Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 30
Filter
Add more filters








Publication year range
1.
J Photochem Photobiol B ; 259: 113005, 2024 Aug 06.
Article in English | MEDLINE | ID: mdl-39126797

ABSTRACT

Light exposure significantly impacted the coloration and metabolism of Auricularia cornea, although the underlying mechanisms remain unclear. This study aimed to test the apparent color and pigment metabolic profiles of A. cornea in response to red (λp = 630 nm) and blue (λp = 463 nm) visible light exposure. Colorimeter analysis showed that fruiting bodies appeared bright-white under red-light and deeper-red under blue-light, both with a yellow tinge. On the 40th day of light-exposure, bodies were collected for metabolite detection. A total of 481 metabolites were targeted analysis, resulting in 18 carotenoids and 11 anthocyanins. Under red and blue light exposure, the total carotenoids levels were 1.1652 µg/g and 1.1576 µg/g, the total anthocyanins levels were 0.0799 µg/g and 0.1286 µg/g, respectively. Four differential metabolites and three putative gene linked to the visual coloration of A. cornea were identified. This pioneering study provides new insights into the role of light in regulating A. cornea pigmentation and metabolic profile.

2.
Genomics ; 116(5): 110902, 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-39053612

ABSTRACT

A pioneering pink cultivar of Auricularia cornea, first commercially cultivated in 2022, lacks genomic data, hindering research in genetic breeding, gene discovery, and product development. Here, we report the de novo assembly of the pink A. cornea Fen-A1 genome and provide a detailed functional annotation. The genome is 73.17 Mb in size, contains 86 scaffolds (N50 âˆ¼ 5.49 Mb), 59.09% GC content and encodes 19,120 predicted genes with a BUSCO completeness of 92.60%. Comparative genomic analysis reveals the phylogenetic relatedness of Fen-A1 and remarkable gene family dynamics. Putative genes were found mapped to 3 antibiotic-related, 36 light-dependent and 25 terpene metabolites. In addition, 789 CAZymes genes were classified, revealing the dynamics of quality loss due to postharvest refrigeration. Overall, our work is the first report on a pink A. cornea genome and provides a comprehensive insight into its complex functions.

3.
Ecotoxicol Environ Saf ; 281: 116683, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38964061

ABSTRACT

Soil pollution by microplastics (MPs), defined as plastic particles <5 mm, and heavy metals is a significant environmental issue. However, studies on the co-contamination effects of MPs and heavy metals on buckwheat rhizosphere microorganisms, especially on the arbuscular mycorrhizal fungi (AMF) community, are limited. We introduced low (0.01 g kg-1) and high doses of lead (Pb) (2 g kg-1) along with polyethylene (PE) and polylactic acid (PLA) MPs, both individually and in combination, into soil and assessed soil properties, buckwheat growth, and rhizosphere bacterial and AMF communities in a 40-day pot experiment. Notable alterations were observed in soil properties such as pH, alkaline hydrolyzable nitrogen (AN), and the available Pb (APb). High-dose Pb combined with PLA-MPs hindered buckwheat growth. Compared to the control, bacterial Chao1 richness and Shannon diversity were lower in the high dose Pb with PLA treatment, and differentially abundant bacteria were mainly detected in the high Pb dose treatments. Variations in bacterial communities correlated with APb, pH and AN. Overall, the AMF community composition remained largely consistent across all treatments. This phenomenon may be due to fungi having lower nutritional demands than bacteria. Stochastic processes played a relatively important role in the assembly of both bacterial and AMF communities. In summary, MPs appeared to amplify both the positive and negative effects of high Pb doses on the buckwheat rhizosphere bacteria.


Subject(s)
Fagopyrum , Lead , Microplastics , Mycorrhizae , Rhizosphere , Soil Microbiology , Soil Pollutants , Soil Pollutants/toxicity , Soil Pollutants/analysis , Mycorrhizae/drug effects , Lead/toxicity , Microplastics/toxicity , Bacteria/drug effects , Bacteria/classification , Bacteria/growth & development , Soil/chemistry
4.
Front Microbiol ; 15: 1389268, 2024.
Article in English | MEDLINE | ID: mdl-38962137

ABSTRACT

The process of carbohydrate metabolism and genetic information transfer is an important part of the study on the effects of the external environment on microbial growth and development. As one of the most significant environmental parameters, pH has an important effect on mycelial growth. In this study, the effects of environmental pH on the growth and nutrient composition of Aspergillus niger (A. niger) filaments were determined. The pH values of the medium were 5, 7, and 9, respectively, and the molecular mechanism was further investigated by transcriptomics and metabolomics methods. The results showed that pH 5 and 9 significantly inhibited filament growth and polysaccharide accumulation of A. niger. Further, the mycelium biomass of A. niger and the crude polysaccharide content was higher when the medium's pH was 7. The DEGs related to ribosome biogenesis were the most abundant, and the downregulated expression of genes encoding XRN1, RRM, and RIO1 affected protein translation, modification, and carbohydrate metabolism in fungi. The dynamic changes of pargyline and choline were in response to the oxidative metabolism of A. niger SICU-33. The ribophorin_I enzymes and DL-lactate may be important substances related to pH changes during carbohydrate metabolism of A.niger SICU-33. The results of this study provide useful transcriptomic and metabolomic information for further analyzing the bioinformatic characteristics of A. niger and improving the application in ecological agricultural fermentation.

5.
Antonie Van Leeuwenhoek ; 117(1): 46, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38427093

ABSTRACT

The fast-growing rhizobia-like strains S101T and S153, isolated from root nodules of soybean (Glycine max) in Sichuan, People's Republic of China, underwent characterization using a polyphasic taxonomy approach. The strains exhibited growth at 20-40 °C (optimum, 28 °C), pH 4.0-10.0 (optimum, pH 7.0) and up to 2.0% (w/v) NaCl (optimum, 0.01%) on Yeast Mannitol Agar plates. The 16S rRNA gene of strain S101T showed 98.4% sequence similarity to the closest type strain, Ciceribacter daejeonense L61T. Major cellular fatty acids in strain S101T included summed feature 8 (C18:1ω7c and/or C18:1ω6c) and C19:0 cyclo ω8c. The predominant quinone was ubiquinone-10. The polar lipids of strain S101T included diphosphatidylglycerol, phosphatidylglycerol, phosphatidylmethyl ethanolamine, phosphatidyl ethanolamine, amino phospholipid, unidentified phosphoglycolipid and unidentified amino-containing lipids. The DNA G + C contents of S101T and S153 were 61.1 and 61.3 mol%, respectively. Digital DNA-DNA hybridization relatedness and average nucleotide identity values between S101T and C. daejeonense L61T were 46.2% and 91.4-92.2%, respectively. In addition, strain S101T promoted the growth of soybean and carried nitrogen fixation genes in its genome, hinting at potential applications in sustainable agriculture. We propose that strains S101T and S153 represent a novel species, named Ciceribacter sichuanensis sp. nov., with strain S101T as the type strain (= CGMCC 1.61309 T = JCM 35649 T).


Subject(s)
Glycine max , Phospholipids , Humans , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Phylogeny , DNA, Bacterial/genetics , Phospholipids/chemistry , Fatty Acids/chemistry , Ethanolamines , China , Bacterial Typing Techniques
6.
Front Microbiol ; 15: 1359830, 2024.
Article in English | MEDLINE | ID: mdl-38511010

ABSTRACT

Introduction: pH is one of the important factors affecting the growth and performance of microorganisms. Methods: We studied the pH response and plant growth-promoting (PGP) ability of Rhizopus delemar using cultivation experiments and transcriptomics, and verified the expression profiles using quantitative real-time PCR. Results: pH affected the growth and PGP properties of R. delemar. At pH 7, the growth rate of R. delemar was rapid, whereas pH 4 and 8 inhibited mycelial growth and PGP ability, respectively. In the pot experiment, the plant height was the highest at pH 7, 56 cm, and the lowest at pH 4 and pH 5, 46.6 cm and 47 cm, respectively. Enzyme activities were highest at pH 6 to pH 7. Enzyme activities were highest at pH 6 to pH 7. Among the 1,629 differentially expressed genes (DEGs), 1,033 genes were up-regulated and 596 were down-regulated. A total of 1,623 DEGs were annotated to carbohydrate-active enzyme coding genes. Discussion: The PGP characteristics, e.g., Phosphorus solubilization ability, of R. delemar were strongest at pH 7. The results provide useful information regarding the molecular mechanism of R. delemar pH response.

7.
Food Chem ; 448: 139052, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38531296

ABSTRACT

The study investigated the effect of different sodium chloride (NaCl) concentrations (10%, 15%, and 20%) on the ripening fermentation of Pixian-Douban, a traditional fermented condiment. The results showed that NaCl affected the dynamics of physicochemical parameters, volatile components, fatty acids, amino metabolites, organic acids, and microbial composition, and their dynamic modes were different. After 253 days fermentation, the 10% NaCl Pixian-Douban had significantly (p < 0.05) higher levels of total organic acids (20,308.25 mg/kg), amino metabolites (28,144.96 mg/kg), and volatiles (3.36 mg/kg) compared to 15% and 20% NaCl Pixian-Douban. Notably, the possible health risk associated with high concentration of biogenic amines in 10% NaCl Pixian-Douban is of concern. Moreover, correlation analyses indicated that the effect of NaCl on the quality of Pixian-Douban may be mainly related to bacteria. This study deepens the knowledge about the role of NaCl in ripening fermentation of Pixian-Douban and contributes to develop low-NaCl Pixian-Douban product.


Subject(s)
Bacteria , Fermentation , Sodium Chloride , Sodium Chloride/metabolism , Sodium Chloride/pharmacology , Sodium Chloride/analysis , Bacteria/metabolism , Bacteria/genetics , Bacteria/classification , Bacteria/isolation & purification , Bacteria/drug effects , Volatile Organic Compounds/metabolism , Volatile Organic Compounds/chemistry , Fermented Foods/analysis , Fermented Foods/microbiology , Fatty Acids/metabolism , Fatty Acids/chemistry , Condiments/analysis , Condiments/microbiology , Amino Acids/metabolism , Amino Acids/analysis
8.
Environ Res ; 242: 117675, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-37984784

ABSTRACT

Earthen sites are the important cultural heritage that carriers of human civilization and contains abundant history information. Microorganisms are one of important factors causing the deterioration of cultural heritage. However, little attention has been paid to the role of biological factors on the deterioration of earthen sites at present. In this study, microbial communities of Jinsha earthen site soils with different deterioration types and degrees as well as related to environmental factors were analyzed. The results showed that the concentrations of Mg2+ and SO42- were higher in the severe deterioration degree soils than in the minor deterioration degree soils. The Chao1 richness and Shannon diversity indices of bacteria in different type deterioration were higher in the summer than in the winter; the Chao1 and Shannon indices of fungi were lower in the summer. The differences in bacterial and fungal communities were associated with differences in Na+, K+, Mg2+ and Ca2+ contents. Based on both the relative abundances in amplicon sequencing and isolated strains, the bacterial phyla Actinobacteria, Firmicutes and Proteobacteria, and the Ascomycota genera Aspergillus, Cladosporium and Penicillium were common in all soils. The OTUs enriched in the severe deterioration degree soils were mostly assigned to Actinobacteria and Proteobacteria, whereas the Firmicutes OTUs differentially abundant in the severe deterioration degree were all depleted. All bacterial isolates produced alkali, implying that the deterioration on Jinsha earthen site may be accelerated through alkali production. The fungal isolates included both alkali and acid producing strains. The fungi with strong ability to produce acid were mainly from the severe deterioration degree samples and were likely to contribute to the deterioration. Taken together, the interaction between soil microbial communities and environment may affect the soil deterioration, accelerate the deterioration process and threaten the long-term preservation of Jinsha earthen site.


Subject(s)
Microbiota , Humans , Bacteria/genetics , Soil , Alkalies , Soil Microbiology
9.
Front Microbiol ; 14: 1290180, 2023.
Article in English | MEDLINE | ID: mdl-38111638

ABSTRACT

Brown film formation, a unique developmental stage in the life cycle of Lentinula edodes, is essential for the subsequent development of fruiting bodies in L. edodes cultivation. The pH of mushroom growth substrates are usually adjusted with hydrated lime, yet the effects of hydrated lime on cultivating L. edodes and the molecular mechanisms associated with the effects have not been studied systemically. We cultivated L. edodes on substrates supplemented with 0% (CK), 1% (T1), 3% (T2), and 5% (T3) hydrated lime (Ca (OH)2), and applied transcriptomics and qRT-PCR to study gene expression on the brown film formation stage. Hydrated lime increased polysaccharide contents in L. edodes, especially in T2, where the 5.3% polysaccharide content was approximately 1.5 times higher than in the CK. The addition of hydrated lime in the substrate promoted laccase, lignin peroxidase and manganese peroxidase activities, implying that hydrated lime improved the ability of L. edodes to decompose lignin and provide nutrition for its growth and development. Among the annotated 9,913 genes, compared to the control, 47 genes were up-regulated and 52 genes down-regulated in T1; 73 genes were up-regulated and 44 were down-regulated in T2; and 125 genes were up-regulated and 65 genes were down-regulated in T3. Differentially expressed genes (DEGs) were enriched in the amino acid metabolism, lipid metabolism and carbohydrate metabolism related pathways. The carbohydrate-active enzyme genes up-regulated in the hydrated lime treatments were mostly glycosyl hydrolase genes. The results will facilitate future optimization of L. edodes cultivation techniques and possibly shortening the production cycle.

10.
Front Microbiol ; 14: 1263982, 2023.
Article in English | MEDLINE | ID: mdl-38029184

ABSTRACT

Pathogenic invasion of Trichoderma pleuroticola profoundly altered microflora in the Auricularia cornea crop production system, impacting diversity and composition in both artificial bed-log and fruiting bodies. A more complex ecological network between the diseased and healthy bodies. Researchers still have poor knowledge about how the important agricultural relationship between the composition of the microbiome of the artificial bed-log and the fruiting bodies is infected by the pathogenic invasive microbes T. pleuroticola, but this knowledge is crucial if we want to use or improve it. Here, we investigated 8 groups (48 biological samples) across 5 growth stages of the A. cornea production system using metagenomic technology. Diseased and healthy fruiting bodies exhibited distinct microbial compositions, while core members in artificial bed-logs remained stable. Core microbiota analysis highlighted Pseudomonas and Pandoraea bacterial genera, as well as Sarocladium, Cephalotrichum, Aspergillus, and Mortierella fungal genera as biomarker species after the bodies were treated with the pathogenic invasive microbes T. pleuroticola. In diseased bodies, these core members upregulated pathways including polymyxin resistance, L-arginine degradation II, superpathway of L-arginine and L-ornithine degradation, glucose degradation (oxidative), glucose and glucose-1-phosphate degradation, promoting fruit spoilage. Our data confirm that T. pleuroticola plays an important role in the early stages of disease development in the A. cornea crop generation system. The exposed volatile core microbiome may play an important role in accelerating T. pleuroticola-induced decay of fruiting bodies.

11.
Sci Total Environ ; 899: 165587, 2023 Nov 15.
Article in English | MEDLINE | ID: mdl-37467981

ABSTRACT

The ubiquity of microplastic is widely recognized as pollution. Microplastic can affect the growth performances of plants. Buckwheat is a potential model crop to investigate plant responses to hazardous materials. Still, little is known about the response of buckwheat to microplastics. Thus, this study investigated the effect and uptake of polyethylene (PE) in buckwheat plant growth by monitoring the morphological and photosynthetic merits, antioxidant systems and transcriptome analysis of gene expression. Results confirmed that the impacts of PE on buckwheat growth were dose-dependent, while the highest concentration (80 mg/L) exposure elicited significantly negative responses of buckwheat. PE can invade buckwheat roots and locate in the vascular tissues. PE exposure disturbed the processes of carbon fixation and the synthesis of ATP from ADP + Pi in buckwheat leaves. The promotion of photosynthesis under PE exposure could generate extra energy for buckwheat leaves to activate antioxidant systems by increasing the antioxidant enzyme activities at an expense of morphological merits under microplastic stresses. Further in-depth study is warranted about figuring out the interactions between microplastics and biochemical responses (i.e., photosynthesis and antioxidant systems), which have great implications for deciphering the defense mechanism of buckwheat to microplastic stresses.


Subject(s)
Fagopyrum , Microplastics , Microplastics/metabolism , Plastics/analysis , Polyethylene/analysis , Transcriptome , Fagopyrum/metabolism , Antioxidants/metabolism , Gene Expression Profiling
12.
Toxins (Basel) ; 15(6)2023 06 01.
Article in English | MEDLINE | ID: mdl-37368671

ABSTRACT

Phenyllactic acid (PLA), a promising food preservative, is safe and effective against a broad spectrum of food-borne pathogens. However, its mechanisms against toxigenic fungi are still poorly understood. In this study, we applied physicochemical, morphological, metabolomics, and transcriptomics analyses to investigate the activity and mechanism of PLA inhibition of a typical food-contaminating mold, Aspergillus flavus. The results showed that PLA effectively inhibited the growth of A. flavus spores and reduced aflatoxin B1 (AFB1) production by downregulating key genes associated with AFB1 biosynthesis. Propidium iodide staining and transmission electron microscopy analysis demonstrated a dose-dependent disruption of the integrity and morphology of the A. flavus spore cell membrane by PLA. Multi-omics analyses showed that subinhibitory concentrations of PLA induced significant changes in A. flavus spores at the transcriptional and metabolic levels, as 980 genes and 30 metabolites were differentially expressed. Moreover, KEGG pathway enrichment analysis indicated PLA-induced cell membrane damage, energy-metabolism disruption, and central-dogma abnormality in A. flavus spores. The results provided new insights into the anti-A. flavus and -AFB1 mechanisms of PLA.


Subject(s)
Aflatoxin B1 , Aspergillus flavus , Aspergillus flavus/metabolism , Aflatoxin B1/metabolism , Lactates/metabolism , Polyesters/metabolism , Polyesters/pharmacology
13.
Chemosphere ; 337: 139356, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37379973

ABSTRACT

Microplastics (MPs) and heavy metals are common, often co-existing pollutants, that threaten crop growth and productivity worldwide. We analysed the adsorption of lead ions (Pb2+) to polylactic acid MPs (PLA-MPs) and their single factor and combined effects on tartary buckwheat (Fagopyrum tataricum L. Gaertn.) in hydroponics by measuring changes in the growth characteristics, antioxidant enzyme activities and Pb2+ uptake of buckwheat in response to PLA-MPs and Pb2+. PLA-MPs adsorbed Pb2+, and the better fitting second-order adsorption model implied that Pb2+ was adsorbed by chemisorption. However, the similar Pb2+ contents in the plants treated with Pb2+ only and those treated with the combined PLA-MPs-Pb2+ suggested that the adsorption played no role in the uptake of Pb2+. Low concentrations of PLA-MPs promoted shoot length. At high concentrations of both PLA-MPs and Pb2+, buckwheat growth was inhibited, and leaf peroxidase (POD), superoxide dismutase (SOD) and catalase (CAT) activities and malondialdehyde (MDA) contents were higher than in the control. No significant differences were observed in seedling growth between exposure to Pb2+ only and combined exposure to PLA-MPs with Pb2+, implying that PLA-MPs did not increase the toxicity of Pb2+ at macroscopic level. POD activity was higher and chlorophyll content was lower with PLA-MPs in the low Pb2+ dose treatments, suggesting that PLA-MPs may increase the toxicity of naturally occurring Pb2+. However, the conclusions must be verified in controlled experiments in natural soil conditions over the whole cultivation period of buckwheat.


Subject(s)
Fagopyrum , Microplastics , Plastics/toxicity , Lead/toxicity , Polyesters/toxicity , Antioxidants
14.
Front Microbiol ; 14: 1169881, 2023.
Article in English | MEDLINE | ID: mdl-37180258

ABSTRACT

Introduction: Hypsizygus marmoreus is an industrial mushroom that is widely cultivated in East Asia. Its long postripening stage before fruiting severely limits its industrialized production. Methods: Five different mycelial ripening times (30, 50, 70, 90, and 100 d) were chosen and primordia (30P, 50P, 70P, 90P, and 110P) were collected for comparative transcriptomic analyses. The corresponding substrates (30F, 50F, 70F, 90F, and 110F) were used for nutrient content and enzyme activity determination. Results: In pairwise comparisons between 110P and other primordia, a total of 1,194, 977, 773, and 697 differentially expressed genes (DEGs) were identified in 30P_110P, 50P_110P, 70P_110P, and 90P_110P, respectively. Gene Ontology (GO) and Kyoto Encyclopedia of Genes Genomes (KEGG) functional enrichment analyses revealed that the DEGs were mainly associated with amino acid metabolism, and lipid and carbohydrate metabolism pathways. Tyrosine, tryptophan, phenylalanine and histidine metabolism were enriched in all groups. Among the main carbon nutrients, the contents of cellulose and hemicellulose were high, and the lignin content decreased with the extension of the ripening time. Laccase had the highest activity, and acid protease activity decreased with the extension of the ripening time. Discussion: The highly enrichment for amino acid metabolic pathways in primordia reveals that these pathways are essential for fruiting body formation in H. marmoreus, and these results will provide a basis for the optimization of its cultivation.

15.
Article in English | MEDLINE | ID: mdl-37000635

ABSTRACT

We isolated a paraffin oil-degrading bacterial strain from a mixture of oil-based drill cutting and paddy soil, and characterized the strain using a polyphasic approach. The Gram-positive, aerobic, rod-shaped and non-spore-forming strain (SCAU 2101T) grew optimally at 50 °C, pH 7.0 and 0.5 % (w/v) NaCl. Phylogenetic analysis based on 16S rRNA gene sequence indicated that the strain represented a distinct clade in the genus Chelativorans, neighbouring Chelativorans intermedius LMG 28482T (97.1 %). The genome size and DNA G+C content of the strain were 3 969 430 bp and 63.1 mol%, respectively. Whole genome based phylogenomic analyses showed that the average nucleotide identity and digital DNA-DNA hybridization values between strain SCAU 2101T and C. intermedius LMG 28482T were 77.5 and 21.2 %, respectively. The major respiratory quinone was Q-10. The dominant fatty acids were C19 : 0 cyclo ω8c (50.6 %), summed feature 8 (C18 : 1 ω7c and/or C18 : 1 ω6c; 22.5 %) and C18 : 0 (13.8 %). The polar lipids of the strain included phosphatidylethanolamine, phosphatidylmonomethylethanolamine, phosphatidylglycerol, phosphatidylcholine and diphosphatidylglycerol. Based on the results, strain SCAU 2101T was considered to represent a novel species in the genus Chelativorans, for which the name Chelativorans petroleitrophicus sp. nov. is proposed. The type strain is SCAU 2101T (= CCTCC AB 2021125T=KCTC 92067T).


Subject(s)
Fatty Acids , Phyllobacteriaceae , Fatty Acids/chemistry , Phospholipids/chemistry , Phylogeny , RNA, Ribosomal, 16S/genetics , Ubiquinone/chemistry , DNA, Bacterial/genetics , Base Composition , Bacterial Typing Techniques , Sequence Analysis, DNA , Phyllobacteriaceae/genetics
16.
Front Microbiol ; 13: 981158, 2022.
Article in English | MEDLINE | ID: mdl-36246264

ABSTRACT

Endophytes in the seeds of plants have shown plant growth promoting (PGP) properties. Highland barley is an economically important crop and a major part of the local diet in the Tibetan Plateau, China, with potential health benefits. We applied culture-dependent and culture-independent methods to study endophytic bacteria in the seeds of eight Highland barley varieties. Based on the seed properties, the variety Ali was clearly separated from the other varieties except the variety CM. Most of the 86 isolates were assigned into genus Bacillus. Approximately half of the isolates showed PGP properties in vitro. Compared to the not-inoculated plants, inoculation with the isolate Bacillus tequilensis LZ-9 resulted in greater length and number of roots, and in bigger aboveground and root weights. Based on the 16S rRNA gene sequencing, the seed microbiome was majorly affiliated with the phylum Proteobacteria and the family Enterobacteriaceae. Overall, the bacterial community compositions in the different varieties were different from each other, yet the between variety differences in community composition seemed relatively small. The differences in community compositions were associated with differences in the total and reducing sugar contents and viscosity of the seeds, thus possibly connected to differences in the osmotic pressure tolerance of the endophytes. The results suggested that the seed endophytes are likely to promote the growth of Highland barley since germination.

17.
Zhongguo Yi Liao Qi Xie Za Zhi ; 46(5): 523-528, 2022 Sep 30.
Article in Chinese | MEDLINE | ID: mdl-36254480

ABSTRACT

Magnetic anchoring technology provides a new development opportunity for current minimally invasive surgery. The magnetic anchoring abdominal video system based on this technology can effectively improve the operability and minimally invasiveness of single-port laparoscopic surgery. The development history of magnetically anchored abdominal video system was reviewed, and the design features and deficiencies of various types of magnetically anchored video devices were compared and analyzed. The evolution characteristics of the magnetic anchored video system are explained from minimally invasive and intelligent perspectives, and the challenges and opportunities of magnetic anchored video system are summarized and prospected.


Subject(s)
Laparoscopy , Abdomen , Magnetics , Minimally Invasive Surgical Procedures
18.
Eur J Med Chem ; 243: 114700, 2022 Dec 05.
Article in English | MEDLINE | ID: mdl-36058089

ABSTRACT

Atropisomers are stereoisomers with axial chirality arising from restricted rotation around a single bond. Lots of representatives of this class of axially chiral compounds exhibit remarkable biological properties for protein targets. This time-dependent chirality shows great potential for drug development. Herein, we comprehensively review axial chirality bioactive compounds, including C-C bonded atropisomers, C-N bonded atropisomers, and N-N bonded atropisomers. Examples of each are provided along with their biological activity. This review highlights the development of various examples of atropisomerism encountered in bioactive compounds, which is beneficial for medicinal chemists to advance atropisomeric drug molecules.


Subject(s)
Stereoisomerism
19.
Med Sci Monit ; 27: e931748, 2021 May 26.
Article in English | MEDLINE | ID: mdl-34035209

ABSTRACT

BACKGROUND Online blended learning, also known as "smart classes", has benefits when compared with traditional teaching methods that use books and lectures. This study aimed to compare the use of the Smart Class teaching module with traditional teaching on the topic of psychosocial dysfunction during the training of undergraduate occupational therapy (OT) students in China. MATERIAL AND METHODS We recruited Grade 2017 OT students as the Smart Class teaching module group and Grade 2016 OT students as the Traditional Class teaching module group to participate in the study. The objective evaluation (assignment score, practical exam score, written exam score, and final score) and subjective evaluation (data from student questionnaires and information from interviews with the lead teacher and assistant teachers) were performed in both groups. RESULTS No significant difference was found in the final scores (P=0.874) and students' questionnaire results between the 2 groups. However, data from the student questionnaires and teacher interviews indicated a preference for combining the Smart Class teaching module and the Traditional Class teaching module. CONCLUSIONS The advantage of the Smart Class teaching module is that it can effectively integrate excellent teaching resources across geographical restrictions and it is conducive to promoting independent learning for students and all-around supervision for teaching. The Smart Class teaching module was comparable to traditional teaching methods for the training of undergraduate OT students in China, but was preferred by the students.


Subject(s)
Education, Distance/methods , Adolescent , Adult , China , Curriculum , Female , Humans , Male , Students, Medical , Surveys and Questionnaires , Young Adult
20.
Front Genet ; 12: 811833, 2021.
Article in English | MEDLINE | ID: mdl-35111204

ABSTRACT

Primary coenzyme Q10 deficiency-6 (COQ10D6), as a rare autosomal recessive disease caused by COQ6 mutations, is characterized by progressive infantile-onset nephrotic syndrome resulting in end-stage renal failure and sensorineural hearing loss. Here, we report two Chinese siblings with COQ10D6 who primarily presented with severe metabolic acidosis, proteinuria, hypoalbuminemia, growth retardation, and muscle hypotonia and died in early infancy. Using whole-exome sequencing and Sanger sequencing, we identified two rare recessive nonsense mutations in the COQ6 gene segregating with disease in affected family members: c.249C > G (p.Tyr83Ter) and c.1381C > T (p.Gln461Ter), resulting in two truncated protein products. Both mutations are located in a highly conserved area and are predicted to be pathogenic. Indeed, the death of our patients in early infancy indicates the pathogenicity of the p.Tyr83Ter and p.Gln461Ter variants and highlights the significance of the two variants for COQ6 enzyme function, which is necessary for the biosynthesis of coenzyme Q10. In conclusion, we discovered a novel compound heterozygous pathogenic variant of the COQ6 gene as a cause of severe COQ10D6 in the two siblings. Based on the clinical history and genetic characteristics of the patients, our cases expand the genotypic spectrum of COQ10D6 and highlight the heterogeneity and severity of clinical features associated with COQ6 mutations. For patients with clinical manifestations suggestive of COQ10D6, early testing for COQ6 mutations is beneficial for disease diagnosis and therapeutic interventions as well as disease prevention in future generations.

SELECTION OF CITATIONS
SEARCH DETAIL