Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 157
Filter
1.
Eur J Obstet Gynecol Reprod Biol ; 300: 54-62, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38986273

ABSTRACT

BACKGROUND: It is widely recognized that depression is highly prevalent among women experiencing recurrent spontaneous abortion (RSA), exerting detrimental effects on both the individual and the family. OBJECTIVE: To assess the depression risk and associated factors among women with RSA. DATA SOURCES: Our search strategy encompassed PubMed, EMBASE, Web of Science, Cochrane Central Register of Controlled Trials, Chinese National Knowledge Infrastructure (CNKI), and WANFANG. The research was conducted in May 2022. We included both randomized and nonrandomized studies that reported the prevalence of depression among women with RSA. DATA EXTRACTION AND SYNTHESIS: Two independent evaluators reviewed the titles and abstracts, assessed the full-text papers, extracted data from the included studies, and evaluated their quality using the Newcastle-Ottawa Scale (NOS). We performed random-effects meta-analyses to pool the data. Odds ratios (ORs) and standardized mean differences (SMDs) were combined based on effect sizes for binary and continuous outcomes. MAIN OUTCOMES: To conduct a meta-analysis to understand the risk of depression in women with RSA who were not treated with psychiatric medications, as well as an analysis of potential factors for depressive symptoms. RESULTS: Out of the initially identified 527 papers, a total of 20 studies (N = 13087) that fulfilled the inclusion criteria were selected. Compared to healthy controls, patients with RSA had a significantly higher risk of depression (OR: 4.26, 95 % confidence interval [CI]: 2.44-7.41; SMD: 0.89, 95 % CI: 0.51-1.26). The occurrence of depression among RSA patients was found to be significantly associated with several factors including the severity of depressive symptoms (OR: 3.82, 95 % CI: 2.22-6.59), number of spontaneous miscarriages (SMD: 0.59, 95 % CI: 0.01-1.18), history of therapeutic termination of pregnancy (SMD: 0.20, 95 % CI: 0.09-0.32), history of live birth (SMD: -0.32, 95 % CI: -0.49--0.15), and duration of marriage (SMD: 0.15, 95 % CI: 0.02-0.27). CONCLUSIONS: In clinical practice, it is crucial to provide appropriate psychological interventions for women undergoing RSA. These individuals face a significantly heightened risk of depression, which exhibits strong correlations with various demographic factors such as the severity of depressive symptoms, history of both spontaneous miscarriages and therapeutic termination of pregnancy, number of live births, and duration of marriage. Consequently, women who are suffering RSA deserves more assistance and emotional support.

2.
Sci Rep ; 14(1): 13441, 2024 06 11.
Article in English | MEDLINE | ID: mdl-38862780

ABSTRACT

The present study aims to explore the etiology of Diabetic osteoporosis (DOP), a chronic complication associated with diabetes mellitus. Specifically, the research seeks to identify potential miRNA biomarkers of DOP and investigated role in regulating osteoblasts. To achieve this, an animal model of DOP was established through the administration of a high-sugar and high-fat diet, and then injection of streptozotocin. Bone microarchitecture and histopathology analysis were analyzed. Rat calvarial osteoblasts (ROBs) were stimulated with high glucose (HG). MiRNA profiles of the stimulated osteoblasts were compared to control osteoblasts using sequencing. Proliferation and mineralization abilities were assessed using MTT assay, alkaline phosphatase, and alizarin red staining. Expression levels of OGN, Runx2, and ALP were determined through qRT-PCR and Western blot. MiRNA-sequencing results revealed increased miRNA-702-5p levels. Luciferase reporter gene was utilized to study the correlation between miR-702-5p and OGN. High glucose impaired cell proliferation and mineralization in vitro by inhibiting OGN, Runx2, and ALP expressions. Interference with miR-702-5p decreased OGN, Runx2, and ALP levels, which were restored by OGN overexpression. Additionally, downregulation of OGN and Runx2 in DOP rat femurs was confirmed. Therefore, the miRNA-702-5p/OGN/Runx2 signaling axis may play a role in DOP, and could be diagnostic biomarker and therapeutic target for not only DOP but also other forms of osteoporosis.


Subject(s)
Glucose , MicroRNAs , Osteoblasts , Osteoporosis , Animals , MicroRNAs/genetics , MicroRNAs/metabolism , Osteoblasts/metabolism , Osteoporosis/genetics , Osteoporosis/metabolism , Osteoporosis/pathology , Osteoporosis/etiology , Rats , Glucose/metabolism , Glucose/pharmacology , Core Binding Factor Alpha 1 Subunit/metabolism , Core Binding Factor Alpha 1 Subunit/genetics , Cell Proliferation , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Experimental/genetics , Male , Rats, Sprague-Dawley
3.
Cell Death Dis ; 15(6): 399, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38849335

ABSTRACT

The loss of dopaminergic neurons in the substantia nigra is a hallmark of pathology in Parkinson's disease (PD). Dimethylarginine dimethylaminohydrolase-1 (DDAH-1) is the critical enzyme responsible for the degradation of asymmetric dimethylarginine (ADMA) which inhibits nitric oxide (NO) synthase and has been implicated in neurodegeneration. Mitochondrial dysfunction, particularly in the mitochondria-associated endoplasmic reticulum membrane (MAM), plays a critical role in this process, although the specific molecular target has not yet been determined. This study aims to examine the involvement of DDAH-1 in the nigrostriatal dopaminergic pathway and PD pathogenesis. The distribution of DDAH-1 in the brain and its colocalization with dopaminergic neurons were observed. The loss of dopaminergic neurons and aggravated locomotor disability after rotenone (ROT) injection were showed in the DDAH-1 knockout rat. L-arginine (ARG) and NO donors were employed to elucidate the role of NO respectively. In vitro, we investigated the effects of DDAH-1 knockdown or overexpression on cell viability and mitochondrial functions, as well as modulation of ADMA/NO levels using ADMA or ARG. MAM formation was assessed by the Mitofusin2 oligomerization and the mitochondrial ubiquitin ligase (MITOL) phosphorylation. We found that DDAH-1 downregulation resulted in enhanced cell death and mitochondrial dysfunctions, accompanied by elevated ADMA and reduced NO levels. However, the recovered NO level after the ARG supplement failed to exhibit a protective effect on mitochondrial functions and partially restored cell viability. DDAH-1 overexpression prevented ROT toxicity, while ADMA treatment attenuated these protective effects. The declines of MAM formation in ROT-treated cells were exacerbated by DDAH-1 downregulation via reduced MITOL phosphorylation, which was reversed by DDAH-1 overexpression. Together, the abundant expression of DDAH-1 in nigral dopaminergic neurons may exert neuroprotective effects by maintaining MAM formation and mitochondrial function probably via ADMA, indicating the therapeutic potential of targeting DDAH-1 for PD.


Subject(s)
Amidohydrolases , Arginine , Dopaminergic Neurons , Endoplasmic Reticulum , Mitochondria , Nitric Oxide , Parkinson Disease , Dopaminergic Neurons/metabolism , Dopaminergic Neurons/drug effects , Dopaminergic Neurons/pathology , Animals , Amidohydrolases/metabolism , Amidohydrolases/genetics , Mitochondria/metabolism , Mitochondria/drug effects , Parkinson Disease/metabolism , Parkinson Disease/pathology , Parkinson Disease/genetics , Arginine/metabolism , Arginine/analogs & derivatives , Endoplasmic Reticulum/metabolism , Endoplasmic Reticulum/drug effects , Rats , Nitric Oxide/metabolism , Male , Rats, Sprague-Dawley , Humans , GTP Phosphohydrolases/metabolism , GTP Phosphohydrolases/genetics , Rotenone/pharmacology , Mitochondrial Proteins/metabolism , Mitochondria Associated Membranes
4.
Arch Gerontol Geriatr ; 124: 105481, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38733920

ABSTRACT

OBJECTIVE: The aim of this study was to investigate the combined effect of handgrip strength (HGS) and obesity phenotype on the risk of stroke in Chinese middle-aged and elderly people. METHODS: The data was used from the China Health and Retirement Longitudinal Study (CHARLS). Middle-aged and older adults who participated in surveys between 2011 and 2018 were included in the study. They were divided into 4 different types of obesity phenotypes based on obesity and metabolic status: metabolically healthy non-overweight/obesity (MHNO), metabolically healthy overweight/obesity (MHO), metabolically abnormal non-overweight/obesity (MANO), and metabolically abnormal overweight/obesity (MAO). The HGS level was divided into low and high groups according to the median values. Cox proportional risk regression model was used to analyze the joint effect of HGS and obesity phenotype on the risk of stroke among participants. RESULTS: A total of 7904 participants aged 58.89±9.08 years were included in this study. After adjusting for potential confounders, high HGS&MHO (HR=1.86, 95 % CI=1.12-3.09), high HGS&MANO (HR=2.01, 95 %CI=1.42-2.86), high HGS&MAO (HR=2.01, 95 % CI=1.37-2.93), low HGS&MHNO (HR=1.57, 95 % CI=1.00-2.46), low HGS&MHO (HR=2.09, 95 % CI=1.29-3.38), low HGS&MANO (HR=2.02, 95 % CI=1.35-3.03), and low HGS&MAO (HR=2.48, 95 % CI=1.72-3.58) group had significantly higher risks of stroke than the high HGS&MHNO group. CONCLUSION: The coexistence of metabolically unhealthy and low HGS can synergistically increase the risk of stroke in Chinese middle-aged and elderly people.


Subject(s)
Hand Strength , Obesity , Phenotype , Stroke , Humans , Male , Female , Middle Aged , Hand Strength/physiology , Obesity/epidemiology , Obesity/complications , China/epidemiology , Stroke/epidemiology , Aged , Risk Factors , Longitudinal Studies , Cohort Studies , East Asian People
5.
Int Immunopharmacol ; 134: 112234, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38739976

ABSTRACT

Ulcerative colitis, a chronic inflammatory condition affecting the rectum and colon to varying degrees, is linked to a dysregulated immune response and the microbiota. Sodium (aS,9R)-3-hydroxy-16,17-dimethoxy-15-oxidotricyclo[12.3.1.12,6]nonadeca-1(18),2,4,6(19),14,16-hexene-9-yl sulfate hydrate (SDH) emerges as a novel diarylheptane compound aimed at treating inflammatory bowel diseases. However, the mechanisms by which SDH modulates these conditions remain largely unknown. In this study, we assessed SDH's impact on the clinical progression of dextran sodium sulfate (DSS)-induced ulcerative colitis. Our results demonstrated that SDH significantly mitigated the symptoms of DSS-induced colitis, reflected in reduced disease activity index scores, alleviation of weight loss, shortening of the colorectum, and reduction in spleen swelling. Notably, SDH decreased the proportion of Th1/Th2/Th17 cells and normalized inflammatory cytokine levels in the colon. Furthermore, SDH treatment modified the gut microbial composition in mice with colitis, notably decreasing Bacteroidetes and Proteobacteria populations while substantially increasing Firmicutes, Actinobacteria, and Patescibacteria. In conclusion, our findings suggest that SDH may protect the colon from DSS-induced colitis through the regulation of Th1/Th2/Th17 cells and gut microbiota, offering novel insights into SDH's therapeutic potential.


Subject(s)
Colitis, Ulcerative , Dextran Sulfate , Diarylheptanoids , Gastrointestinal Microbiome , Mice, Inbred C57BL , Animals , Gastrointestinal Microbiome/drug effects , Mice , Diarylheptanoids/pharmacology , Colitis, Ulcerative/drug therapy , Colitis, Ulcerative/chemically induced , Colitis, Ulcerative/immunology , Colitis, Ulcerative/microbiology , Colon/drug effects , Colon/immunology , Colon/pathology , Colon/microbiology , Cytokines/metabolism , Disease Models, Animal , Colitis/chemically induced , Colitis/drug therapy , Colitis/immunology , Colitis/microbiology , Male , Th1 Cells/immunology , Th1 Cells/drug effects , Th17 Cells/immunology , Th17 Cells/drug effects , Anti-Inflammatory Agents/therapeutic use , Anti-Inflammatory Agents/pharmacology , Th2 Cells/immunology , Th2 Cells/drug effects , Humans
6.
Mol Carcinog ; 63(8): 1449-1466, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38801356

ABSTRACT

Curcumin has been shown to have antitumor properties, but its low potency and bioavailability has limited its clinical application. We designed a novel curcuminoid, [1-propyl-3,5-bis(2-bromobenzylidene)-4-piperidinone] (PBPD), which has higher antitumor strength and improves bioavailability. Cell counting kit-8 was used to detect cell activity. Transwell assay was used to detect cell invasion and migration ability. Western blot and quantitative polymerase chain reaction were used to detect protein levels and their messenger RNA expression. Immunofluorescence was used to detect the protein location. PBPD significantly inhibited the proliferation of cervical cancer cells, with an IC50 value of 4.16 µM for Hela cells and 3.78 µM for SiHa cells, leading to the induction of cuproptosis. Transcriptome sequencing analysis revealed that PBPD significantly inhibited the Notch1/Recombination Signal Binding Protein for Immunoglobulin kappa J Region (RBP-J) and nuclear factor erythroid 2-related factor 2 (NRF2) signaling pathways while upregulating ferredoxin 1 (FDX1) expression. Knockdown of Notch1 or RBP-J significantly inhibited NRF2 expression and upregulated FDX1 expression, leading to the inhibition of nicotinamide adenine dinucleotide phosphate activity and the induction of oxidative stress, which in turn activated endoplasmic reticulum stress and induced cell death. The overexpression of Notch1 or RBP-J resulted in the enrichment of RBP-J within the NRF2 promoter region, thereby stimulating NRF2 transcription. NRF2 knockdown resulted in increase in FDX1 expression, leading to cuproptosis. In addition, PBPD inhibited the acidification of tumor niche and reduced cell metabolism to inhibit cervical cancer cell invasion and migration. In conclusion, PBPD significantly inhibits the proliferation, invasion, and migration of cervical cancer cells and may be a novel potential drug candidate for treatment of cervical cancer.


Subject(s)
Cell Proliferation , Endoplasmic Reticulum Stress , NF-E2-Related Factor 2 , Receptor, Notch1 , Signal Transduction , Uterine Cervical Neoplasms , Humans , Uterine Cervical Neoplasms/drug therapy , Uterine Cervical Neoplasms/metabolism , Uterine Cervical Neoplasms/pathology , Uterine Cervical Neoplasms/genetics , Endoplasmic Reticulum Stress/drug effects , Female , NF-E2-Related Factor 2/metabolism , NF-E2-Related Factor 2/genetics , Receptor, Notch1/metabolism , Receptor, Notch1/genetics , Cell Proliferation/drug effects , Signal Transduction/drug effects , Gene Expression Regulation, Neoplastic/drug effects , Cell Movement/drug effects , Curcumin/pharmacology , Curcumin/analogs & derivatives , Cell Line, Tumor , Animals , HeLa Cells , Mice
7.
J Nanobiotechnology ; 22(1): 290, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38802884

ABSTRACT

Corneal neovascularization (CNV) is one of the common blinding factors worldwide, leading to reduced vision or even blindness. However, current treatments such as surgical intervention and anti-VEGF agent therapy still have some shortcomings or evoke some adverse effects. Recently, SU6668, an inhibitor targeting angiogenic tyrosine kinases, has demonstrated growth inhibition of neovascularization. But the hydrophobicity and low ocular bioavailability limit its application in cornea. Hereby, we proposed the preparation of SU6668 pure nanoparticles (NanoSU6668; size ~135 nm) using a super-stable pure-nanomedicine formulation technology (SPFT), which possessed uniform particle size and excellent aqueous dispersion at 1 mg/mL. Furthermore, mesenchymal stem cell membrane vesicle (MSCm) was coated on the surface of NanoSU6668, and then conjugated with TAT cell penetrating peptide, preparing multifunctional TAT-MSCm@NanoSU6668 (T-MNS). The T-MNS at a concentration of 200 µg/mL was treated for CNV via eye drops, and accumulated in blood vessels with a high targeting performance, resulting in elimination of blood vessels and recovery of cornea transparency after 4 days of treatment. Meanwhile, drug safety test confirmed that T-MNS did not cause any damage to cornea, retina and other eye tissues. In conclusion, the T-MNS eye drop had the potential to treat CNV effectively and safely in a low dosing frequency, which broke new ground for CNV theranostics.


Subject(s)
Cornea , Corneal Neovascularization , Nanoparticles , Ophthalmic Solutions , Corneal Neovascularization/drug therapy , Animals , Nanoparticles/chemistry , Ophthalmic Solutions/chemistry , Cornea/metabolism , Cornea/drug effects , Mice , Angiogenesis Inhibitors/chemistry , Angiogenesis Inhibitors/therapeutic use , Angiogenesis Inhibitors/pharmacology , Particle Size , Humans , Male , Mice, Inbred C57BL , Rabbits
8.
Traffic Inj Prev ; 25(5): 688-697, 2024.
Article in English | MEDLINE | ID: mdl-38620024

ABSTRACT

OBJECTIVES: Imbalances between limited police resource allocations and the timely handling of road traffic crashes are prevalent. To optimize resource allocations and route choices for traffic police routine patrol vehicle (RPV) assignments, a dynamic crash handling response model was developed. METHODS: This approach was characterized by two objective functions: the minimum waiting time and the minimum number of RPVs. In particular, an adaptive large neighborhood search (ALNS) was designed to solve the model. Then, the proposed ALNS-based approach was examined using comprehensive traffic and crash data from Ningbo, China. RESULTS: Finally, a sensitivity analysis was conducted to evaluate the bi-objective of the proposed model and simultaneously demonstrate the efficiency of the obtained solutions. Two resolution methods, the global static resolution mode, and real-time dynamic resolution mode, were applied to explore the optimal solution. CONCLUSIONS: The results show that the optimal allocation scheme for traffic police is 13 RPVs based on the global static resolution mode. Specifically, the average waiting time for traffic crash handling can be reduced to 5.5 min, with 53.8% less than 5.0 min and 90.0% less than 10.0 min.


Subject(s)
Accidents, Traffic , Police , Resource Allocation , Accidents, Traffic/statistics & numerical data , Humans , China , Models, Theoretical
9.
J Phys Chem Lett ; 15(14): 3871-3883, 2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38560820

ABSTRACT

A strong Fermi level pinning (FLP) effect can induce a large Schottky barrier in metal/semiconductor contacts; reducing the Schottky barrier height (SBH) to form an Ohmic contact (OhC) is a critical problem in designing high-performance electronic devices. Herein, we report the interfacial electronic features and efficient modulation of the Schottky contact (ShC) to OhC for MoSi2N4/M3C2 (M = Zn, Cd, Hg) van der Waals heterostructures (vdWHs). We find that the MoSi2N4/M3C2 vdWHs can form a p-type ShC with small SBH with the calculated pinning factor S ≈ 0.8 for MoSi2N4/M3C2 contacts. These results indicate that the FLP effect can be effectively suppressed in MoSi2N4 contact with M3C2. Moreover, the interfacial properties and SBH of MoSi2N4/Zn3C2 vdWHs can be effectively modulated by a perpendicular electric field and biaxial strain. In particular, an efficient OhC can be achieved in MoSi2N4/Zn3C2 vdWHs by applying a positive electric field of 0.5 V/Å and strain of ±8%.

10.
Nat Commun ; 15(1): 3029, 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38589456

ABSTRACT

The discovery of various primary ferroic phases in atomically-thin van der Waals crystals have created a new two-dimensional wonderland for exploring and manipulating exotic quantum phases. It may also bring technical breakthroughs in device applications, as evident by prototypical functionalities of giant tunneling magnetoresistance, gate-tunable ferromagnetism and non-volatile ferroelectric memory etc. However, two-dimensional multiferroics with effective magnetoelectric coupling, which ultimately decides the future of multiferroic-based information technology, has not been realized yet. Here, we show that an unconventional magnetoelectric coupling mechanism interlocked with heterogeneous ferrielectric transitions emerges at the two-dimensional limit in van der Waals multiferroic CuCrP2S6 with inherent antiferromagnetism and antiferroelectricity. Distinct from the homogeneous antiferroelectric bulk, thin-layer CuCrP2S6 under external electric field makes layer-dependent heterogeneous ferrielectric transitions, minimizing the depolarization effect introduced by the rearrangements of Cu+ ions within the ferromagnetic van der Waals cages of CrS6 and P2S6 octahedrons. The resulting ferrielectric phases are characterized by substantially reduced interlayer magnetic coupling energy of nearly 50% with a moderate electric field of 0.3 V nm-1, producing widely-tunable magnetoelectric coupling which can be further engineered by asymmetrical electrode work functions.

11.
Toxins (Basel) ; 16(4)2024 Apr 04.
Article in English | MEDLINE | ID: mdl-38668602

ABSTRACT

Patulin contamination has become a bottleneck problem in the safe production of fruit products, although biodegradation technology shows potential application value in patulin control. In the present study, the patulin biodegradation mechanism in a probiotic yeast, Pichia guilliermondii S15-8, was investigated. Firstly, the short-chain dehydrogenase PgSDR encoded by gene A5D9S1 was identified as a patulin degradation enzyme, through RNA sequencing and verification by qRT-PCR. Subsequently, the exogenous expression system of the degradation protein PgSDR-A5D9S1 in E. coli was successfully constructed and demonstrated a more significant patulin tolerance and degradation ability. Furthermore, the structure of PgSDR-A5D9S1 and its active binding sites with patulin were predicted via molecular docking analysis. In addition, the heat-excited protein HSF1 was predicted as the transcription factor regulating the patulin degradation protein PgSDR-A5D9S1, which may provide clues for the further analysis of the molecular regulation mechanism of patulin degradation. This study provides a theoretical basis and technical support for the industrial application of biodegradable functional strains.


Subject(s)
Biodegradation, Environmental , Patulin , Pichia , Patulin/metabolism , Pichia/metabolism , Pichia/genetics , Molecular Docking Simulation , Fungal Proteins/genetics , Fungal Proteins/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism
12.
J Med Chem ; 67(8): 6064-6080, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38595098

ABSTRACT

It has been shown that PRMT5 inhibition by small molecules can selectively kill cancer cells with homozygous deletion of the MTAP gene if the inhibitors can leverage the consequence of MTAP deletion, namely, accumulation of the MTAP substrate MTA. Herein, we describe the discovery of TNG908, a potent inhibitor that binds the PRMT5·MTA complex, leading to 15-fold-selective killing of MTAP-deleted (MTAP-null) cells compared to MTAPintact (MTAP WT) cells. TNG908 shows selective antitumor activity when dosed orally in mouse xenograft models, and its physicochemical properties are amenable for crossing the blood-brain barrier (BBB), supporting clinical study for the treatment of both CNS and non-CNS tumors with MTAP loss.


Subject(s)
Antineoplastic Agents , Protein-Arginine N-Methyltransferases , Protein-Arginine N-Methyltransferases/antagonists & inhibitors , Protein-Arginine N-Methyltransferases/metabolism , Humans , Animals , Mice , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacokinetics , Antineoplastic Agents/therapeutic use , Antineoplastic Agents/chemical synthesis , Drug Discovery , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/pharmacokinetics , Cell Line, Tumor , Xenograft Model Antitumor Assays , Neoplasms/drug therapy , Brain/metabolism , Structure-Activity Relationship
13.
Entropy (Basel) ; 26(3)2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38539764

ABSTRACT

Millimeter-wave (mmWave) communication systems leverage the directional beamforming capabilities of antenna arrays equipped at the base stations (BS) to counteract the inherent high propagation path loss characteristic of mmWave channels. In downlink mmWave transmissions, i.e., from the BS to users, distinguishing users within the same beam direction poses a significant challenge. Additionally, digital baseband precoding techniques are limited in their ability to mitigate inter-user interference within identical beam directions, representing a fundamental constraint in mmWave downlink transmissions. This study introduces an innovative analog beamforming-based interference mitigation strategy for downlink transmissions in reconfigurable intelligent surface (RIS)-assisted hybrid analog-digital (HAD) mmWave systems. This is achieved through the joint design of analog beamformers and the corresponding coefficients at both the RIS and the BS. We first present derived closed-form approximation expressions for the achievable rate performance in the proposed scenario and establish a stringent upper bound on this performance in a large number of RIS elements regimes. The exclusive use of analog beamforming in the downlink phase allows our proposed transmission algorithm to function efficiently when equipped with low-resolution analog-to-digital/digital-to-analog converters (A/Ds) at the BS. The energy efficiency of the downlink transmission is evaluated through the deployment of six-bit A/Ds and six-bit pulse-amplitude modulation (PAM) signals across varying numbers of activated RIS elements. Numerical simulation results validate the effectiveness of our proposed algorithms in comparison to various benchmark schemes.

14.
Angew Chem Int Ed Engl ; 63(19): e202402175, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38499514

ABSTRACT

Schiff bases are a crucial component in various functional materials but often exhibit non-emissive behavior which significantly limits their potential applications as luminescent materials. However, traditional approaches to convert them into aggregate emitters often require intricate molecular design, tedious synthesis, and significant time and resource consumption. Herein, we present a cocrystallization-induced emission strategy that can transform non-emissive (hetero)aryl-substituted Schiff bases into green-yellow to yellow aggregate emitters via even simple grinding of a mixture of Schiff bases and 1,2,4,5-tetracyanobenzene (TCB) mixtures. The combined experimental and theoretical analysis revealed that the cocrystallization inhibits the C=N isomerization and promotes face-to-face π-π interaction, which restricts access to both the dark state and canonical intersection to ultimately induce emission. Furthermore, the induced emission enables the observation of solid-state molecular diffusion through fluorescence signals, advancing white light emission diodes, and notably, solution-processed organic light-emitting diodes based on cocrystal for the first time. This study not only highlights the potential of developing new C=N structural motifs for AIEgens but also could boost advancements in related structure motifs like C=C and N=N.

15.
ACS Omega ; 9(9): 10860-10874, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38463300

ABSTRACT

In this study, the chemical substances of Heiguteng Zhuifeng Huoluo Capsule (HZFC) and its potential active ingredients for the treatment of rheumatoid arthritis (RA) were characterized and analyzed by medicinal chemistry combined with bioinformatics methods. Also, the potential active ingredients of HZFC against RA were verified by lipopolysaccharide (LPS)-induced macrophage activation model. The results showed that 79 chemical constituents were successfully identified, mainly including phenylpropanoids, flavonoids, and alkaloids. Among them, 13 active components were closely related to the nine core targets (FASN, ALOX5, EGFR, MMP1, CYP2D6, CNR1, AR, MAOA, and FKBP5) of HZFC in the treatment of RA. Molecular docking further proved that 13 active components had strong docking activity with 9 core targets. In the verification experiment of the LPS-induced RAW 264.7 macrophage model, the verified components (magnoflorine, N-feruloyltyramine, canadine, rutin, quercetin-3-O-glucoside, and pseudocolumbamine) all showed a clear inhibitory effect on the secretion of inflammatory factors in model cells. The above research results suggest that 13 components such as stepharanine, rutin, quercetin-3-O-glucoside, corydine methyl ether, canadine, 8-oxoepiberberine, disinomenine, deosinomenine glucoside, tuduranine, magnoflorine, isosinomenine, pseudocolumbamine, and N-feruloyltyramine may be the main active substances of HZFC in the treatment of RA.

16.
J Phys Chem Lett ; 15(10): 2740-2756, 2024 Mar 14.
Article in English | MEDLINE | ID: mdl-38482680

ABSTRACT

Exploring and designing an efficient S-scheme heterojunction photocatalyst for water splitting are crucial. Herein, we report the interfacial electronics, photoexcited carrier dynamics, and photocatalytic performance for water splitting of the MoSi2N4/SnS2 van der Waals heterojunction under the modulation of an electric field and biaxial strain. Our results show that the MoSi2N4/SnS2 heterojunction has a direct band gap of 0.41 eV and obeys the S-scheme charge transfer mechanism. Further calculations of the photoexcited carrier dynamics demonstrate that the interfacial carrier recombination time is 7.22 ps, which is shorter than the electron (hole) transfer time of 39.5 ps (566 ps). Moreover, under the effect of a positive electric field and tensile strain, the S-scheme MoSi2N4/SnS2 heterojunction exhibits excellent visible-light absorption, satisfactory band-edge potentials, tunable interfacial charge transfer, and spontaneous hydrogen evolution reaction activity. The calculated STH efficiency indicates that a tensile strain of 2% is the most effective means of improving the photocatalytic performance of the S-scheme MoSi2N4/SnS2 heterojunction.

17.
Sci Adv ; 10(5): eadk1034, 2024 Feb 02.
Article in English | MEDLINE | ID: mdl-38306425

ABSTRACT

Animal or human models recapitulating brain ribosomopathies are incomplete, hampering development of urgently needed therapies. Here, we generated genetic mouse and human cerebral organoid models of brain ribosomopathies, caused by mutations in small nucleolar RNA (snoRNA) SNORD118. Both models exhibited protein synthesis loss, proteotoxic stress, and p53 activation and led to decreased proliferation and increased death of neural progenitor cells (NPCs), resulting in brain growth retardation, recapitulating features in human patients. Loss of SNORD118 function resulted in an aberrant upregulation of p-eIF2α, the mediator of integrated stress response (ISR). Using human iPSC cell-based screen, we identified small-molecule 2BAct, an ISR inhibitor, which potently reverses mutant NPC defects. Targeting ISR by 2BAct mitigated ribosomopathy defects in both cerebral organoid and mouse models. Thus, our SNORD118 mutant organoid and mice recapitulate human brain ribosomopathies and cross-validate maladaptive ISR as a key disease-driving mechanism, pointing to a therapeutic intervention strategy.


Subject(s)
Brain , Protein Biosynthesis , Humans , Animals , Mice , Mutation , Disease Models, Animal
18.
Biomedicines ; 12(2)2024 Feb 06.
Article in English | MEDLINE | ID: mdl-38397980

ABSTRACT

Currently, the treatment of gliomas still relies primarily on surgery and radiochemotherapy. Although there are various drugs available, including temozolomide, the overall therapeutic effect is unsatisfactory, and the prognosis remains poor. Therefore, the in-depth study of the mechanism of glioma development and a search for new therapeutic targets are the keys to improving the therapeutic treatment of gliomas and improving the prognosis of patients. Immunohistochemistry is used to detect the expression of relevant molecules in tissues, qPCR and Western blot are used to detect the mRNA and protein expression of relevant molecules, CCK-8 (Cell Counting Kit-8) is used to assess cell viability and proliferation capacity, Transwell is used to evaluate cell migration and invasion ability, and RNA transcriptome sequencing is used to identify the most influential pathways. SRPK1 (SRSF protein kinase 1) is highly expressed in gliomas but is not expressed in normal tissues. Its expression is positively correlated with the grades of gliomas and negatively correlated with prognosis. SRPK1 significantly promotes the occurrence and development of gliomas. Knocking down SRPK1 leads to a significant decrease in the proliferation, migration, and invasion abilities of gliomas. Loss of SRPK1 expression induces G2/M phase arrest and mitotic catastrophe, leading to apoptosis in cells. Overexpression of SRPK1 activates the Wnt/ß-catenin (wingless-int1/ß-catenin) and JAK-2/STAT-3 (Janus kinase 2/signal transducer and activator of transcription 3) signaling pathways, promoting the proliferation, migration, and invasion of gliomas. Overexpression of SRPK1 rescues the reduced cell proliferation, migration, and invasion abilities caused by the silencing of ß-catenin or JAK-2. A stable shRNA-LN229 cell line was constructed, and using a nude mouse model, it was found that stable knockout of SRPK1 significantly reduced the tumorigenic ability of glioma cells, as evidenced by a significant decrease in the subcutaneous tumor volume and weight in nude mice. We have demonstrated that SRPK1 is highly expressed in gliomas. Overexpression of SRPK1 activates the Wnt/ß-catenin and JAK-2/STAT-3 signaling pathways, promoting the proliferation, migration, and invasion of gliomas. Silencing SRPK1-related signaling pathways may provide potential therapeutic options for glioma patients.

19.
Mol Divers ; 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38300352

ABSTRACT

In order to develop new natural product-based anticancer agents, a series of 1,3,4-oxadiazole analogues based on petiolide A were prepared and evaluated for their anticancer activities by MTT method. The structures of all analogues were characterized by various spectral analyses, and B9 was further confirmed by X-ray crystallography. Among all the synthesized compounds, B1 displayed the most promising growth inhibitory effect on colon cancer cells (HCT116) with the IC50 value of 8.53 µM. Flow cytometric analysis exhibited that B1 arrested the cell cycle at G2 phase and induced apoptosis. Additionally, network pharmacology analysis calculated that B1 might target several key proteins, including AKT serine/threonine kinase 1 (AKT1), SRC proto-oncogene, non-receptor tyrosine kinase (SRC) and epidermal growth factor receptor (EGFR). Furthermore, molecular docking study indicated that B1 had potentially high binding affinity to these three target proteins. Given these results, analogue B1 could be deeply developed as potential anticancer agents.

20.
Life Sci ; 338: 122406, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38176583

ABSTRACT

AIMS: Curcumin is a natural compound and has good antitumor properties, but its clinical use is limited by its low bioavailability. We constructed the derivative CP41 (3,5-bis(2-chlorobenzylidene)-1-piperidin-4-one) by enhancing the bioavailability of curcumin while retaining its antitumor properties. MAIN METHODS: CCK-8 (Cell Counting Kit-8) was used to detect the effect of CP41 on cell proliferation; Western blotting, immunofluorescence, immunoprecipitation, quantitative PCR and enzyme-linked immunosorbent assay were used to evaluate the expression of subcutaneous tumor-related molecules in cells and mice. KEY FINDINGS: Our results showed that CP41 inhibited the proliferation of endometrial cancer cells by suppressing the proliferation of AN3CA and HEC-1-B cells. We found that CP41 significantly increased H3F3A and inhibited proteasome activity, which activated MAPK signaling and led to apoptosis. Further experiments showed that H3F3A is a potential target of CP41. Correlation analysis showed that H3F3A was positively correlated with the sensitivity to chemotherapeutic agents in endometrial cancer. CP41 significantly induced reactive oxygen species (ROS) levels and activated endoplasmic reticulum stress, which led to apoptosis. The safety profile of CP41 was also evaluated, and CP41 did not cause significant drug toxicity in mice. SIGNIFICANCE: CP41 showed stronger antitumor potency than curcumin, and its antitumor activity may be achieved by inducing ROS and activating H3F3A-mediated apoptosis.


Subject(s)
Curcumin , Endometrial Neoplasms , Animals , Female , Humans , Mice , Apoptosis/drug effects , Cell Line, Tumor , Cell Proliferation , Curcumin/analogs & derivatives , Curcumin/pharmacology , Endometrial Neoplasms/drug therapy , Endoplasmic Reticulum Stress , Oxidative Stress/drug effects , Proteasome Endopeptidase Complex/drug effects , Proteasome Endopeptidase Complex/metabolism , Reactive Oxygen Species/metabolism , Signal Transduction , Piperidines/pharmacology , Mitogen-Activated Protein Kinases/drug effects , Mitogen-Activated Protein Kinases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL