Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters








Database
Language
Publication year range
1.
Viruses ; 16(6)2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38932283

ABSTRACT

Since it was first reported in 2013, the NADC30-like PRRSV has been epidemic in China. Hubei Province is known as China's key hog-exporting region. To understand the prevalence and genetic variation of PRRSV, herein, we detected and analyzed 317 lung tissue samples from pigs with respiratory disease in Hubei Province, and demonstrated that the NADC30-like strain was the second-most predominant strain during 2017-2018, following the highly pathogenic PRRSV (HP-PRRSV). Additionally, we isolated a new NADC30-like PRRSV strain, named CHN-HB-2018, which could be stably passaged in Marc-145 cells. Genetic characterization analysis showed that compared with the NADC30 strain, the CHN-HB-2018 strain had several amino acid variations in glycoprotein (GP) 3, GP5, and nonstructural protein 2 (NSP2). Moreover, the CHN-HB-2018 strain showed a unique 5-amino acid (aa) deletion in NSP2, which has not previously been reported. Gene recombination analysis identified the CHN-HB-2018 strain as a potentially recombinant PRRSV of the NADC30-like strain and HP-PRRSV. Animal experiments indicated that the CHN-HB-2018 strain has a mild pathogenicity, with no mortality and only mild fever observed in piglets. This study contributes to defining the evolutionary characteristics of PRRSV and its molecular epidemiology in Hubei Province, and provides a potential candidate strain for PRRSV vaccine development.


Subject(s)
Phylogeny , Porcine Reproductive and Respiratory Syndrome , Porcine respiratory and reproductive syndrome virus , Porcine respiratory and reproductive syndrome virus/genetics , Porcine respiratory and reproductive syndrome virus/pathogenicity , Porcine respiratory and reproductive syndrome virus/classification , Animals , Swine , Porcine Reproductive and Respiratory Syndrome/virology , Porcine Reproductive and Respiratory Syndrome/epidemiology , China/epidemiology , Virulence , Genome, Viral , Recombination, Genetic , Genetic Variation , Lung/virology , Lung/pathology
2.
Front Endocrinol (Lausanne) ; 15: 1377322, 2024.
Article in English | MEDLINE | ID: mdl-38800484

ABSTRACT

Type 1 diabetes (T1D) is an organ-specific autoimmune disease caused by pancreatic ß cell destruction and mediated primarily by autoreactive CD8+ T cells. It has been shown that only a small number of stem cell-like ß cell-specific CD8+ T cells are needed to convert normal mice into T1D mice; thus, it is likely that T1D can be cured or significantly improved by modulating or altering self-reactive CD8+ T cells. However, stem cell-type, effector and exhausted CD8+ T cells play intricate and important roles in T1D. The highly diverse T-cell receptors (TCRs) also make precise and stable targeted therapy more difficult. Therefore, this review will investigate the mechanisms of autoimmune CD8+ T cells and TCRs in T1D, as well as the related single-cell RNA sequencing (ScRNA-Seq), CRISPR/Cas9, chimeric antigen receptor T-cell (CAR-T) and T-cell receptor-gene engineered T cells (TCR-T), for a detailed and clear overview. This review highlights that targeting CD8+ T cells and their TCRs may be a potential strategy for predicting or treating T1D.


Subject(s)
CD8-Positive T-Lymphocytes , Diabetes Mellitus, Type 1 , Receptors, Antigen, T-Cell , Single-Cell Analysis , Diabetes Mellitus, Type 1/immunology , Diabetes Mellitus, Type 1/genetics , CD8-Positive T-Lymphocytes/immunology , Humans , Animals , Receptors, Antigen, T-Cell/immunology , Receptors, Antigen, T-Cell/genetics , Receptors, Antigen, T-Cell/metabolism , Single-Cell Analysis/methods , Sequence Analysis, RNA/methods , Insulin-Secreting Cells/immunology , Insulin-Secreting Cells/metabolism , Autoimmunity , Mice
3.
Front Med (Lausanne) ; 11: 1326843, 2024.
Article in English | MEDLINE | ID: mdl-38449881

ABSTRACT

Osteoarthritis (OA) is a degenerative disease of cartilage that affects the quality of life and has increased in morbidity and mortality in recent years. Cartilage homeostasis and dysregulation are thought to be important mechanisms involved in the development of OA. Many studies suggest that lncRNAs are involved in cartilage homeostasis in OA and that lncRNAs can be used to diagnose or treat OA. Among the existing therapeutic regimens, lncRNAs are involved in drug-and nondrug-mediated therapeutic mechanisms and are expected to improve the mechanism of adverse effects or drug resistance. Moreover, targeted lncRNA therapy may also prevent or treat OA. The purpose of this review is to summarize the links between lncRNAs and cartilage homeostasis in OA. In addition, we review the potential applications of lncRNAs at multiple levels of adjuvant and targeted therapies. This review highlights that targeting lncRNAs may be a novel therapeutic strategy for improving and modulating cartilage homeostasis in OA patients.

4.
Viruses ; 15(9)2023 Aug 26.
Article in English | MEDLINE | ID: mdl-37766223

ABSTRACT

Porcine reproductive and respiratory syndrome (PRRS) has been a persistent challenge for the swine industry for over three decades due to the lack of effective treatments and vaccines. Reverse genetics systems have been extensively employed to build rapid drug screening platforms and develop genetically engineered vaccines. Herein, we rescued recombinant PRRS virus (rPRRSV) WUH3 using an infectious cDNA clone of PRRSV WUH3 acquired through a BstXI-based one-step-assembly approach. The rPRRSV WUH3 and its parental PRRSV WUH3 share similar plaque sizes and multiple-step growth curves. Previously, gene-editing of viral genomes depends on appropriate restrictive endonucleases, which are arduous to select in some specific viral genes. Thus, we developed a restrictive endonucleases-free method based on CRISPR/Cas9 to edit the PRRSV genome. Using this method, we successfully inserted the exogenous gene (EGFP gene as an example) into the interval between ORF1b and ORF2a of the PRRSV genome to generate rPRRSV WUH3-EGFP, or precisely mutated the lysine (K) at position 150 of PRRSV nsp1α to glutamine (Q) to acquire rPRRSV WUH3 nsp1α-K150Q. Taken together, our study provides a rapid and convenient method for the development of genetically engineered vaccines against PRRSV and the study on the functions of PRRSV genes.

5.
Mol Cell Biochem ; 2023 Aug 28.
Article in English | MEDLINE | ID: mdl-37639198

ABSTRACT

Kawasaki disease (KD) and Henoch-Schönlein purpura (HSP) are the two most predominant types of childhood vasculitis. In childhood vasculitis, factors such as lack of sensitive diagnostic indicators and adverse effects of drug therapy may cause multiorgan system involvement and complications and even death. Many studies suggest that long noncoding RNAs (lncRNAs) are involved in the mechanism of vasculitis development in children and can be used to diagnose or predict prognosis by lncRNAs. In existing drug therapies, lncRNAs are also involved in drug-mediated treatment mechanisms and are expected to improve drug toxicity. The aim of this review is to summarize the link between lncRNAs and the pathogenesis of KD and HSP. In addition, we review the potential applications of lncRNAs in multiple dimensions, such as diagnosis, treatment, and prognosis prediction. This review highlights that targeting lncRNAs may be a novel therapeutic strategy to improve and treat KD and HSP.

6.
Vet Microbiol ; 253: 108947, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33341467

ABSTRACT

The ubiquitin-proteasome system (UPS) plays a vital role in cellular protein homeostasis by ensuring protein quality control and maintaining a critical level of important regulatory proteins. Thus, it is not surprising that the functional UPS is manipulated by viruses to assist in viral propagation. Porcine reproductive and respiratory syndrome virus (PRRSV) is an economically significant swine disease that has been devastating the swine industry worldwide. However, the role of UPS in PRRSV infection is unknown. In this study, we found that treatment with the proteasome inhibitor MG132 significantly inhibited PRRSV proliferation in a dose-dependent manner. The anti-PRRSV effect of MG132 was most significant in the middle stage of the PRRSV lifecycle, which is achieved via inhibition of viral attachment and replication. Interestingly, the expression of poly-ubiquitin was drastically decreased and the accumulation of free-ubiquitin was obviously elevated in the middle stage of PRRSV infection. Furthermore, the ectopic expression of ubiquitin in MG132-treated cells partially reversed the inhibitory effect of MG132 on PRRSV proliferation. Taken together, these results suggest that PRRSV manipulates UPS to promote self-proliferation by cheating or taking advantage of the host proteasome, degrading intracellular poly-ubiquitin and increasing the accumulation of free ubiquitin.


Subject(s)
Host-Pathogen Interactions/physiology , Porcine respiratory and reproductive syndrome virus/physiology , Proteasome Endopeptidase Complex/metabolism , Ubiquitin/genetics , Ubiquitin/metabolism , Virus Replication/physiology , Animals , HEK293 Cells , Host-Pathogen Interactions/drug effects , Humans , Leupeptins/pharmacology , Porcine respiratory and reproductive syndrome virus/genetics , Proteasome Endopeptidase Complex/genetics , Signal Transduction , Swine , Ubiquitination/drug effects , Virus Replication/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL