Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 196
Filter
1.
J Steroid Biochem Mol Biol ; : 106583, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38992392

ABSTRACT

The oviduct of the Chinese brown frog (Rana dybowskii) expands during pre-brumation rather than the breeding period, exhibiting a special physiological feature. Vitamin A is essential for the proper growth and development of many organisms, including the reproductive system such as ovary and oviduct. Vitamin A is metabolized into retinoic acid, which is crucial for oviduct formation. This study examined the relationship between oviducal expansion and vitamin A metabolism. We observed a significant increase in the weight and diameter of the oviduct in Rana dybowskii during pre-brumation. Vitamin A and its active metabolite, retinoic acid, notably increased during pre-brumation. The mRNA levels of retinol binding protein 4 (rbp4) and its receptor stra6 gene, involved in vitamin A transport, were elevated during pre-brumation compared to the breeding period. In the vitamin A metabolic pathway, the mRNA expression level of retinoic acid synthase aldh1a2 decreased significantly during pre-brumation, while the mRNA levels of retinoic acid α receptor (rarα) and the retinoic acid catabolic enzyme cyp26a1 increased significantly during pre-brumation, but not during the breeding period. Immunohistochemical results showed that Rbp4, Stra6, Aldh1a2, Rarα, and Cyp26a1 were expressed in ampulla region of the oviduct. Western blot results indicated that Aldh1a2 expression was lower, while Rbp4, Stra6, RARα, and Cyp26a1 were higher during pre-brumation compared to the breeding period. Transcriptome analyses further identified differential genes in the oviduct and found enrichment of differential genes in the vitamin A metabolism pathway, providing evidences for our study. These results suggest that the vitamin A metabolic pathway is more active during pre-brumation compared to the breeding period, and retinoic acid may regulate pre-brumation oviductal expansion through Rarα-mediated autocrine/paracrine modulation.

2.
Comput Biol Chem ; 112: 108131, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38968781

ABSTRACT

Human glutaminyl cyclase (hQC) inhibitors have great potential to be used as anti- Alzheimer's disease (AD) agents by reducing the toxic pyroform of ß-amyloid in the brains of AD patients. The four-dimensional quantitative structure activity relationship (4D-QSAR) model of N-substituted urea/thioureas was established with satisfying predictive ability and statistical reliability (Q2 = 0.521, R2 = 0.933, R2prep = 0.619). By utilizing the developed 4D-QSAR model, a set of new N-substituted urea/thioureas was designed and evaluated for their Absorption Distribution Metabolism Excretion and Toxicity (ADMET) properties. The results of molecular dynamics (MD) simulations, Principal component analysis (PCA), free energy landscape (FEL), dynamic cross-correlation matrix (DCCM) and molecular mechanics generalized Born Poisson-Boltzmann surface area (MM-PBSA) free energy calculations, revealed that the designed compounds were remained stable in protein binding pocket and compounds b ∼ f (-35.1 to -44.55 kcal/mol) showed higher binding free energy than that of compound 14 (-33.51 kcal/mol). The findings of this work will be a theoretical foundation for further research and experimental validation of urea/thiourea derivatives as hQC inhibitors.

3.
Ann Med ; 56(1): 2373199, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38956857

ABSTRACT

BACKGROUND: Polycystic ovary syndrome (PCOS) is one of the most common endocrine and metabolic disorders in women of reproductive age. It is frequently comorbid with obesity and negative emotions. Currently, there are few reports on the relationship between obesity and negative emotions in patients with PCOS. Here we performed both basic and clinical studies to study the relationship between obesity and negative emotions in PCOS. METHODS: We performed a cross-sectional study including 608 patients with PCOS and 184 healthy participants to assess the mental health status of people with different body mass indices (BMI). Self-rated anxiety, depression, and perceived stress scales were used for subjective mood evaluations. Rat PCOS models fed 45 and 60% high-fat diets were used to confirm the results of the clinical study. Elevated plus maze and open field tests were used to assess anxiety- and depression-like behaviors in rats. RESULTS: We observed overweight/obesity, increased depression, anxiety, and perceived stress in women with PCOS, and found that anxiety and depression were negatively correlated with BMI in patients with severe obesity and PCOS. Similar results were confirmed in the animal study; the elevated plus maze test and open field test demonstrated that only 60% of high fat diet-induced obesity partly reversed anxiety- and depression-like behaviors in PCOS rats. A high-fat diet also modulated rat hypothalamic and hippocampal luteinizing hormone and testosterone levels. CONCLUSION: These results reveal a potential relationship between obesity and negative emotions in PCOS and prompt further investigation. The interactions between various symptoms of PCOS may be targeted to improve the overall well-being of patients.


Obesity was negatively correlated with negative emotions in patients with PCOS.Obesity may affect the downregulation of LH and testosterone and participate in the regulation of emotions.Increased BMI may be beneficial for patients with PCOS in terms of the psychological aspects.


Subject(s)
Anxiety , Body Mass Index , Depression , Diet, High-Fat , Obesity , Polycystic Ovary Syndrome , Polycystic Ovary Syndrome/psychology , Polycystic Ovary Syndrome/complications , Female , Animals , Humans , Obesity/psychology , Rats , Cross-Sectional Studies , Adult , Anxiety/psychology , Anxiety/etiology , Depression/psychology , Depression/etiology , Diet, High-Fat/adverse effects , Disease Models, Animal , Rats, Sprague-Dawley , Young Adult , Emotions , Stress, Psychological/psychology
4.
PLoS One ; 19(6): e0304835, 2024.
Article in English | MEDLINE | ID: mdl-38875173

ABSTRACT

Blockchain-based applications are becoming more and more widespread in business operations. In view of the shortcomings of existing enterprise blockchain evaluation methods, this paper proposes a multi-source heterogeneous blockchain data quality evaluation model for enterprise business activities, so as to achieve efficient evaluation of business activity information consistency, credibility and value. This paper proposes a multi-source heterogeneous blockchain data quality assessment method for enterprise business activities, aiming at the problems that most of the data in enterprise business activities come from different data sources, information representation is inconsistent, information ambiguity between the same block chain is serious, and it is difficult to evaluate the consistency, credibility and value of information. The method firstly proposes an entity information representation method based on the Representation learning for fusing entity category information (CEKGRL) model, which introduces the triad structure of related entities in blockchain, then associates them with enterprise business activity categories, and carries out similarity calculation through contextual information to achieve blockchain information consistency assessment. After that, a trustworthiness characterization method is proposed based on information sources, information comments, and information contents, to obtain the trustworthiness assessment of the business. Finally, based on the information trustworthiness characterization, a value assessment method is introduced to assess the total value of business activity information in the blockchain, and a blockchain quality assessment model is constructed. The experimental results show that the proposed model has great advantages over existing methods in assessing inter-block consistency, intra-block activity information trustworthiness and the value of blockchain.


Subject(s)
Blockchain , Commerce , Data Accuracy , Models, Theoretical , Humans
5.
J Steroid Biochem Mol Biol ; 243: 106558, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38815727

ABSTRACT

The dynamic systems of mitochondria, including mitochondrial fusion and fission, are essential for ovarian endocrine and follicular development. Meanwhile, ERK1/2 signaling is an important mechanism mediating altered mitochondrial dynamics and steroidogenesis. The purpose of this study was to investigate the seasonal changes in ovarian steroidogenesis concerning EGFR-ERK1/2 signaling and mitochondrial dynamics of the muskrats (Ondatra zibethicus). The results showed that follicular development in the muskrats remained in the tertiary follicular stage during the non-breeding season, accompanied by a significant decrease in serum and ovarian concentrations of 17ß-estradiol and progesterone from the breeding season to the non-breeding season. EGF, EGFR, ERK1/2, p-ERK1/2, and mitochondrial dynamics regulators were mainly localized in granulosa cells and theca cells of muskrats during the breeding and non-breeding seasons. The mRNA levels of Egfr, Erk1/2, Mfn1/2, Opa1, Drp1, and steroidogenic enzymes in the ovaries were remarkably higher during the breeding season. The 17ß-estradiol concentrations in the serum and ovaries as well as the relative levels of Mfn1/2, Opa1, and Drp1 were positively associated with each other. Furthermore, transcriptomic analysis of the ovaries revealed that differentially expressed genes might be linked to steroid biosynthesis, estrogen signaling pathway, and mitochondrial membrane-related pathways. In conclusion, these results suggest that the up-regulation of mitochondrial dynamics regulators during the breeding season is closely associated with enhanced ovarian steroidogenesis in the muskrats, which may be regulated by upstream EGFR-ERK1/2 signaling.

6.
Int J Mol Sci ; 25(10)2024 May 09.
Article in English | MEDLINE | ID: mdl-38791193

ABSTRACT

Adiponectin is an important adipokine involved in glucose and lipid metabolism, but its secretion and potential role in regulating glucose utilization during ovarian development remains unclear. This study aims to investigate the mechanism and effects of follicle-stimulating hormones (FSHs) on adiponectin secretion and its following impact on glucose transport in the granulosa cells of rat ovaries. A range of experimental techniques were utilized to test our research, including immunoblotting, immunohistochemistry, immunofluorescence, ELISA, histological staining, real-time quantitative PCR, and transcriptome analysis. The immunohistochemistry results indicated that adiponectin was primarily located in the granulosa cells of rat ovaries. In primary granulosa cells cultured in vitro, both Western blot and immunofluorescence assays demonstrated that FSH significantly induced adiponectin secretion within 2 h of incubation, primarily via the PKA signaling pathway rather than the PI3K/AKT pathway. Concurrently, the addition of the AdipoR1/AdipoR2 dual agonist AdipoRon to the culture medium significantly stimulated the protein expression of GLUT1 in rat granulosa cells, resulting in enhanced glucose absorption. Consistent with these in vitro findings, rats injected with eCG (which shares structural and functional similarities with FSH) exhibited significantly increased adiponectin levels in both the ovaries and blood. Moreover, there was a notable elevation in mRNA and protein levels of AdipoRs and GLUTs following eCG administration. Transcriptomic analysis further revealed a positive correlation between the expression of the intraovarian adiponectin system and glucose transporter. The present study represents a novel investigation, demonstrating that FSH stimulates adiponectin secretion in ovarian granulosa cells through the PKA signaling pathway. This mechanism potentially influences glucose transport (GLUT1) and utilization within the ovaries.


Subject(s)
Adiponectin , Follicle Stimulating Hormone , Glucose , Granulosa Cells , Receptors, Adiponectin , Signal Transduction , Animals , Female , Adiponectin/metabolism , Adiponectin/genetics , Granulosa Cells/metabolism , Granulosa Cells/drug effects , Rats , Follicle Stimulating Hormone/metabolism , Glucose/metabolism , Receptors, Adiponectin/metabolism , Receptors, Adiponectin/genetics , Cells, Cultured , Glucose Transporter Type 1/metabolism , Glucose Transporter Type 1/genetics , Rats, Sprague-Dawley , Cyclic AMP-Dependent Protein Kinases/metabolism , Ovary/metabolism , Piperidines
7.
Adv Healthc Mater ; : e2400400, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38769944

ABSTRACT

Vascular dementia (VaD) is the second most common form of dementia worldwide. Oxidative stress and neuroinflammation are important factors contributing to cognitive dysfunction in patients with VaD. The antioxidant and anti-inflammatory properties of hydrogen are increasingly being utilized in neurological disorders, but conventional hydrogen delivery has the disadvantage of inefficiency. Therefore, magnesium silicide nanosheets (MSNs) are used to release hydrogen in vivo in larger quantities and for longer periods of time to explore the appropriate dosage and regimen. In this study, it is observed that hydrogen improved learning and working memory in VaD rats in the Morris water maze and Y-maze, which elicits improved cognitive function. Nissl staining of neurons shows that hydrogen treatment significantly improves edema in neuronal cells. The expression and activation of reactive oxygen species (ROS), Thioredoxin-interacting protein (TXNIP), NOD-like receptor protein 3 (NLRP3), caspase-1, and IL-1ß in the hippocampus are measured via ELISA, Western blotting, real-time qPCR, and immunofluorescence. The results show that oxidative stress indicators and inflammasome-related factors are significantly decreased after 7dMSN treatment. Therefore, it is concluded that hydrogen can ameliorate neurological damage and cognitive dysfunction in VaD rats by inhibiting ROS/NLRP3/IL-1ß-related oxidative stress and inflammation.

8.
J Biophotonics ; 17(6): e202400049, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38634340

ABSTRACT

Photocytotoxicity represents a significant limitation in the application of dye-assisted fluorescence imaging (FI), often resulting in undesirable cellular damage or even cell death, thereby restricting their practical utility. The prevalence of Rhodamine B (RhB) in FI underscores the importance of elucidating its photocytotoxicity effects to minimize photodamage. This study identifies the primary cause of photocytotoxicity stems from the generation of cytotoxic singlet oxygen in RhB, utilizing femtosecond transient absorption spectroscopy coupled with quantum chemical calculations. The Laser power-dependent cellular viability reveals a threshold at about 50 mW cm-2, surpassing which produces pronounced photocytotoxicity in vitro and in vivo. Notably, this threshold significantly falls below the safety limits (<200 mW cm-2) for laser use in health care, implying a huge risk of photodamage. This study provides valuable insights into the photocytotoxicity and offers essential guidelines for developing safer imaging protocols.


Subject(s)
Cell Survival , Optical Imaging , Rhodamines , Rhodamines/chemistry , Animals , Humans , Cell Survival/drug effects , Mice , Safety , Light , Singlet Oxygen/metabolism
9.
Curr Res Food Sci ; 8: 100727, 2024.
Article in English | MEDLINE | ID: mdl-38577418

ABSTRACT

The favorable inhibitory effect of tea polyphenols on heterocyclic aromatic amines (HAAs) has been confirmed in many past studies. The objective of this study was to investigate the structure-activity relationship of catechins that act as inhibitors of HAA formation in chemical models. Two kinds of quantitative structure-activity relationship models for catechin-inhibiting-HAA were established. We chose two kinds of HAAs including 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) and 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline (MeIQx), and five catechins including epigallocatechin gallate (EGCG), epicatechin gallate (ECG), epigallocatechin (EGC), epicatechin (EC), and catechin (C). The inhibitory effect of five catechins were in the following order: EGCG > ECG > EGC > C > EC. Thereinto, EGCG and ECG showed dramatically better inhibition on the formation of PhIP and MeIQx, especially EGCG. Further, the mechanisms of catechin-inhibiting-HAA were speculated by correlation analysis. The free radical-scavenging ability was predicted to be the most relevant to the inhibitory effect of ECG, EGC, EC and C on HAAs. Differently, the phenylacetaldehyde-trapping ability might be the more important mechanism of EGCG inhibiting PhIP in chemical model system. This study may bring a broader idea for controlling the formation of HAAs according to the structure of catechins.

10.
Sci Total Environ ; 929: 172724, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38663601

ABSTRACT

Soil protozoa, as predators of microbial communities, profoundly influence multifunctionality of soils. Understanding the relationship between soil protozoa and soil multifunctionality (SMF) is crucial to unraveling the driving mechanisms of SMF. However, this relationship remains unclear, particularly in grassland ecosystems that are experiencing degradation. By employing 18S rRNA gene sequencing and network analysis, we examined the diversity, composition, and network patterns of the soil protozoan community along a well-characterized gradient of grassland degradation at four alpine sites, including two alpine meadows (Cuona and Jiuzhi) and two alpine steppes (Shuanghu and Gonghe) on the Qinghai-Tibetan Plateau. Our findings showed that grassland degradation decreased SMF for 1-2 times in all four sites but increased soil protozoan diversity (Shannon index) for 13.82-298.01 % in alpine steppes. Grassland degradation-induced changes in soil protozoan composition, particularly to the Intramacronucleata with a large body size, were consistently observed across all four sites. The enhancing network complexity (average degree), stability (robustness), and cooperative relationships (positive correlation) are the responses of protozoa to grassland degradation. Further analyses revealed that the increased network complexity and stability led to a decrease in SMF by affecting microbial biomass. Overall, protozoa increase their diversity and strengthen their cooperative relationships to resist grassland degradation, and emphasize the critical role of protozoan network complexity and stability in regulating SMF. Therefore, not only protozoan diversity and composition but also their interactions should be considered in evaluating SMF responses to grassland degradation, which has important implications for predicting changes in soil function under future scenarios of anthropogenic change.


Subject(s)
Grassland , Soil Microbiology , Soil , Soil/chemistry , RNA, Ribosomal, 18S , Biodiversity , Ecosystem , Environmental Monitoring
11.
Nanomaterials (Basel) ; 14(8)2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38668154

ABSTRACT

Si-based anode is considered one of the ideal anodes for high energy density lithium-ion batteries due to its high theoretical capacity of 4200 mAh g-1. To accelerate the commercial progress of Si material, the multi-issue of extreme volume expansion and low intrinsic electronic conductivity needs to be settled. Herein, a series of nano-sized Si particles with conductive networks are synthesized via the dielectric barrier discharge plasma (DBDP) assisted milling. The p-milling method can effectively refine the particle sizes of pristine Si without destroying its crystal structure, resulting in large Brunauer-Emmett-Teller (BET) values with more active sites for Li+ ions. Due to their unique structure and flexibility, CNTs can be uniformly distributed among the Si particles and the prepared Si electrodes exhibit better structural stability during the continuous lithiation/de-lithiation process. Moreover, the CNT network accelerates the transport of ions and electrons in the Si particles. As a result, the nano-sized Si anodes with CNTs conductive network can deliver an extremely high average initial Coulombic efficiency (ICE) reach of 90.2% with enhanced cyclic property and rate capability. The C-PMSi-50:1 anode presents 615 mAh g-1 after 100 cycles and 979 mAh g-1 under the current density of 5 A g-1. Moreover, the manufactured Si||LiNi0.8Co0.1Mn0.1O2 pouch cell maintains a high ICE of >85%. This work may supply a new insight for designing the nano-sized Si and further promoting its commercial applications.

12.
Cell Commun Signal ; 22(1): 199, 2024 Mar 29.
Article in English | MEDLINE | ID: mdl-38553728

ABSTRACT

KIFC3 is a member of Kinesin-14 family motor proteins, which play a variety of roles such as centrosome cohesion, cytokinesis, vesicles transportation and cell proliferation in mitosis. Here, we investigated the functional roles of KIFC3 in meiosis. Our findings demonstrated that KIFC3 exhibited expression and localization at centromeres during metaphase I, followed by translocation to the midbody at telophase I throughout mouse oocyte meiosis. Disruption of KIFC3 activity resulted in defective polar body extrusion. We observed aberrant meiotic spindles and misaligned chromosomes, accompanied by the loss of kinetochore-microtubule attachment, which might be due to the failed recruitment of BubR1/Bub3. Coimmunoprecipitation data revealed that KIFC3 plays a crucial role in maintaining the acetylated tubulin level mediated by Sirt2, thereby influencing microtubule stability. Additionally, our findings demonstrated an interaction between KIFC3 and PRC1 in regulating midbody formation during telophase I, which is involved in cytokinesis regulation. Collectively, these results underscore the essential contribution of KIFC3 to spindle assembly and cytokinesis during mouse oocyte meiosis.


Subject(s)
Cytokinesis , Kinesins , Animals , Mice , Kinesins/genetics , Kinesins/metabolism , Meiosis , Microtubules/metabolism , Oocytes/metabolism
13.
Heliyon ; 10(6): e28267, 2024 Mar 30.
Article in English | MEDLINE | ID: mdl-38545134

ABSTRACT

Objective: The purpose of this research was to investigate the measurements of maxillary and mandibular basal arch width in male and female with normal occlusion, and to compare dental arch width difference between normal occlusion and ClassⅡ malocclusion groups could be helpful in orthodontic diagnosis and treatment planning. Methods: Cone-beam computed tomography (CBCT) images from 133 individuals (76 males and 57 females) with normal occlusion and 64 (25 males and 39 females) with skeletal Class II malocclusions were evaluated. The distances between canines, first molars (basal arch widths: BAW) and second molars were measured from CRs (center of resistance) of the teeth and the projection of first molars on buccal bones (WALA distance) were measured. Results: There were significant differences in male and female maxillary and mandibular dental transverse widths. The normal range of the maxilla and mandible basal bone widths differences were -2 mm-2 mm (-0.05 ± 2.17 mm). The normal occlusion and Class Ⅱ groups exhibited significant differences in the width of the intercanine and first molars. Sella-nasion-A point angle (SNA) and Sella-nasion-B point angle (SNB) in the Class Ⅱ male group were positively correlated with the width between the maxillary canines. For individuals with normal occlusions, the width of the mandible at the second molar was greater than that of the maxilla, so more attention should be paid to the width of the second molar when considering clinical treatment. Conclusion: Measuring the width of the maxilla and mandible basal bones from the resistance center of the first molar was a feasible and repeatable method can be used in clinical practice. The data could serve as a reference for orthodontic treatment planning. More consideration should be paid to the horizontal dental problems of the treatment plan for Class Ⅱ patients. And the width of the mandible at the second molar was greater than that of the maxilla, so more attention should be paid during treatment.

15.
Food Chem ; 446: 138849, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38460280

ABSTRACT

Polycyclic aromatic hydrocarbons (PAHs), prominent carcinogens formed during food processing, pose health risks through long-term consumption. This study focuses on 16 priority PAHs in the European Union, investigating their formation during pyrolysis. Glucose, amino acids and fatty acids are important food nutrients. To further explore whether these nutrients in food form PAHs during heating, a single chemical model method was used to heat these nutrients respectively, and GC-MS/MS was used to identify and quantify the obtained components. Glucose is the most basic nutrient in food, so the influence of water, pH, temperature and other factors on the formation of PAHs was studied in the glucose model. At the same time, the models of amino acids and fatty acids were used to assist in improving the entire nutrient research system. According to our results, some previously reported mechanisms of PAHs formation by fatty acids heating were confirmed. In addition, glucose and amino acids could also produce many PAHs after heating, and some conclusions were improved by comparing the intermediates of PAHs from three types of nutrients.


Subject(s)
Amino Acids , Polycyclic Aromatic Hydrocarbons , Fatty Acids , Glucose , Models, Chemical , Tandem Mass Spectrometry , Nutrients
16.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1869(4): 159469, 2024 May.
Article in English | MEDLINE | ID: mdl-38402945

ABSTRACT

This study aims to explore the relationship between altered vitamin D (VitD3) status and ovarian steroidogenesis in muskrats during the breeding and non-breeding seasons. During the breeding season, the ovaries of muskrats were observably enlarged and increased in weight, accompanied by elevated serum and ovarian VitD3 status. Vitamin D receptor (VDR), VitD3 metabolic molecules (CYP2R1, CYP27B1, and CYP24A1), and steroidogenic enzymes were immunolocalized in the ovarian cells of muskrats. The mRNA levels of VDR, CYP2R1, CYP27B1, and steroidogenic enzymes were considerably higher during the breeding season compared to the non-breeding season. RNA-seq analysis revealed a prominent enrichment of vitamin-related and ovarian steroidogenesis pathways. Furthermore, the addition of 1,25(OH)2D3 to the muskrat granulosa cells in vitro increased VDR and steroidogenic enzymes mRNA levels and enhanced the 17ß-estradiol level. Overall, these findings supported that VitD3 promotes the secretion of steroid hormones, thereby affecting seasonal changes in ovarian function in the muskrats.


Subject(s)
Ovary , Vitamin D , Animals , Female , Vitamin D/metabolism , Ovary/metabolism , 25-Hydroxyvitamin D3 1-alpha-Hydroxylase/genetics , 25-Hydroxyvitamin D3 1-alpha-Hydroxylase/metabolism , Arvicolinae/genetics , Arvicolinae/metabolism , Vitamins , Granulosa Cells/metabolism , RNA, Messenger/genetics
17.
IEEE Trans Biomed Eng ; PP2024 Feb 23.
Article in English | MEDLINE | ID: mdl-38393844

ABSTRACT

Low-frequency ultrasound can permeate human thorax and can be applied in functional imaging of the respiratory system. In this study, we investigated the transmission of low-frequency ultrasound through the human thorax and propose a waveform matching method to track the changes in the transmission signal during subject's respiration. The method's effectiveness is validated through experiments involving ten human subjects. Furthermore, the experimental findings indicate that the traveltime of the first-arrival signal remains consistent throughout the respiratory cycle. Leveraging this observation, we introduce an algorithm for ultrasound thorax attenuation factor differential imaging. By computing the paths and energy variation of the first-arrival signal from the received waveform, the algorithm reconstructs the distribution of attenuation factor differences between two different thorax states, providing insights into the functional status of the respiratory system. Numerical experiments, using both normal thorax and defective thorax models, confirm the algorithm's feasibility and its robustness against noise, variations in transducer position and orientation. These results highlight the potential of low-frequency ultrasound for bedside, continuous monitoring of human respiratory system through functional imaging.

18.
Food Chem ; 446: 138760, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38402760

ABSTRACT

The prevention and control of heterocyclic aromatic amines (HAA) formation to mitigate of potential risks to humans, can be achieved by targeting their precursors. In this study, the detailed roles of individual and excess component (20 common α-amino acids, creatine, creatinine, and glucose) on HAA formation in roasted beef patties were examined using UPLC-MS/MS. The results confirmed the reported classical precursors of HAAs. Some components regulated the competitive production of Norharman and Harman. Glycine (Gly) and glucose favored Norharman formation, while cysteine (Cys) and phenylalanine (Phe) for Harman. Serine (Ser) and threonine (Thr) were identified as potential precursors for IQx-type HAAs. Interestingly, methionine (Met), Gly, Thr, Cys, alanine (Ala), and Ser were revealed as more targeted underlying precursors for 1,6-DMIP and 1,5,6-TMIP, and the formation mechanism was inferred. Furthermore, Pro, Leu, His, Ile, Lys and Asp were considered as great inhibitors for HAAs.


Subject(s)
Creatine , Glucose , Animals , Cattle , Humans , Creatinine , Chromatography, Liquid , Liquid Chromatography-Mass Spectrometry , Amino Acid Sequence , Tandem Mass Spectrometry , Amines , Amino Acids , Peptide Fragments
19.
Sci Rep ; 14(1): 4049, 2024 Feb 19.
Article in English | MEDLINE | ID: mdl-38374379

ABSTRACT

Master-slave blockchain is a novel information processing technology that is domain-oriented and uses efficient cryptography principles for trustworthy communication and storage of big data. Existing indexing methods primarily target the creation of a single-structured blockchain, resulting in extensive time and memory requirements. As the scale of domain data continues to grow exponentially, master-slave blockchain systems face increasingly severe challenges with regards to low query efficiency and extended traceback times. To address these issues, this paper propose a multi-level index construction method for the master-slave blockchain (MLI). Firstly, MLI introduces a weight matrix and partitions the entire master-slave blockchain based on the master chain structure, the weight of each partition is assigned. Secondly, for the master blockchain in each partition, a master chain index construction method based on jump consistent hash (JHMI) is proposed, which takes the key value of the nodes and the number of index slots as input and outputs the master chain index. Finally, a bloom filter is introduced to improve the column-based selection function and build a secondary composite index on the subordinate blockchain corresponding to each master block. Experimental results on three constraint conditions and two types of datasets demonstrate that the proposed method reduce the index construction time by an average of 9.28%, improve the query efficiency by 12.07%, and reduce the memory overhead by 24.4%.

20.
J Ovarian Res ; 17(1): 46, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38378652

ABSTRACT

OBJECTIVE: This study aims to investigate the effects of natural products on animal models of premature ovarian failure (POF). METHODS: We conducted comprehensive literature searches and identified relevant studies that examined the protective effects of natural products on experimental POF. We extracted quantitative data on various aspects such as follicular development, ovarian function, physical indicators, oxidative stress markers, inflammatory factors, and protein changes. The data was analyzed using random-effects meta-analyses, calculating pooled standardized mean differences and 95% confidence intervals. Heterogeneity was assessed using the I2 statistic, and bias was estimated using the SYRCLE tool. RESULTS: Among the 879 reviewed records, 25 articles met our inclusion criteria. These findings demonstrate that treatment with different phytochemicals and marine natural products (flavonoids, phenols, peptides, and alkaloids, etc.) significantly improved various aspects of ovarian function compared to control groups. The treatment led to an increase in follicle count at different stages, elevated levels of key hormones, and a decrease in atretic follicles and hormone levels associated with POF. This therapy also reduced oxidative stress (specifically polyphenols, resveratrol) and apoptotic cell death (particularly flavonoids, chrysin) in ovarian granulosa cells, although it showed no significant impact on inflammatory responses. The certainty of evidence supporting these findings ranged from low to moderate. CONCLUSIONS: Phytochemicals and marine natural product therapy (explicitly flavonoids, phenols, peptides, and alkaloids) has shown potential in enhancing folliculogenesis and improving ovarian function in animal models of POF. These findings provide promising strategies to protect ovarian reserve and reproductive health. Targeting oxidative stress and apoptosis pathways may be the underlying mechanism.


Subject(s)
Alkaloids , Menopause, Premature , Primary Ovarian Insufficiency , Female , Humans , Animals , Primary Ovarian Insufficiency/therapy , Flavonoids/pharmacology , Phenols , Peptides/therapeutic use , Alkaloids/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL