and the nomogram prediction. CONCLUSION: We constructed a nomogram to provide a convenient and reliable tool for predicting OS in rATC patients. Prognostic factors influencing CSS were not identical in patients with ATC and PSCCTh. These findings indicate that different clinical treatment and management plans are required for patients with these two types of thyroid cancer.


Subject(s)
Nomograms , SEER Program , Thyroid Carcinoma, Anaplastic , Thyroid Neoplasms , Humans , Thyroid Carcinoma, Anaplastic/pathology , Thyroid Carcinoma, Anaplastic/mortality , Thyroid Carcinoma, Anaplastic/therapy , Male , Female , Middle Aged , Thyroid Neoplasms/mortality , Thyroid Neoplasms/pathology , Thyroid Neoplasms/therapy , Aged , Prognosis , Adult , Kaplan-Meier Estimate , Carcinoma, Squamous Cell/mortality , Carcinoma, Squamous Cell/pathology , Carcinoma, Squamous Cell/therapy , Proportional Hazards Models
3.
BMC Pulm Med ; 24(1): 209, 2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38685004

ABSTRACT

BACKGROUND: The pathogenesis of adult non-cystic fibrosis (CF) bronchiectasis is complex, and the relevant molecular mechanism remains ambiguous. Versican (VCAN) is a key factor in inflammation through interactions with adhesion molecules. This study constructs a stable panoramic map of mRNA, reveals the possible pathogenesis of bronchiectasis, and provides new ideas and methods for bronchiectasis. METHODS: Peripheral blood and tissue gene expression data from patients with bronchiectasis and normal control were selected by bioinformatics analysis. The expression of VCAN in peripheral blood and bronchial tissues of bronchiectasis were obtained by transcriptome sequencing. The protein expression levels of VCAN in serums were verified by the enzyme-linked immunosorbent assay (ELISA). The mRNA expression levels of VCAN in co-culture of Pseudomonas aeruginosa and bronchial epithelial cells were verified by real-time quantitative polymerase chain reaction (RT-qPCR). In addition, the biological function of VCAN was detected by the transwell assay. RESULTS: The expression of VCAN was upregulated in the bronchiectasis group by sequencing analysis (P < 0.001). The expression of VCAN in the bronchial epithelial cell line BEAS-2B was increased in P. aeruginosa (P.a), which was co-cultured with BEAS-2B cells (P < 0.05). The concentration of VCAN protein in the serum of patients with bronchiectasis was higher than that in the normal control group (P < 0.05). Transwell experiments showed that exogenous VCAN protein induced the migration of neutrophils (P < 0.0001). CONCLUSIONS: Our findings indicate that VCAN may be involved in the development of bronchiectasis by increasing the migration of neutrophils and play an important role in bronchial pathogenesis.


Subject(s)
Bronchiectasis , Versicans , Humans , Male , Female , Middle Aged , Retrospective Studies , Versicans/genetics , Versicans/metabolism , Adult , Pseudomonas aeruginosa/genetics , Epithelial Cells/metabolism , Aged , Up-Regulation , Coculture Techniques , Bronchi/pathology , Cell Line , RNA, Messenger/metabolism , Case-Control Studies , Clinical Relevance
4.
J Transl Int Med ; 12(1): 22-34, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38525436

ABSTRACT

Fibrosis occurs in many organs, and its sustained progress can lead to organ destruction and malfunction. Although numerous studies on organ fibrosis have been carried out, its underlying mechanism is largely unknown, and no ideal treatment is currently available. Ferroptosis is an iron-dependent process of programmed cell death that is characterized by lipid peroxidation. In the past decade, a growing body of evidence demonstrated the association between ferroptosis and fibrotic diseases, while targeting ferroptosis may serve as a potential therapeutic strategy. This review highlights recent advances in the crosstalk between ferroptosis and organ fibrosis, and discusses ferroptosis-targeted therapeutic approaches against fibrosis that are currently being explored.

5.
Hum Reprod Open ; 2024(1): hoae002, 2024.
Article in English | MEDLINE | ID: mdl-38333108

ABSTRACT

STUDY QUESTION: Does palmitic acid (PA), the most common saturated free fatty acid (FFA) in individuals with obesity, contribute to anovulation through upregulation of the collagen-crosslinking enzyme lysyl oxidase (LOX) in the ovary? SUMMARY ANSWER: Increased PA in individuals with obesity can cause LOX upregulation via the activation of hypoxia-inducible factor-1α (HIF-1α), resulting in abnormal collagen deposition in the ovary and anovulation, which can be ameliorated by metformin therapy. WHAT IS KNOWN ALREADY: The underlying cause of anovulation in individuals with obesity is poorly defined, and accumulating evidence indicates that hormonal disturbance, insulin resistance, and inflammation may all play a role in the development of ovulation disorders in individuals with obesity. However, it remains to be determined whether PA plays a role in the regulation of LOX expression, thus disrupting ovarian extracellular matrix (ECM) remodelling in the ovary and resulting in impaired ovulation in individuals with obesity. STUDY DESIGN SIZE DURATION: PA concentration and LOX protein abundance and activity in follicular fluid and ovarian tissue were compared between control (n = 21) subjects, patients with obesity with ovulation (n = 22), and patients with obesity with anovulation (n = 16). The effect of PA on LOX protein expression, and the underlying mechanism, was examined in primary human granulosa cells in vitro. The improvements in obesity conditions induced by LOX inhibition combined with metformin were investigated in a high-fat diet-induced obese rat model. PARTICIPANTS/MATERIALS SETTING METHODS: The abundance of PA concentration and LOX activity was measured via a LOX activity assay and ELISA, respectively. The effect of PA on LOX protein expression was examined in the presence or absence of inhibitors of signalling molecules and siRNA-mediated knockdown of the putative transcription factor. Chromatin immunoprecipitation assays were subsequently conducted to further identify the responsible transcription factor. The role of metformin in the treatment of anovulation by LOX inhibition was investigated in a high-fat diet (HFD)-induced obese rat model. The numbers of retrieved total oocytes and metaphase II oocytes were recorded upon ovarian stimulation. Masson's trichrome staining was used to measure the total collagen content, and immunohistochemical staining and western blotting were used to measure LOX, HIF-1α, and collagen I and IV in the ovary. MAIN RESULTS AND THE ROLE OF CHANCE: Significantly increased FFA, LOX, and collagen abundance were observed in the ovaries of obese women with anovulation, compared to healthy controls or obese women with ovulation. In a HFD-induced obese rat model, metformin corrected the distortion of ovarian morphology by decreasing LOX and collagen protein abundance in the ovary and improving oestrous cyclicity and ovulation. PA increased LOX expression via the activation of HIF-1α in human granulosa cells, which was attenuated by metformin. LARGE SCALE DATA: N/A. LIMITATIONS REASONS FOR CAUTION: Several other saturated and polyunsaturated FFAs, such as stearic acid and arachidonic acid, are also increased in the blood of individuals with obesity, and increased levels of other FFAs may also contribute to the development of anovulation in individuals with obesity, which needs to be further verified in the future. WIDER IMPLICATIONS OF THE FINDINGS: Elevated PA in individuals with obesity can cause LOX dysregulation via activation of HIF-1α, resulting in abnormal collagen deposition in the ovary and anovulation. This dysregulation can be ameliorated by metformin therapy through its local effect on ECM remodelling in the ovary, which is independent of its systemic effect on insulin sensitivity and chronic inflammation. STUDY FUNDING/COMPETING INTERESTS: This work was supported by the National Natural Science Foundation of China (grant numbers 82101730, 82130046, and 31900598) and Innovative Research Team of High-level local Universities in Shanghai (SHSMU-ZLCX20210201). All the authors declare no conflicts of interest in relation to this work.

6.
Gels ; 10(2)2024 Jan 24.
Article in English | MEDLINE | ID: mdl-38391418

ABSTRACT

Managing severe bleeding, particularly in soft tissues and visceral injuries, remains a significant challenge in trauma and surgical care. Traditional hemostatic methods often fall short in wet and dynamic environments. This study addresses the critical issue of severe bleeding in soft tissues, proposing an innovative solution using a polyethylene glycol (PEG)-based hydrogel combined with zinc oxide (ZnO). The developed hydrogel forms a dual-network structure through amide bonds and metal ion chelation, resulting in enhanced mechanical properties and adhesion strength. The hydrogel, exhibiting excellent biocompatibility, is designed to release zinc ions, promoting coagulation and accelerating hemostasis. Comprehensive characterization, including gelation time, rheological properties, microstructure analysis, and swelling behavior, demonstrates the superior performance of the PEG/ZnO hydrogel compared to traditional PEG hydrogels. Mechanical tests confirm increased compression strength and adhesive properties, which are crucial for withstanding tissue dynamics. In vitro assessments reveal excellent biocompatibility and enhanced procoagulant ability attributed to ZnO. Moreover, in vivo experiments using rat liver and tail bleeding models demonstrate the remarkable hemostatic performance of the PEG/ZnO hydrogel, showcasing its potential for acute bleeding treatment in both visceral and peripheral scenarios.

7.
Clin Biochem ; 123: 110687, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37989475

ABSTRACT

BACKGROUND: Intrarenal arteriolar disease is a major risk factor for poor prognosis in immunoglobulin A nephropathy (IgAN). The morphologic factor sonic hedgehog (SHH) plays an important role in a variety of vascular diseases, so it may be directly or indirectly involved in the process of renal arteriolar disease. The purpose of this study was to investigate the correlation between serum SHH levels and renal arteriole disease in patients with IgAN. METHODS: Subjects with primary IgAN diagnosed by renal biopsy performed between October 2018 and August 2019 at the First Medical Center of the Chinese PLA General Hospital were recruited. Blood specimens were collected from the patients within 1 week before renal biopsy after they signed an informed consent form, and healthy controls were recruited for blood specimen collection during the same period. The concentration of serum SHH was measured by enzyme-linked immunosorbent assay in this population. RESULTS: Serum SHH levels were significantly lower in the IgAN group than in the control group. 41 of the 94 subjects diagnosed with IgAN had severe renal arteriolosclerosis and, compared to their less severely affected counterparts, were older, more hypertensive, and characterized by lower levels of SHH, higher levels of tubular atrophy/interstitial fibrosis and a higher Lee's classification. Serum SHH concentration was found to be an independent predictor of severe intrarenal arteriolosclerosis in IgAN subjects after correction using multivariate analysis. CONCLUSION: In this study, serum SHH levels were found to be significantly lower in patients with IgAN than in healthy subjects. Serum SHH may serve as a noninvasive biomarker of intrarenal arteriolosclerosis in patients with IgAN.


Subject(s)
Arteriolosclerosis , Glomerulonephritis, IGA , Hypertension , Humans , Arterioles/pathology , Arteriolosclerosis/pathology , Hedgehog Proteins , Kidney/pathology , Prognosis
9.
Am J Pathol ; 193(11): 1845-1862, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37517685

ABSTRACT

The transcription factor forkhead box protein (FOX)-O3 is a core regulator of cellular homeostasis, stress response, and longevity. The cellular localization of FOXO3 is closely related to its function. Herein, the role of FOXO3 in cataract formation was explored. FOXO3 showed nuclear translocation in lens epithelial cells (LECs) arranged in a single layer on lens capsule tissues from both human cataract and N-methyl-N-nitrosourea (MNU)-induced rat cataract, also in MNU-injured human (H)-LEC lines. FOXO3 knockdown inhibited the MNU-induced increase in expression of genes related to cell cycle arrest (GADD45A and CCNG2) and apoptosis (BAK and TP53). H2 is highly effective in reducing oxidative impairments in nuclear DNA and mitochondria. When H2 was applied to MNU-injured HLECs, FOXO3 underwent cleavage by MAPK1 and translocated into mitochondria, thereby increasing the transcription of oxidative phosphorylation-related genes (MTCO1, MTCO2, MTND1, and MTND6) in HLECs. Furthermore, H2 mediated the translocation of FOXO3 from the nucleus to the mitochondria within the LECs of cataract capsule tissues of rats exposed to MNU. This intervention ameliorated MNU-induced cataracts in the rat model. In conclusion, there was a correlation between the localization of FOXO3 and its function in cataract formation. It was also determined that H2 protects HLECs from injury by leading FOXO3 mitochondrial translocation via MAPK1 activation. Mitochondrial FOXO3 can increase mtDNA transcription and stabilize mitochondrial function in HLECs.

10.
Technol Health Care ; 31(5): 1691-1707, 2023.
Article in English | MEDLINE | ID: mdl-36970920

ABSTRACT

BACKGROUND: At present, studies on MircoRNA-22-3p (miR-22-3p) in lung adenocarcinoma use a single method, lack multi-center validation and multi-method validation, and there is no big data concept to predict and validate target genes. OBJECTIVE: To investigate the expression, potential targets and clinicopathological significance of miR-22-3p in lung adenocarcinoma (LUAD) tissues. METHODS: LUAD formalin-fixed paraffin-embedded (FFPE) tumors and adjacent normal lung tissues were collected for real-time quantitative polymerase chain reaction (RT-qPCR). Collect miR-22-3p in LUAD and non-cancer lung tissue from high-throughput datasets, standardized mean difference (SMD) and area under the curve (AUC) of the comprehensive receiver operating curve (summary receiver operating characteristic cure, sROC curve) were calculated. Cell function experiments on A549 cells transfected with LV-hsa-miR-22-3p. Target genes were predicted by the miRwalk2.0 website and the resulting target genes were subjected to Gene Ontology (GO) pathway enrichment analysis and constructed to protein-protein interaction network. Finally, the protein expression level of the key gene TP53 was validated by searching The Human Protein Atlas (THPA) database to incorporate TP53 immunohistochemical results in LUAD. RESULTS: RT-qPCR result from 41 pairs of LUAD and adjacent lung tissues showed that miR-22-3p was downregulated in LUAD (AUC = 0.6597, p= 0.0128). Globally, a total of 838 LUADs and 494 non-cancerous lung tissues were included, and were finally combined into 14 platforms. Compared with noncancerous tissue, miR-22-3p expression level was significantly reduced in LUAD tissue (SMD =-0.32, AUC = 0.72l); cell function experiments showed that miR-22-3p has inhibitory effects on cell proliferation, migration and invasion, and has promotion effect on apoptosis. Moreover, target genes prediction, GO pathway enrichment analysis and PPI network exhibited TP53 as a key gene of target gene of miR-22-3p; at last, a total of 114 high-throughput datasets were included, including 3897 LUADs and 2993 non-cancerous lung tissues, and were finally combined into 37 platforms. Compared with noncancerous tissue, TP53 expression level was significantly increased in LUAD (SMD = 0.39, p< 0.01) and it was verified by the protein expression data from THPA. CONCLUSION: Overexpression of miR-22-3p may inhibit LUAD cell proliferation, migration and invasion through TP53, and promote cell apoptosis.


Subject(s)
Adenocarcinoma of Lung , Lung Neoplasms , MicroRNAs , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , Clinical Relevance , Adenocarcinoma of Lung/genetics , Adenocarcinoma of Lung/pathology , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Lung/pathology , Cell Proliferation/genetics , Tumor Suppressor Protein p53/genetics
11.
Biomolecules ; 13(1)2023 01 01.
Article in English | MEDLINE | ID: mdl-36671476

ABSTRACT

Cascade reactions catalyzed by multi-enzyme systems are important in science and industry and can be used to synthesize drugs and nutrients. In this study, two types of macromolecules of bi-enzyme self-assembly clusters (BESCs) consisting of carbonyl reductase (CpCR) and glucose dehydrogenase (GDH) were examined. Stereoselective CpCR and GDH were successfully fused with SpyCatcher and SpyTag, respectively, to obtain four enzyme modules, namely: SpyCatcher-CpCR, SpyCatcher-GDH, SpyTag-CpCR, and SpyTag-GDH, which were covalently coupled in vitro to form two types of hydrogel-like BESCs: CpCR-SpyCatcher-SpyTag-GDH and GDH-SpyCatcher-SpyTag-CpCR. CpCR-SpyCatcher-SpyTag-GDH showed a better activity and efficiently converted ethyl 2-oxo-4-phenylbutyrate (OPBE) to ethyl(R)2-hydroxy-4-phenylbutanoate ((R)-HPBE), while regenerating NADPH. At 30 °C and pH 7, the conversion rate of OPBE with CpCR-SpyCatcher-SpyTag-GDH as a catalyst reached 99.9%, with the ee% of (R)-HPBE reaching above 99.9%. This conversion rate was 2.4 times higher than that obtained with the free bi-enzyme. The pH tolerance and temperature stability of the BESCs were also improved compared with those of the free enzymes. In conclusion, bi-enzyme assemblies were docked using SpyCatcher/SpyTag to produce BESCs with a special structure and excellent catalytic activity, improving the catalytic efficiency of the enzyme.


Subject(s)
Temperature , Cyclization
12.
Molecules ; 27(21)2022 Oct 28.
Article in English | MEDLINE | ID: mdl-36364166

ABSTRACT

(R)-1-[3,5-bis(trifluoromethyl)phenyl]ethanamine, a key chiral intermediate of selective tetrodotoxin-sensitive blockers, was efficiently synthesized by a bienzyme cascade system formed by with R-ω-transaminase (ATA117) and an alcohol dehydrogenase (ADH) co-expression system. Herein, we report that the use of ATA117 as the biocatalyst for the amination of 3,5-bistrifluoromethylacetophenone led to the highest efficiency in product performance (enantiomeric excess > 99.9%). Moreover, to further improve the product yield, ADH was introduced into the reaction system to promote an equilibrium shift. Additionally, bienzyme cascade system was constructed by five different expression systems, including two tandem expression recombinant plasmids (pETDuet-ATA117-ADH and pACYCDuet-ATA117-ADH) and three co-expressed dual-plasmids (pETDuet-ATA117/pET28a-ADH, pACYCDuet-ATA117/pET28a-ADH, and pACYCDuet-ATA117/pETDuet-ADH), utilizing recombinant engineered bacteria. Subsequent studies revealed that as compared with ATA117 single enzyme, the substrate handling capacity of BL21(DE3)/pETDuet-ATA117-ADH (0.25 g wet weight) developed for bienzyme cascade system was increased by 1.50 folds under the condition of 40 °C, 180 rpm, 0.1 M pH9 Tris-HCl for 24 h. To the best of our knowledge, ours is the first report demonstrating the production of (R)-1-[3,5-bis(trifluoromethyl)phenyl]ethanamine using a bienzyme cascade system, thus providing valuable insights into the biosynthesis of chiral amines.


Subject(s)
Alcohol Dehydrogenase , Transaminases , Alcohol Dehydrogenase/genetics , Transaminases/genetics , Transaminases/metabolism , Plasmids/genetics , Amination , Stereoisomerism
13.
Adv Biol (Weinh) ; 6(8): e2101262, 2022 08.
Article in English | MEDLINE | ID: mdl-35652169

ABSTRACT

Chimeric antigen receptors (CAR) redirect T cells to specifically recognize and eliminate tumor cells. CAR-T therapy has achieved successful clinical outcomes, and it has been transformed into commercially available products to treat acute lymphoblastic leukemia and B cell lymphoma. These breakthroughs have motivated hundreds of CAR-T clinical trials initiated each year, with ≈900 cases registered on the ClinicalTrials website till 2021. Accumulating clinical experiences have highlighted some limitations of this strategy, e.g., relapse after complete response, poor efficacy in solid tumors, on-target off-tumor toxicities, lack of persistence, and tumor resistance. These challenges limit the therapeutic application of CAR-T cells. Multidisciplinary approaches are actively investigated to address these issues. In this review, the antigens, CAR designs, and cell sources are summarized in clinical trials from 2020 to 2021. The innovative modular and programmable designs in CAR-T cells, including advances in signaling domains, antigen-recognition domains, T cell engineering, and cell resources, are further discussed. Integrative genetic and chemical engineering strategies are promising to improve the versatility, antitumor efficacy, persistence, and safety of CAR-T cells. In the future, the next generation of CAR-T cell therapies will offer more options for patients who are refractory to standard tumor therapies.


Subject(s)
Immunotherapy, Adoptive , Precursor Cell Lymphoblastic Leukemia-Lymphoma , Receptors, Chimeric Antigen , Humans , Precursor Cell Lymphoblastic Leukemia-Lymphoma/therapy , Receptors, Antigen, T-Cell/genetics , Receptors, Chimeric Antigen/genetics , T-Lymphocytes
14.
Cell Biosci ; 12(1): 64, 2022 May 18.
Article in English | MEDLINE | ID: mdl-35585644

ABSTRACT

BACKGROUND: The human amnion is an intrauterine tissue which is involved in the initiation of parturition. In-depth understanding of gene expression signatures of individual cell types in the amnion with respect to membrane rupture at parturition may help identify crucial initiators of parturition for the development of specific strategies to prevent preterm birth, a leading cause of perinatal mortality. RESULTS: Six major cell types were revealed in human amnion including epithelial cells, fibroblasts and immunocytes as well as three other cell types expressing dual cell markers including epithelial/fibroblast, immune/epithelial and immune/fibroblast markers. The existence of cell types expressing these dual cell markers indicates the presence of epithelial-mesenchymal (EMT), epithelial-immune (EIT) and mesenchymal-immune (MIT) transitions in amnion at parturition. We found that the rupture zone of amnion exhibited some specific increases in subcluster proportions of immune and EMT cells related to extracellular matrix remodeling and inflammation in labor. The non-rupture zone exhibited some common changes in subcluster compositions of epithelial and fibroblast cells with the rupture zone in labor, particularly those related to oxidative stress and apoptosis in epithelial cells and zinc ion transport in fibroblasts. Moreover, we identified that C-C motif chemokine ligand 20 (CCL20) was among the top up-regulated genes in amnion epithelial cells, fibroblasts and immunocytes in the rupture zone at parturition. Studies in pregnant mice showed that administration of CCL20 induced immunocytes infiltration to tissues at the maternal-fetal interface and led to preterm birth. CONCLUSIONS: Apart from the conventional epithelial, fibroblast and immunocytes, human amnion cells may undergo EMT, EIT and FIT in preparation for parturition. Intense inflammation and ECM remodeling are present in the rupture zone, while enhanced apoptosis and oxidative stress in epithelial cells and zinc ion transport in fibroblasts are present in amnion regardless of the rupture zones at parturition. CCL20 derived from the major cell types of the amnion participates in labor onset.

15.
Stem Cell Res Ther ; 13(1): 191, 2022 05 07.
Article in English | MEDLINE | ID: mdl-35526054

ABSTRACT

BACKGROUND: Renal fibrosis is a common pathological process of chronic kidney diseases induced by multiple factors. Hypoxic pretreatment of mesenchymal stem cells can enhance the efficacy of secreted extracellular vesicles (MSC-EVs) on various diseases, but it is not clear whether they can better improve renal fibrosis. The latest research showed that recovery of fatty acid oxidation (FAO) can reduce renal fibrosis. In this study, we aimed to examine whether hypoxic pretreatment with MSC extracellular vesicles (Hypo-EVs) can improve FAO to restore renal fibrosis and to investigate the underlying mechanism. METHODS: Hypo-EVs were isolated from hypoxia-pretreated human placenta-derived MSC (hP-MSC), and Norm-EVs were isolated from hP-MSC cultured under normal conditions. We used ischemia-reperfusion (I/R)-induced renal fibrosis model in vivo. The mice were injected with PBS, Hypo-EVs, or Norm-EVs immediately after the surgery and day 1 postsurgery. Renal function, kidney pathology, and renal fibrosis were assessed for kidney damage evaluation. For mechanistic exploration, fatty acid oxidation (FAO), mitochondrial morphological alterations, ATP production and mitochondrial mass proteins were detected in vivo. Mitochondrial membrane potential and reactive oxygen species (ROS) production were investigated in vitro. RESULTS: We found that Hypo-EVs confer a superior therapeutic effect on recovery of renal structure damage, restoration of renal function and reduction in renal fibrosis. Meanwhile, Hypo-EVs enhanced mitochondrial FAO in kidney by restoring the expression of a FAO key rate-limiting enzyme carnitine palmitoyl-transferase 1A (CPT1A). Mechanistically, the improvement of mitochondrial homeostasis, characterized by repaired mitochondrial structure, restoration of mitochondrial mass and ATP production, inhibition of oxidative stress, and increased mitochondrial membrane potential, partially explains the effect of Hypo-EVs on improving mitochondrial FAO and thus attenuating I/R damage. CONCLUSIONS: Hypo-EVs suppress the renal fibrosis by restoring CPT1A-mediated mitochondrial FAO, which effects may be achieved through regulation of mitochondrial homeostasis. Our findings provide further mechanism support for development cell-free therapy of renal fibrosis.


Subject(s)
Extracellular Vesicles , Mesenchymal Stem Cells , Renal Insufficiency, Chronic , Adenosine Triphosphate/metabolism , Animals , Extracellular Vesicles/metabolism , Fatty Acids/metabolism , Female , Fibrosis , Humans , Hypoxia/metabolism , Ischemia/metabolism , Male , Mesenchymal Stem Cells/metabolism , Mice , Renal Insufficiency, Chronic/metabolism , Reperfusion
16.
Environ Int ; 162: 107181, 2022 04.
Article in English | MEDLINE | ID: mdl-35303533

ABSTRACT

BACKGROUND: Ambient air pollution has adverse effects on the reproductive system. However, inconsistent conclusions were reached from different studies with regard to air pollutants and pregnancy outcomes, especially the livebirth rate in assisted reproductive technology (ART) in different windows of exposure. METHODS: A retrospective cohort study was conducted on 12,665 women who underwent first fresh or frozen embryo transfer cycle in the Yangtze River Delta of China. Daily average levels of six air pollutants in four different periods were obtained: Period 1 and 2: 90 days or one year prior to oocyte retrieval; Period 3 and 4: the day of oocyte retrieval or one year prior to oocyte retrieval to the day of serum hCG test or to the end of the pregnancy. A multiple logistic regression model was used to investigate the association between air pollutant exposure and pregnancy outcomes. Stratified analyses were conducted to explore potential modifier effects. RESULTS: The one year exposure window (Period 2) before oocyte retrieval had a more evident negative association with pregnancy outcomes. Each IQR increase in ambient PM10 (OR: 0.89, 95% CI: 0.84-0.93), PM2.5 (OR: 0.82, 95% CI: 0.77-0.87), SO2 (OR: 0.87, 95% CI: 0.83-0.91) and CO (OR: 0.91, 95% CI: 0.87-0.96) was associated with a respective 11%, 18%, 13% and 9% decrease in the likelihood of live birth. In entire exposure window of Period 4, all air pollutants except for O3 were associated with a decreased likelihood of live birth. Stratified analyses showed that women undergoing frozen embryo transfer cycles, especially those with two embryos transferred, were more vulnerable to air pollutant exposure. CONCLUSION: This study indicates a negative association between air pollutant exposure before oocyte retrieval and livebirth rate in ART. The adverse impact was more evident in one year exposure compared to three-month refresh cycle of the gametes. Additional protection from air pollution should be undertaken at least one year before ART, particularly for those with frozen embryo transfer cycles.


Subject(s)
Air Pollutants , Air Pollution , Air Pollutants/analysis , Air Pollution/analysis , China , Female , Fertility , Humans , Live Birth , Male , Pregnancy , Reproductive Techniques, Assisted , Retrospective Studies , Rivers
17.
Ocul Surf ; 24: 51-63, 2022 04.
Article in English | MEDLINE | ID: mdl-34990847

ABSTRACT

PURPOSE: Dry eye disease (DED) is a chronic multifactorial disorder affecting millions of people, yet the pathogenesis mechanisms still remain unclear. Matrix-assisted laser desorption ionization mass spectrometry imaging (MALDI-MSI) is a novel in situ visualization approach combined high-throughput mass spectrometry and molecular imaging. We aimed to explore the in situ ocular metabolic changes via MALDI-MSI to accelerate the recognition of DED pathogenesis. METHODS: Experimental dry eye was established in Wistar rats by subcutaneous injection of scopolamine. The induction of DED was assessed by tear film breakup time, sodium fluorescein, histopathological staining and cell apoptosis. MALDI-MSI was applied to explore in situ ocular metabolomic in DED rats, and histopathological staining from same sections were used for side-by-side comparison with MALDI to annotate different tissue structures in the eye. RESULTS: Considering the complexity of ocular tissue, we visualized the metabolites in specific ocular regions (central cornea, peripheral cornea, fornix conjunctiva, eyelid conjunctiva and aqueous humor), and identified metabolites related to DED, with information of relative abundance and spatial signatures. In addition, integrative pathway analysis illustrated that, several metabolic pathways such as glycerophospholipid, sphingolipid phenylalanine, and metabolism of glycine, serine and threonine were significantly altered in certain regions in the dry eye tissue. Moreover, we discussed how the metabolic pathways with spatiotemporal signatures might be involved in the DED process. CONCLUSIONS: Our data exploit the advantages of in situ analysis of MALDI-MSI to accurately analyze the region-specific metabolic behaviors in DED, and provide new clues to uncover DED pathogenesis.


Subject(s)
Dry Eye Syndromes , Animals , Conjunctiva/pathology , Cornea/pathology , Dry Eye Syndromes/metabolism , Humans , Metabolome , Rats , Rats, Wistar , Tears/metabolism
18.
Adv Sci (Weinh) ; 9(1): e2102181, 2022 01.
Article in English | MEDLINE | ID: mdl-34716683

ABSTRACT

Combinatorial antibody libraries not only effectively reduce antibody discovery to a numbers game, but enable documentation of the history of antibody responses in an individual. The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has prompted a wider application of this technology to meet the public health challenge of pandemic threats in the modern era. Herein, a combinatorial human antibody library constructed 20 years before the coronavirus disease 2019 (COVID-19) pandemic is used to discover three highly potent antibodies that selectively bind SARS-CoV-2 spike protein and neutralize authentic SARS-CoV-2 virus. Compared to neutralizing antibodies from COVID-19 patients with generally low somatic hypermutation (SHM), these three antibodies contain over 13-22 SHMs, many of which are involved in specific interactions in their crystal structures with SARS-CoV-2 spike receptor binding domain. The identification of these somatically mutated antibodies in a pre-pandemic library raises intriguing questions about the origin and evolution of these antibodies with respect to their reactivity with SARS-CoV-2.


Subject(s)
Angiotensin-Converting Enzyme 2/metabolism , Antibodies, Neutralizing/immunology , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/metabolism , Angiotensin-Converting Enzyme 2/genetics , Animals , Antibodies, Neutralizing/genetics , Antibodies, Neutralizing/metabolism , Antibodies, Neutralizing/pharmacology , Antibodies, Viral/immunology , Binding Sites , Binding, Competitive , Cell Surface Display Techniques , Chlorocebus aethiops , HEK293 Cells , Humans , Peptide Library , SARS-CoV-2/drug effects , Somatic Hypermutation, Immunoglobulin , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology , Vero Cells
19.
Front Med (Lausanne) ; 8: 723837, 2021.
Article in English | MEDLINE | ID: mdl-34926487

ABSTRACT

Non-invasive early prediction of septic acute kidney injury (S-AKI) is still urgent and challenging. Increased Doppler-based renal resistive index (RRI) has been shown to be associated with S-AKI, but its clinical use is limited, which may be explained by the complex effects of systemic circulation. Echocardiogram allows non-invasive assessment of systemic circulation, which may provide an effective supplement to RRI. To find the value of RRI combined with echocardiographic parameters in the non-invasive early prediction of S-AKI, we designed this experiment with repeated measurements of ultrasonographic parameters in the early stage of sepsis (3, 6, 12, and 24 h) in cecum ligation and puncture (CLP) rats (divided into AKI and non-AKI groups at 24 h based on serum creatinine), with sham-operated group serving as controls. Our results found that RRI alone could not effectively predict S-AKI, but when combined with echocardiographic parameters (heart rate, left ventricular end-diastolic internal diameter, and left ventricular end-systolic internal diameter), the predictive value was significantly improved, especially in the early stage of sepsis (3 h, AUC: 0.948, 95% CI 0.839-0.992, P < 0.001), and far earlier than the conventional renal function indicators (serum creatinine and blood urea nitrogen), which only significantly elevated at 24 h. Our method showed novel advances and potential in the early detection of S-AKI.

20.
Cell Prolif ; 54(6): e13055, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33987885

ABSTRACT

OBJECTIVES: We aimed to investigate the underlying mechanism of endothelial cells (ECs) proliferation in anti-Thy-1 nephritis. MATERIALS AND METHODS: We established anti-Thy-1 nephritis and co-culture system to explore the underlying mechanism of ECs proliferation in vivo and in vitro. EdU assay kit was used for measuring cell proliferation. Immunohistochemical staining and immunofluorescence staining were used to detect protein expression. ELISA was used to measure the concentration of protein in serum and medium. RT-qPCR and Western blot were used to qualify the mRNA and protein expression. siRNA was used to knock down specific protein expression. RESULTS: In anti-Thy-1 nephritis, ECs proliferation was associated with mesangial cells (MCs)-derived vascular endothelial growth factor A (VEGFA) and ECs-derived angiopoietin2 (Angpt2). In vitro co-culture system activated MCs-expressed VEGFA to promote vascular endothelial growth factor receptor2 (VEGFR2) activation, Angpt2 expression and ECs proliferation, but inhibit TEK tyrosine kinase (Tie2) phosphorylation. MCs-derived VEGFA stimulated Angpt2 expression in ECs, which inhibited Tie2 phosphorylation and promoted ECs proliferation. And decline of Tie2 phosphorylation induced ECs proliferation. In anti-Thy-1 nephritis, promoting Tie2 phosphorylation could alleviate ECs proliferation. CONCLUSIONS: Our study showed that activated MCs promoted ECs proliferation through VEGFA/VEGFR2 and Angpt2/Tie2 pathway in experimental mesangial proliferative glomerulonephritis (MPGN) and in vitro co-culture system. And enhancing Tie2 phosphorylation could alleviate ECs proliferation, which will provide a new idea for MPGN treatment.


Subject(s)
Endothelial Cells/pathology , Glomerulonephritis/pathology , Kidney Glomerulus/pathology , Mesangial Cells/pathology , Signal Transduction , Thy-1 Antigens/antagonists & inhibitors , Angiopoietin-2/metabolism , Animals , Antibodies , Cell Proliferation , Disease Models, Animal , Endothelial Cells/metabolism , Glomerulonephritis/chemically induced , Glomerulonephritis/metabolism , Kidney Glomerulus/metabolism , Male , Mesangial Cells/metabolism , Rats , Rats, Wistar , Receptor, TIE-2/metabolism , Thy-1 Antigens/metabolism , Vascular Endothelial Growth Factor A/metabolism , Vascular Endothelial Growth Factor Receptor-2/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL