Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 174
Filter
1.
Rev Sci Instrum ; 95(6)2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38829213

ABSTRACT

A long gas cell, filled with noble gas, is typically positioned between the undulator and the first mirror in the free-electron laser (FEL) beamline to attenuate the laser power as required by the end-stations. In addition to attenuation, the gas cell also serves important functions in various applications, such as spectrometer calibration, resolving power evaluation during beamline commissioning, and filtering of third harmonic in FEL operations. These functions of the gas cell have been successfully tested and implemented at the Dalian Coherent Light Source, a vacuum ultraviolet FEL facility located in Dalian, China. The resolving power of higher than 5000 has been obtained, and accurate calibration has been completed using the gas cell. During operation, the third harmonic of the FEL was attenuated by approximately one order of magnitude with almost the same power of the fundamental. This greatly improved the signal-to-noise ratio at the end-stations.

2.
Neurosurgery ; 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38856216

ABSTRACT

BACKGROUND AND OBJECTIVES: Postneurosurgical bacterial meningitis (PNBM) was a significant clinical challenge, as early identification remains difficult. This study aimed to explore the potential of neutrophil gelatinase-associated lipocalin (NGAL) as a novel biomarker for the early diagnosis of PNBM in patients who have undergone neurosurgery. METHODS: A total of 436 postneurosurgical adult patients were enrolled in this study. Clinical information, cerebrospinal fluid (CSF), and blood samples were collected. After the screening, the remaining 267 patients were divided into the PNBM and non-PNBM groups, and measured CSF and serum NGAL levels to determine the diagnostic utility of PNBM. Subsequently, patients with PNBM were categorized into gram-positive and gram-negative bacterial infection groups to assess the effectiveness of CSF NGAL in differentiating between these types of infections. We analyzed the changes in CSF NGAL expression before and after anti-infection treatment in PNBM. Finally, an additional 60 patients were included as an independent validation cohort to further validate the diagnostic performance of CSF NGAL. RESULTS: Compared with the non-PNBM group, CSF NGAL was significantly higher in the PNBM group (305.1 [151.6-596.5] vs 58.5 [30.7-105.8] ng/mL; P < .0001). The area under the curve of CSF NGAL for diagnosing PNBM was 0.928 (95% CI: 0.897-0.960), at a threshold of 119.7 ng/mL. However, there was no significant difference in serum NGAL between the 2 groups (142.5 [105.0-248.6] vs 161.9 [126.6-246.6] ng/mL, P = .201). Furthermore, CSF NGAL levels were significantly higher in patients with gram-negative bacterial infections than those with gram-positive bacteria (P = .023). In addition, CSF NGAL levels decrease after treatment compared with the initial stage of infection (P < .0001). Finally, in this validation cohort, the threshold of 119.7 ng/mL CSF NGAL shows good diagnostic performance with a sensitivity and specificity of 90% and 80%, respectively. CONCLUSION: CSF NGAL holds promise as a potential biomarker for the diagnosis, early drug selection, and efficacy monitoring of PNBM.

3.
J Chem Phys ; 160(16)2024 Apr 28.
Article in English | MEDLINE | ID: mdl-38661196

ABSTRACT

Produced by both nature and human activities, sulfur dioxide (SO2) is an important species in the earth's atmosphere. SO2 has also been found in the atmospheres of other planets and satellites in the solar system. The photoabsorption cross sections and photodissociation of SO2 have been studied for several decades. In this paper, we reported the experimental results for photodissociation dynamics of SO2 via the G̃1B1 state. By analyzing the images from the time-sliced velocity map ion imaging method, the vibrational state population distributions and anisotropy parameters were obtained for the O(1D2) + SO(X3Σ-, a1Δ, b1Σ+) and O(1S0) + SO(X3Σ-) channels, and the branching ratios for the channels O(1D2) + SO(X3Σ-), O(1D2) + SO(a1Δ), and O(1D2) + SO(b1Σ+) were determined to be ∼0.3, ∼0.6, and ∼0.1, respectively. The SO products were dominant in electronically and rovibrationally excited states, which may have yet unrecognized roles in the upper planetary atmosphere.

4.
J Colloid Interface Sci ; 667: 91-100, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38621335

ABSTRACT

The development of efficient and multifunctional sonosensitizers is crucial for enhancing the efficacy of sonodynamic therapy (SDT). Herein, we have successfully constructed a CoOx-loaded amorphous metal-organic framework (MOF) UIO-66 (A-UIO-66-CoOx) sonosensitizer with excellent catalase (CAT)- and glutathione-oxidase (GSH-OXD)-like activities. The A-UIO-66-CoOx exhibits a 2.6-fold increase in singlet oxygen (1O2) generation under ultrasound (US) exposure compared to crystalline UIO-66 sonosensitizer, which is attributed to its superior charge transfer efficiency and consistent oxygen (O2) supply. Additionally, the A-UIO-66-CoOx composite reduces the expression of glutathione peroxidase (GPX4) by depleting glutathione (GSH) through Co3+ and Co2+ valence changes. The high levels of highly cytotoxic 1O2 and deactivation of GPX4 can lead to lethal lipid peroxidation, resulting in concurrent apoptosis and ferroptosis. Both in vitro and vivo tumor models comprehensively confirmed the enhanced SDT antitumor effect using A-UIO-66-CoOx sonosensitizer. Overall, this study emphasizes the possibility of utilizing amorphization engineering to improve the effectiveness of MOFs-based sonosensitizers for combined cancer therapies.


Subject(s)
Apoptosis , Ferroptosis , Metal-Organic Frameworks , Ultrasonic Therapy , Ferroptosis/drug effects , Metal-Organic Frameworks/chemistry , Metal-Organic Frameworks/pharmacology , Humans , Apoptosis/drug effects , Animals , Mice , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Mice, Inbred BALB C , Drug Screening Assays, Antitumor , Cell Survival/drug effects , Cell Proliferation/drug effects , Particle Size , Cobalt/chemistry , Cobalt/pharmacology , Surface Properties , Singlet Oxygen/metabolism , Singlet Oxygen/chemistry , Cell Line, Tumor
5.
Opt Express ; 32(4): 5031-5042, 2024 Feb 12.
Article in English | MEDLINE | ID: mdl-38439240

ABSTRACT

Modern X-ray free-electron lasers (XFELs) can generate pulses with durations ranging from femtoseconds to attoseconds. The numerical evaluation of ultra-short XFEL pulses through beamline systems is a critical process of beamline system design. However, the bandwidth of such ultra-short XFEL pulses is often non-negligible, and the propagation cannot be simply approximated using the central wavelength, especially in dispersive beamline systems. We developed a numerical model which is called Fourier optics based Ultrashort x-Ray pulse propagatION tool (FURION). This model can not only be used to simulate dispersive beamline systems but also to evaluate non-dispersive beamline systems. The FURION model utilizes Fresnel integral and angular spectrum integral to perform ultra-short XFEL pulse propagation in free space. We also present the method for XFEL pulse propagation through different types of dispersive gratings, which are commonly used in soft X-ray beamline systems. By using FURION, a start-to-end simulation of the FEL-1 beamline system at Shenzhen superconducting soft X-ray free electron laser (S3FEL) is carried out. This model can also be used to evaluate gratings-based spectrometers, beam splitters, pulse compressors, and pulse stretchers. This work provides valuable insights into the start-to-end simulation of X-ray beamline systems.

6.
Article in English | MEDLINE | ID: mdl-38466061

ABSTRACT

Background: In recent years, Tiaoshen acupuncture in Traditional Chinese Medicine (TCM) has been employed for treating patients with insomnia, but the clinical efficacy remains to be substantiated. Objective: To assess the efficacy and safety of acupuncture in treating insomnia using the Tiaoshen method in TCM. Design: A systematic review and meta-analysis was conducted. Setting: The research was conducted in Shenzhen. Methods: Electronic databases, including Chinese National Knowledge Infrastructure (CNKI), Wanfang, SinoMed, Weipu, PubMed, Web of Science, EMBASE, and Cochrane databases, were retrieved up to September 15, 2023. Randomized controlled trials (RCTs) meeting inclusion criteria were screened. Quality assessment of included articles was performed using the Cochrane Risk of Bias tool. Valid data were then extracted and analyzed via meta-analysis using Review Manager 5.3. The study was registered in the International Platform of Registered Systematic Review and Meta-analysis Protocols (INPLASY), 2023100051. Results: A total of 13 articles were included, comprising 849 patients with insomnia (diagnosed as chronic insomnia or primary insomnia). Meta-analysis results indicated that acupuncture with the Tiaoshen method could decrease the Pittsburgh Sleep Quality Index (PSQI) score [RR=-3.03, 95% CI (-3.73, -2.33), P < .00001], hyperarousal (HAS) scale score [RR=-7.75, 95% CI (-12.29, -3.22), P < .0008], and fatigue scale-14 (FS-14) score [RR=-2.11, 95% CI (-2.83, -1.38), P < .00001] compared with superficial acupuncture on non-effective acupoints or conventional acupuncture manipulation. Additionally, acupuncture with the Tiaoshen method demonstrated safety. However, the funnel plot suggested the presence of publication bias. Conclusions: Acupuncture with the Tiaoshen method could enhance sleep quality and efficiency. Due to the low quality of some literature, further high-quality RCTs are needed to improve the level of evidence.

7.
J Phys Chem Lett ; 15(11): 3055-3060, 2024 Mar 21.
Article in English | MEDLINE | ID: mdl-38466221

ABSTRACT

Precise characterization of archetypal systems of aqueous hydrogen-bonding networks is essential for developing accurate potential functions and universal models of water. The structures of water clusters (H2O)n (n = 2-9) have been verified recently through size-specific infrared spectroscopy with a vacuum ultraviolet free electron laser (VUV-FEL) and quantum chemical studies. For (H2O)10, the pentagonal prism and butterfly motifs were proposed to be important building blocks and were observed in previous experiments. Here we report the size-specific infrared spectra of (H2O)10 via a joint experimental and theoretical study. Well-resolved spectra provide a unique signature for the coexistence of pentagonal prism and butterfly motifs. These (H2O)10 motifs develop from the dominant structures of (H2O)n (n = 8, 9) clusters. This work provides an intriguing prelude to the diverse structure of liquid water and opens avenues for size-dependent measurement of larger systems to understand the stepwise formation mechanism of hydrogen-bonding networks.

8.
Nat Commun ; 15(1): 2555, 2024 Mar 22.
Article in English | MEDLINE | ID: mdl-38519506

ABSTRACT

The direct conversion of low alkane such as ethane into high-value-added chemicals has remained a great challenge since the development of natural gas utilization. Herein, we achieve an efficient one-step conversion of ethane to C2 oxygenates on a Rh1/AC-SNI catalyst under a mild condition, which delivers a turnover frequency as high as 158.5 h-1. 18O isotope-GC-MS shows that the formation of ethanol and acetaldehyde follows two distinct pathways, where oxygen and water directly participate in the formation of ethanol and acetaldehyde, respectively. In situ formed intermediate species of oxygen radicals, hydroxyl radicals, vinyl groups, and ethyl groups are captured by laser desorption ionization/time of flight mass spectrometer. Density functional theory calculation shows that the activation barrier of the rate-determining step for acetaldehyde formation is much lower than that of ethanol, leading to the higher selectivity of acetaldehyde in all the products.

9.
J Am Chem Soc ; 146(13): 8832-8838, 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38507251

ABSTRACT

How mutations impact protein stability and structure dynamics is crucial for understanding the pathological process and rational drug design. Herein, we establish a time-resolved native mass spectrometry (TR-nMS) platform via a rapid-mixing capillary apparatus for monitoring the acid-initiated protein unfolding process. The molecular details in protein structure unfolding are further profiled by a 193 nm ultraviolet photodissociation (UVPD) analysis of the structure-informative photofragments. Compared with the wild-type dihydrofolate reductase (WT-DHFR), the M42T/H114R mutant (MT-DHFR) exhibits a significant stability decrease in TR-nMS characterization. UVPD comparisons of the unfolding intermediates and original DHFR forms indicate the special stabilization effect of cofactor NADPH on DHFR structure, and the M42T/H114R mutations lead to a significant decrease in NADPH-DHFR interactions, thus promoting the structure unfolding. Our study paves the way for probing the mutation-induced subtle changes in the stability and structure dynamics of drug targets.


Subject(s)
Escherichia coli , Protein Unfolding , Escherichia coli/metabolism , NADP/metabolism , Protein Stability , Mutation , Mass Spectrometry , Tetrahydrofolate Dehydrogenase/metabolism
10.
J Med Microbiol ; 73(3)2024 Mar.
Article in English | MEDLINE | ID: mdl-38506717

ABSTRACT

Purpose. Metagenomic next-generation sequencing (mNGS) has been widely used in the diagnosis of infectious diseases, while its performance in diagnosis of tuberculous meningitis (TBM) is incompletely characterized. The aim of this study was to assess the performance of mNGS in the diagnosis of TBM, and illustrate the sensitivity and specificity of different methods.Methods. We retrospectively recruited TBM patients between January 2021 and March 2023 to evaluate the performance of mNGS on cerebrospinal fluid (CSF) samples, in comparison with conventional microbiological testing, including culturing of Mycobacterium tuberculosis (MTB), acid-fast bacillus (AFB) stain, reverse transcription PCR and Xpert MTB/RIF.Results. Of the 40 enrolled, 34 participants were diagnosed with TBM, including 15(44.12 %) definite and 19(55.88 %) clinical diagnosis based upon clinical manifestations, CSF parameters, brain imaging, pathogen evidence and treatment response. The mNGS method identified sequences of Mycobacterium tuberculosis complex (MTBC) in 11 CSF samples. In patients with definite TBM, the sensitivity, specificity, positive predictive value, negative predictive value and accuracy of mNGS were 78.57, 100, 100, 66.67 and 85 %, respectively. Compared to conventional diagnostic methods, the sensitivity of mNGS (78.57 %) was higher than AFB (0 %), culturing (0 %), RT-PCR (60 %) and Xpert MTB/RIF (14.29 %).Conclusions. Our study indicates that mNGS of CSF exhibited an overall improved sensitivity over conventional diagnostic methods for TBM and can be considered a front-line CSF test.


Subject(s)
Mycobacterium tuberculosis , Tuberculosis, Meningeal , Humans , Tuberculosis, Meningeal/diagnosis , Retrospective Studies , High-Throughput Nucleotide Sequencing , Mycobacterium tuberculosis/genetics , Brain
11.
Arch Med Sci ; 20(1): 71-80, 2024.
Article in English | MEDLINE | ID: mdl-38414454

ABSTRACT

Introduction: Gout is an inflammatory and metabolic disease characterized by arthritis and elevation of the serum uric acid (SUA) level. More and more studies have shown that high body mass index (BMI) has become one of the most important risk factors for gout. Material and methods: We used the data of gout burden attributed to high body mass index (BMI) from global burden of disease (GBD) study 2019 to provide insights for reducing the global burden of gout. Results: From 1990 to 2019, the prevalence and DALYs of gout caused by high BMI worldwide has been increasing. The burden of gout caused by high BMI is heavier in the elderly male group and regions with high SDI worldwide. Conclusions: Our findings provide evidence for the burden of gout caused by high BMI. Developing a weight management plan and lifestyle habits for groups severely affected by gout will effectively reduce the global disease and economic burden.

12.
Int J Nurs Stud ; 152: 104707, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38368846

ABSTRACT

BACKGROUND: The widespread application and interest in awake prone positioning stems from its ease and availability and its ability to enhance patients' oxygenation. Nevertheless, due to the absence of consensus over the regimen of awake prone positioning, the efficacy of awake prone positioning remains uncertain. OBJECTIVE: To explore the optimal regimen for awake prone positioning, including the timing of initiation, ideal daily duration, and strategies for improving patient comfort and encouraging adherence. DESIGN: Retrospective observational study. SETTING(S): Two university-affiliated hospitals in Shanghai. PARTICIPANTS: Between December 2022 and February 2023, a total of 475 patients with COVID-19-related pneumonia who received awake prone positioning were observed. METHODS: The data were collected from the hospital's electronic medical record system. The differentiation efficiency of peripheral blood oxygen saturation [SpO2]:fractional oxygen concentration in inspired air [FiO2] ratio at first awake prone positioning for different outcomes was tested by the area under the receiver operating characteristic curve. The Cox proportional hazard regression model was used to analyze the relationship between time to occurrence of 28-day outcomes and collected variables. Kaplan-Meier curves were plotted with the percentage of 28-day outcomes according to the SpO2:FiO2 ratio at first awake prone positioning after controlling covariates through Cox regression. RESULTS: The best efficiency in predicting patient outcomes was achieved when the cutoff SpO2:FiO2 ratio at first awake prone positioning was 200. Patients with a reduced SpO2:FiO2 ratio (≤200) experienced more adverse respiratory outcomes (RR = 5.42, 95%CI [3.35, 8.76], p < 0·001) and higher mortality (RR = 16.64, 95%CI [5.53, 50.13], p < 0.001). Patients with a SpO2:FiO2 ratio of ≥200 at first awake prone positioning, longer duration between first awake prone positioning and admission, more awake prone positioning days, and better awake prone positioning completion were significantly protected from 28-day adverse respiratory outcomes and mortality. CONCLUSIONS: Initiating awake prone positioning with a SpO2:FiO2 ratio exceeding 200, increasing the number of awake prone positioning days, prolonging the time between first awake prone positioning and admission, and achieving better completion of awake prone positioning were found to be significantly associated with reduced adverse respiratory outcomes and mortality. REGISTRATION: ClinicalTrials.gov; No.: NCT05795751; URL: www. CLINICALTRIALS: gov.


Subject(s)
COVID-19 , Respiratory Insufficiency , Humans , China , Prone Position , Wakefulness
13.
Science ; 383(6684): 746-750, 2024 Feb 16.
Article in English | MEDLINE | ID: mdl-38359138

ABSTRACT

Chemical reactions are generally assumed to proceed from reactants to products along the minimum energy path (MEP). However, straying from the MEP-roaming-has been recognized as an unconventional reaction mechanism and found to occur in both the ground and first excited states. Its existence in highly excited states is however not yet established. We report a dissociation channel to produce electronically excited fragments, S(1D)+O2(a1Δg), from SO2 photodissociation in highly excited states. The results revealed two dissociation pathways: One proceeds through the MEP to produce vibrationally colder O2(a1Δg) and the other yields vibrationally hotter O2(a1Δg) by means of a roaming pathway involving an intramolecular O abstraction during reorientation motion. Such roaming dynamics may well be the rule rather than the exception for molecular photodissociation through highly excited states.

14.
RSC Adv ; 14(1): 353-363, 2024 Jan 02.
Article in English | MEDLINE | ID: mdl-38173589

ABSTRACT

The elucidation of carbonate crystal growth mechanisms contributes to a deeper comprehension of microbial-induced carbonate precipitation processes. In this research, the Curvibacter lanceolatus HJ-1 strain, well-known for its proficiency in inducing carbonate mineralization, was employed to trigger the formation of concave-type carbonate minerals. The study meticulously tracked the temporal alterations in the culture solution and conducted comprehensive analyses of the precipitated minerals' mineralogy and morphology using advanced techniques such as X-ray diffraction, scanning electron microscopy, focused ion beam, and transmission electron microscopy. The findings unequivocally demonstrate that concave-type carbonate minerals are meticulously templated by bacterial biofilms and employ calcified bacteria as their fundamental structural components. The precise morphological evolution pathway can be delineated as follows: initiation with the formation of bacterial biofilms, followed by the aggregation of calcified bacterial clusters, ultimately leading to the emergence of concave-type minerals characterized by disc-shaped, sunflower-shaped, and spherical morphologies.

15.
Nat Cell Biol ; 26(2): 263-277, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38238450

ABSTRACT

Human in vitro fertilized embryos exhibit low developmental capabilities, and the mechanisms that underlie embryonic arrest remain unclear. Here using a single-cell multi-omics sequencing approach, we simultaneously analysed alterations in the transcriptome, chromatin accessibility and the DNA methylome in human embryonic arrest due to unexplained reasons. Arrested embryos displayed transcriptome disorders, including a distorted microtubule cytoskeleton, increased genomic instability and impaired glycolysis, which were coordinated with multiple epigenetic reprogramming defects. We identified Aurora A kinase (AURKA) repression as a cause of embryonic arrest. Mechanistically, arrested embryos induced through AURKA inhibition resembled the reprogramming abnormalities of natural embryonic arrest in terms of the transcriptome, the DNA methylome, chromatin accessibility and H3K4me3 modifications. Mitosis-independent sequential activation of the zygotic genome in arrested embryos showed that YY1 contributed to human major zygotic genome activation. Collectively, our study decodes the reprogramming abnormalities and mechanisms of human embryonic arrest and the key regulators of zygotic genome activation.


Subject(s)
Aurora Kinase A , Multiomics , Humans , Aurora Kinase A/genetics , Blastocyst , Chromatin/genetics , Cytoskeleton , Embryonic Development/genetics
16.
Microbiol Spectr ; 12(1): e0224623, 2024 Jan 11.
Article in English | MEDLINE | ID: mdl-38047697

ABSTRACT

IMPORTANCE: Tuberculous meningitis is a life-threatening infection with high mortality and disability rates. Current diagnostic methods using cerebrospinal fluid (CSF) samples have limited sensitivity and lack predictive biomarkers for evaluating prognosis. This study's findings reveal excessive activation of the immune response during tuberculous meningitis (TBM) infection. Notably, a strong negative correlation was observed between CSF levels of monokine induced by interferon-γ (MIG) and the CSF/blood glucose ratio in TBM patients. MIG also exhibited the highest area under the curve with high sensitivity and specificity. This study suggests that MIG may serve as a novel biomarker for differentiating TBM infection in CSF or serum, potentially leading to improved diagnostic accuracy and better patient outcomes.


Subject(s)
Tuberculosis, Meningeal , Humans , Tuberculosis, Meningeal/diagnosis , Tuberculosis, Meningeal/drug therapy , ROC Curve , Interferon-gamma , Serum , Biomarkers , Cerebrospinal Fluid
17.
J Clin Endocrinol Metab ; 109(3): 815-826, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-37758217

ABSTRACT

CONTEXT: Patients with type 2 diabetes mellitus (T2DM) are at significantly increased risk of Alzheimer disease (AD). However, no biomarkers are available for early identification of patients with T2DM with cognitive impairment (T2DM-CI). Mitochondrial dysfunction is linked to AD. Silent Information Regulator 1 (SIRT1), which is responsible for regulating mitochondrial biogenesis, and its related miRNAs were also altered in AD. OBJECTIVE: This study aimed to determine whether mitochondrial function in peripheral blood mononuclear cells (PBMCs) of patients with T2DM-CI was altered and if these alterations could be used as biomarkers. METHODS: A total of 374 subjects were enrolled, including AD, T2DM-CI, T2DM-nCI (T2DM without cognitive impairment), and healthy controls. The mitochondrial function was determined using a commercial assay kit. The mitochondrial DNA (mtDNA) content, the expression of SIRT1, and selected miRNAs in PBMCs were measured by quantitative polymerase chain reaction. The correlations and diagnostic accuracy were assessed using the Spearman correlation coefficient or receiver operating characteristics analysis, respectively. RESULTS: We found significant changes in mitochondrial function in PBMCs of patients with AD compared with controls (all P < .05), which were not found in T2DM-CI. However, mtDNA content and SIRT1 mRNA expression were lower in PBMCs of patients with T2DM-CI, while miR-34a-5p expression was higher than in patients with T2DM-nCI (all P < .05). A combination of SIRT1 and miR-34a-5p demonstrated excellent discrimination between T2DM-CI and T2DM-nCI (area under the curve = 0.793; sensitivity: 80.01%; specificity: 78.46%). Furthermore, correlation analysis revealed a link between miR-34a-5p expression and hyperglycemia in T2DM-CI. CONCLUSION: Our findings revealed that there was an alteration of mitochondria at the peripheral level in patients with T2DM-CI. SIRT1 combined with miR-34a-5p in PBMCs performed well in identifying patients with T2DM-CI and may be a promising biomarker.


Subject(s)
Cognitive Dysfunction , Diabetes Mellitus, Type 2 , MicroRNAs , Humans , Biomarkers , Cognitive Dysfunction/etiology , Cognitive Dysfunction/genetics , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/genetics , DNA, Mitochondrial , Leukocytes, Mononuclear/metabolism , MicroRNAs/genetics , Sirtuin 1/genetics
18.
J Infect Chemother ; 30(6): 544-547, 2024 Jun.
Article in English | MEDLINE | ID: mdl-37992864

ABSTRACT

Streptococcus suis is a pathogen of emerging zoonotic diseases and meningoencephalitis is the most frequent clinical symptom of S. suis infection in humans. Rapid diagnosis of S. suis meningoencephalitis is critical for the treatment of the disease. While the current routine microbiological tests including bacterial culture and gram staining are poorly sensitive, diagnosis of S. suis meningoencephalitis by metagenomic next-generation sequencing (mNGS) has been rarely reported. Here, we report a 52-year-old female pork food producer with a broken finger developed S. suis meningoencephalitis. After her admission, no pathogenic bacteria were detected through bacterial culture and Gram staining microscopy in the cerebrospinal fluid obtained via lumbar puncture. However, mNGS identified the presence of S. suis in the sample. mNGS is a promising diagnostic tool for rapid diagnosis of rare infectious diseases in the central nervous system.

19.
Ecotoxicol Environ Saf ; 270: 115842, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38104434

ABSTRACT

To reduce the application dosage of thiamethoxam (TMX), we investigated the deposition and dissipation patterns in a pepper-planted ecosystem under different planting modes across four regions in China, namely Hainan (HN), Zhejiang (ZJ), Anhui (AH) and Hebei (HB). This study focused on the deposition and dissipation of TMX at concentrations of 63.00, 47.25, 31.50, 23.63 and 15.75 g a.i.hm-2. As the application dose increased, the deposition amount of TMX initially increased in the plants and cultivated soil, showing obvious geographic differences in four cultivation areas. Surprisingly, the initial amount of TMX deposited the pepper-cultivated greenhouse of ZJ and AH was 1.1-2.1-fold and 1.0-3.6-fold higher than that in the open field system at the same application dose, respectively. In pepper leaves, stems, fruits and soil, the dissipation exhibited rapid growth and then slowed. However, the residual concentration showed an increasing trend, followed by a subsequent decrease in the pepper roots. In different planting regions, the dissipation rate of TMX followed the order HN > ZJ > AH > HB in pepper plants and cultivated soil. In comparison to the open field, the total TMX retention rate in greenhouse was higher, indicating overall greater persistence in the greenhouse conditions. These findings reveal the deposition and dissipation characteristics of TMX within the pepper-field ecosystem, offering a significant contribution to the risk assessment of pesticides.


Subject(s)
Insecticides , Pesticides , Thiamethoxam , Insecticides/analysis , Ecosystem , Soil
20.
Zhongguo Zhong Yao Za Zhi ; 48(19): 5244-5249, 2023 Oct.
Article in Chinese | MEDLINE | ID: mdl-38114113

ABSTRACT

The study investigated the chemical constituents from the whole herb of Carpesium cernuum. Three new diterpenoids were isolated from the whole herb of C. cernuum by column chromatography on silica gel, Sephadex LH-20, and semi-preparative HPLC. Their structures were identified by MS, NMR and other spectral techniques. The isolates were identified as(5Z)-2-oxo-2, 10, 14-trimethylhexadeca-5, 13-diene-11α, 18-diol(1),(2E, 10E)-7-[(acetyloxy)methyl]-3, 11, 15-trimethylhexadeca-2, 10, 14-triene-1, 12α-diol(2),(2E, 6Z)-3, 11, 15-trimethylhexadeca-2, 6, 14-triene-1, 12α, 19-triol(3), respectively. The cytotoxic activity of compounds 1-3 were investigated with DU-145, MCF-7, and A549 cells by MTT. The results showed that compound 1 and 3 had certain inhibitory effects on MCF-7 cells, with the inhibition rates of 45.06% and 29.40%, respectively.


Subject(s)
Asteraceae , Humans , Asteraceae/chemistry , MCF-7 Cells , Magnetic Resonance Spectroscopy , Chromatography, High Pressure Liquid , A549 Cells
SELECTION OF CITATIONS
SEARCH DETAIL