Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 293
Filter
1.
Environ Pollut ; : 124505, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38968986

ABSTRACT

The frequency and intensity of forest fires are amplified by climate change. Substantial quantities of PM1 emitted from forest fires can undergo gradual atmospheric dispersion and long-range transport, thus impacting air quality far from the source. However, the chemical composition and physical properties of PM emitted from forest fires and its changes during atmospheric transport remain uncertain. In this study, the evolution of organic carbon (OC), elemental carbon (EC), water-soluble ions, and water-soluble metals in the particulate phase of smoke emitted from the typical forest vegetation combustion in Southwest China before and after photo-oxidation was investigated in the laboratory. Two aging periods of 5 and 9 days were selected. The OC and TC mass concentrations tended to decrease after 9-days aged compared to fresh emissions. OP, OC2, and OC3 in PM1 are expected to be potential indicators of fresh smoke, while OC3 and OC4 may serve as suitable markers for identifying aged carbon sources from the typical forest vegetation combustion in Southwest China. K+ exhibited the highest abundant water-soluble ion in fresh PM1, whereas NO3- became the most abundant water-soluble ion in aged PM1. NH4NO3 emerged as the primary secondary inorganic aerosol emitted from typical forest vegetation combustion in Southwest China. Notably, a 5-day aging period proved insufficient for the complete formation of the secondary inorganic aerosols NH4NO3 and (NH4)2SO4. After aging, the mass concentration of the water-soluble metal Ni in PM1 from typical forest vegetation combustion in Southwest China decreased, while the mean mass concentrations of all other water-soluble metals increased in varying degrees. These findings provide valuable data support and theoretical guidance for studying the atmospheric evolution of forest fire aerosols, as well as contribute to policy formulation and management of atmospheric environment safety and human health.

2.
Metab Brain Dis ; 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38963634

ABSTRACT

Cognitive deficits associated with oxidative stress and the dysfunction of the central nervous system are present in some neurodegenerative diseases, such as Alzheimer's disease and Parkinson's disease. Selenium (Se), an essential microelement, exhibits cognition-associated functions through selenoproteins mainly owing to its antioxidant property. Due to the disproportionate distribution of Se in the soil, the amount of Se varies greatly in various foods, resulting in a large proportion of people with Se deficiency worldwide. Numerous cell and animal experiments demonstrate Se deficiency-induced cognitive deficits and Se supplementation-improved cognitive performances. However, human studies yield inconsistent results and the mechanism of Se in cognition still remains elusive, which hinder the further exploration of Se in human cognition. To address the urgent issue, the review summarizes Se-contained foods (plant-based foods, animal-based foods, and Se supplements), brain selenoproteins, mechanisms of Se in cognition (improvement of synaptic plasticity, regulation of Zn2+ level, inhibition of ferroptosis, modulation of autophagy and de novo synthesis of L-serine), and effects of Se on cognitive deficits, as well as consequently sheds light on great potentials of Se in the prevention and treatment of cognitive deficits.

3.
J Colloid Interface Sci ; 673: 444-452, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38878378

ABSTRACT

Electrocatalytic water splitting (EWS) for hydrogen production is considered an ideal strategy for utilizing renewable energy, reducing fossil fuel consumption, and addressing environmental pollution issues. Traditional noble metal electrocatalysts have excellent performance, but their cost is high. Developing efficient, stable, and relatively inexpensive dual functional electrocatalysts is crucial for promoting large-scale EWS hydrogen production processes. Herein, a simple one-step electrodeposition method was used to grow nickel-iron phosphorus-sulfides (NiFePS) on the surface of hydrophilic treated carbon cloth (CC). The resultant NiFePS/CC with a phosphorus to sulfur ratio of 1:4 exhibited the best electrocatalytic performance, requiring only -91 mV and 216 mV overpotentials to generate the current densities of 10 mA·cm-2 in hydrogen evolution reaction (HER) and oxygen evolution reaction (OER), respectively. When it was used as a bifunctional electrocatalyst to overall water splitting (OWS), a voltage of 1.536 V can generate a current density of 10 mA·cm-2. The excellent electrocatalytic performance can be ascribed to two factors: 1) the CC with excellent conductivity serves as a growth substrate, reducing the impedance of charge transfer from the electrode to the electrolyte and accelerating the electron transfer rate; 2) The large number of ultra-thin nanosheets formed on the surface of the catalyst increase the electrochemical specific surface area, expose more reaction sites, and thus improve the electrocatalytic reaction performance. This work provides a new approach for designing efficient non-noble metal electrocatalysts for water splitting.

4.
Adv Sci (Weinh) ; : e2400149, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38898748

ABSTRACT

The activation of cyclic GMP-AMP (cGAMP) synthase (cGAS) and its adaptor, stimulator of interferon genes (STING), is known to reprogram the immunosuppressive tumor microenvironment for promoting antitumor immunity. To enhance the efficiency of cGAS-STING pathway activation, macrophage-selective uptake, and programmable cytosolic release are crucial for the delivery of STING agonists. However, existing polymer- or lipid-based delivery systems encounter difficulty in integrating multiple functions meanwhile maintaining precise control and simple procedures. Herein, inspired by cGAS being a natural DNA sensor, a modularized DNA nanodevice agonist (DNDA) is designed that enable macrophage-selective uptake and programmable activation of the cGAS-STING pathway through precise self-assembly. The resulting DNA nanodevice acts as both a nanocarrier and agonist. Upon local administration, it demonstrates the ability of macrophage-selective uptake, endosomal escape, and cytosolic release of the cGAS-recognizing DNA segment, leading to robust activation of the cGAS-STING pathway and enhanced antitumor efficacy. Moreover, DNDA elicits a synergistic therapeutic effect when combined with immune checkpoint blockade. The study broadens the application of DNA nanotechnology as an immune stimulator for cGAS-STING activation.

5.
J Colloid Interface Sci ; 672: 805-813, 2024 Oct 15.
Article in English | MEDLINE | ID: mdl-38875836

ABSTRACT

Short-side-chain perfluorosulfonic acid (SSC-PFSA) ionomers with high ion-exchange-capacity are promising candidates for high-temperature proton exchange membranes (PEMs) and catalyst layer (CL) binders. The solution-casting method determines the importance of SSC-PFSA dispersion characteristics in shaping the morphology of PEMs and CLs. Therefore, a thorough understanding of the chain behavior of SSC-PFSA in dispersions is essential for fabricating high-quality PEMs and CLs. In this study, we have employed multiple characterization techniques, including dynamic light scatting (DLS), small-angle X-ray scattering (SAXS), and cryo-transmission electron microscope (Cryo-TEM), to fully study the chain aggregation behaviors of SSC-PFSA in water-ethanol solvents and elucidate the concentration-dependent self-assembly process. In dilute dispersions (2 mg/mL), SSC-PFSA assembles into mono-disperse rod-like aggregates, featuring a twisted fluorocarbon backbone that forms a hydrophobic stem, and the sulfonic acid side chains extending outward to suit the hydrophilic environment. As the concentration increases, the radius of rod particles increases from 1.47 to 1.81 nm, and the mono-disperse rod particles first form a "end-to-end" configuration that doubles length (10 mg/mL), and then transform into a swollen network structure in semi-dilute dispersion (20 mg/mL). This work provides a well-established structure model for SSC-PFSA dispersions, which is the key nanostructure to be inherited by PEMs.

6.
BMC Public Health ; 24(1): 1363, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38773497

ABSTRACT

BACKGROUND: Although the association between ambient temperature and mortality of respiratory diseases was numerously documented, the association between various ambient temperature levels and respiratory emergency department (ED) visits has not been well studied. A recent investigation of the association between respiratory ED visits and various levels of ambient temperature was conducted in Beijing, China. METHODS: Daily meteorological data, air pollution data, and respiratory ED visits data from 2017 to 2018 were collected in Beijing. The relationship between ambient temperature and respiratory ED visits was explored using a distributed lagged nonlinear model (DLNM). Then we performed subgroup analysis based on age and gender. Finally, meta-analysis was utilized to aggregate the total influence of ambient temperature on respiratory ED visits across China. RESULTS: The single-day lag risk for extreme cold peaked at a relative risk (RR) of 1.048 [95% confidence interval (CI): 1.009, 1.088] at a lag of 21 days, with a long lag effect. As for the single-day lag risk for extreme hot, a short lag effect was shown at a lag of 7 days with an RR of 1.076 (95% CI: 1.038, 1.114). The cumulative lagged effects of both hot and cold effects peaked at lag 0-21 days, with a cumulative risk of the onset of 3.690 (95% CI: 2.133, 6.382) and 1.641 (95% CI: 1.284, 2.098), respectively, with stronger impact on the hot. Additionally, the elderly were more sensitive to ambient temperature. The males were more susceptible to hot weather than the females. A longer cold temperature lag effect was found in females. Compared with the meta-analysis, a pooled effect of ambient temperature was consistent in general. In the subgroup analysis, a significant difference was found by gender. CONCLUSIONS: Temperature level, age-specific, and gender-specific effects between ambient temperature and the number of ED visits provide information on early warning measures for the prevention and control of respiratory diseases.


Subject(s)
Emergency Service, Hospital , Respiratory Tract Diseases , Humans , Emergency Service, Hospital/statistics & numerical data , Female , Male , Middle Aged , Aged , Adult , Beijing/epidemiology , Child, Preschool , Adolescent , Infant , Child , Young Adult , Respiratory Tract Diseases/epidemiology , Temperature , Time Factors , Infant, Newborn , Aged, 80 and over , Air Pollution/adverse effects , Emergency Room Visits
7.
Environ Int ; 186: 108629, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38582060

ABSTRACT

Recently, extreme wildfires occur frequently around the world and emit substantial brown carbon (BrC) into the atmosphere, whereas the molecular compositions and photochemical evolution of BrC remain poorly understood. In this work, primary smoke aerosols were generated from wood smoldering, and secondary smoke aerosols were formed by the OH radical photooxidation in an oxidation flow reactor, where both primary and secondary smoke samples were collected on filters. After solvent extraction of filter samples, the molecular composition of dissolved organic carbon (DOC) was determined by Fourier transform ion cyclotron resonance mass spectrometry (FTICR MS). The molecular composition of dissolved BrC was obtained based on the constraints of DOC formulae. The proportion of dissolved BrC fractions accounted for approximately 1/3-1/2 molecular formulae of DOC. The molecular characteristics of dissolved BrC showed higher levels of carbon oxidation state, double bond equivalents, and modified aromaticity index than those of DOC, indicating that dissolved BrC fractions were a class of organic structures with relatively higher oxidation state, unsaturated and aromatic degree in DOC fractions. The comparative analysis suggested that aliphatic and olefinic structures dominated DOC fractions (contributing to 70.1%-76.9%), while olefinic, aromatic, and condensed aromatic structures dominated dissolved BrC fractions (contributing to 97.5%-99.9%). It is worth noting that dissolved BrC fractions only contained carboxylic-rich alicyclic molecules (CRAMs)-like structures, unsaturated hydrocarbons, aromatic structures, and highly oxygenated compounds. CRAMs-like structures were the most abundant species in both DOC and dissolved BrC fractions. Nevertheless, the specific molecular characteristics for DOC and dissolved BrC fractions varied with subgroups after aging. The results highlight the similarities and differences in the molecular compositions and characteristics of DOC and dissolved BrC fractions with aging. This work will provide insights into understanding the molecular composition of DOC and dissolved BrC in smoke.


Subject(s)
Aerosols , Carbon , Smoke , Wood , Carbon/analysis , Carbon/chemistry , Smoke/analysis , Wood/chemistry , Aerosols/analysis , Aerosols/chemistry , Oxidation-Reduction , Wildfires , Air Pollutants/analysis , Air Pollutants/chemistry , Photochemical Processes
9.
Ecotoxicol Environ Saf ; 274: 116234, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38503107

ABSTRACT

BACKGROUND: Studies have shown that short- and long-term exposure to particulate matter (PM) can increase the risk of asthma morbidity and mortality. However, the effect of medium-term exposure remains unknown. We aim to examine the effect of medium-term exposure to size-fractioned PM on asthma exacerbations among asthmatics with poor medication adherence. METHODS: We conducted a longitudinal study in China based on the National Mobile Asthma Management System Project that specifically and routinely followed asthma exacerbations in asthmatics with poor medication adherence from April 2017 to May 2019. High-resolution satellite remote-sensing data were used to estimate each participant's medium-term exposure (on average 90 days) to size-fractioned PM (PM1, PM2.5, and PM10) based on the residential address and the date of the follow-up when asthma exacerbations (e.g., hospitalizations and emergency room visits) occurred or the end of the follow-up. The Cox proportional hazards model was employed to examine the hazard ratio of asthma exacerbations associated with each PM after controlling for sex, age, BMI, education level, geographic region, and temperature. RESULTS: Modelling results revealed nonlinear exposure-response associations of asthma exacerbations with medium-term exposure to PM1, PM2.5, and PM10. Specifically, for emergency room visits, we found an increased hazard ratio for PM1 above 22.8 µg/m3 (1.060, 95 % CI: 1.025-1.096, per 1 µg/m3 increase), PM2.5 above 38.2 µg/m3 (1.032, 95 % CI: 1.010-1.054), and PM10 above 78.6 µg/m3 (1.019, 95 % CI: 1.006-1.032). For hospitalizations, we also found an increased hazard ratio for PM1 above 20.3 µg/m3 (1.055, 95 % CI: 1.001-1.111) and PM2.5 above 39.2 µg/m3 (1.038, 95 % CI: 1.003-1.074). Furthermore, the effects of PM were greater for a longer exposure window (90-180 days) and among participants with a high BMI. CONCLUSION: This study suggests that medium-term exposure to PM is associated with an increased risk of asthma exacerbations in asthmatics with poor medication adherence, with a higher risk from smaller PM.


Subject(s)
Air Pollutants , Air Pollution , Asthma , Humans , Particulate Matter/toxicity , Longitudinal Studies , Environmental Exposure/analysis , Asthma/drug therapy , Asthma/epidemiology , Asthma/chemically induced , China/epidemiology , Air Pollutants/adverse effects , Air Pollutants/analysis , Air Pollution/analysis
10.
Neuron ; 112(9): 1473-1486.e6, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38447577

ABSTRACT

Phasic (fast) and tonic (sustained) inhibition of γ-aminobutyric acid (GABA) are fundamental for regulating day-to-day activities, neuronal excitability, and plasticity. However, the mechanisms and physiological functions of glial GABA transductions remain poorly understood. Here, we report that the AMsh glia in Caenorhabditis elegans exhibit both phasic and tonic GABAergic signaling, which distinctively regulate olfactory adaptation and neuronal aging. Through genetic screening, we find that GABA permeates through bestrophin-9/-13/-14 anion channels from AMsh glia, which primarily activate the metabolic GABAB receptor GBB-1 in the neighboring ASH sensory neurons. This tonic action of glial GABA regulates the age-associated changes of ASH neurons and olfactory responses via a conserved signaling pathway, inducing neuroprotection. In addition, the calcium-evoked, vesicular glial GABA release acts upon the ionotropic GABAA receptor LGC-38 in ASH neurons to regulate olfactory adaptation. These findings underscore the fundamental significance of glial GABA in maintaining healthy aging and neuronal stability.


Subject(s)
Adaptation, Physiological , Caenorhabditis elegans , Neuroglia , gamma-Aminobutyric Acid , Animals , gamma-Aminobutyric Acid/metabolism , Neuroglia/metabolism , Neuroglia/physiology , Adaptation, Physiological/physiology , Smell/physiology , Caenorhabditis elegans Proteins/metabolism , Caenorhabditis elegans Proteins/genetics , Signal Transduction/physiology , Cellular Senescence/physiology , Olfactory Receptor Neurons/physiology , Olfactory Receptor Neurons/metabolism , Aging/physiology , Aging/metabolism , Receptors, GABA-A/metabolism
11.
ACS Appl Mater Interfaces ; 16(11): 13893-13902, 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38462697

ABSTRACT

It is challenging to synthesize oxygen reduction reaction (ORR) electrocatalysts that are highly efficient, affordable, and stable for use in proton exchange membrane fuel cells. To address this challenge, we developed a low platinum-loading (only 6.68% wt) ORR catalyst (PtCu1-NC), comprising CuPt nanoparticles (average size: 1.51 nm) supported on the N-doped carbon substrates. PtCu1-NC possesses a high specific surface area of 662 m2 g-1 and a hierarchical porous structure, facilitating efficient mass transfer. The synergistic effect from introduced copper and the electron effect from nitrogen modify the electronic structure of platinum, effectively accelerating the ORR reaction and enhancing stability. Density functional theory calculations demonstrate the catalytic mechanism and further verify the synergistic effect. Electrochemical assessments indicate that PtCu1-NC exhibits specific activity and mass activity 5.3 and 5.6 times higher, respectively, than commercial Pt/C. The half-wave potential is 27 mV more positive than that of commercial Pt/C. The electrochemical active surface area value is 104.3 m2 g-1, surpassing that of Pt/C. Approximately 78% of current is retained after 10,000 s chronoamperometry measurement. These results highlight the effectiveness of alloying in improving the catalyst performance.

12.
BMJ Open ; 14(2): e080318, 2024 Feb 22.
Article in English | MEDLINE | ID: mdl-38388503

ABSTRACT

OBJECTIVES: To assess the association between ambient temperature and diurnal temperature range (DTR) on emergency admissions for hyperventilation syndrome (HVS). DESIGN: Distributed lag non-linear model design was used with a lag time to 5 days. SETTING: Emergency admission data used were from the Beijing Red Cross Emergency Centre (2017-2018). PARTICIPANTS AND EXPOSURE: Cases were those with emergency visits to the Beijing Emergency Center during the period 2017-2018 and who were given the primary outcome indicator defined as HVS according to the International Classification of Diseases, 10th edition code F45.303. Ambient temperature and DTR were used as exposure factors with adjustments for relative humidity, wind speed, precipitation, seasonality long-term trend and day of the week. MAIN OUTCOME MEASURE: We used the minimum emergency visits temperature as a reference to indicate the relative risk with 95% CI of exposure-response for the risk of HVS visits at different temperatures. RESULTS: A u-shape was described between ambient temperature and HVS visits, with a minimum risk at 12°C. Moderate heat (23°C) at lag (0-3) days, extreme heat at lag 0 days, had greatest relative risks on HVS visits, with 2.021 (95% CI 1.101 to 3.71) and 1.995 (95% CI 1.016 to 3.915), respectively. A stronger association between HVS visits and temperature was found in women and aged ≤44 years. Notably, the relationship between DTR and HVS visits appeared a reverse u-shaped. Low DTR (4°C) effect appeared at lag (0-1) days with 0.589 (95% CI 0.395 to 0.878), lasting until lag (0-3) days with 0.535 (95% CI 0.319 to 0.897) and was associated with a reduced risk of HVS visits in women and those aged ≤44 years. CONCLUSIONS: Ambient temperature and DTR were associated with HVS visits, appearing a differentiation in gender and age groups. Timely prevention strategies during high temperatures and control mild changes in temperature might reduce the risk of HVS.


Subject(s)
Cold Temperature , Hyperventilation , Humans , Female , Temperature , Beijing/epidemiology , China/epidemiology , Hot Temperature
13.
Polymers (Basel) ; 16(4)2024 Feb 12.
Article in English | MEDLINE | ID: mdl-38399883

ABSTRACT

The development of precious metal-free (M-N-C) catalysts for the oxygen reduction reaction (ORR) is considered crucial for reducing fuel cell costs. Herein, Co-Zn/NC interconnected frameworks with uniformly dispersed Co nanoparticles and graphitic carbon are designed and successfully synthesized through the in situ growth of zeolitic imidazolate frameworks (ZIF67 and ZIF8) along with biomass nano-microfibrillar cellulose (MFC), followed by pyrolysis. A Co-Zn/NC composite is prepared by combining Co-Zn/NC with a perfluorosulfonic acid polymer. The Co-Zn/NC composite catalyst exhibits excellent ORR catalytic activity (E0 = 0.974 V vs. RHE, E1/2 = 0.858 V vs. RHE) and good long-term durability, with 90% current retention after 10000s, surpassing that of commercial Pt/C in alkaline media. The hierarchical porous structure, coupled with the uniform distribution of Co nanoparticles and nitrogen doping, contributes to superior electrocatalytic performance, while the interconnected frameworks and graphitic carbon ensure good stability. Additionally, the Co-Zn/NC composite demonstrates promising applications in acidic media. This strategy offers significant guidance to develop advanced non-precious metal carbon-based catalysts for highly efficient and stable ORR.

14.
BMC Anesthesiol ; 24(1): 40, 2024 Jan 29.
Article in English | MEDLINE | ID: mdl-38287259

ABSTRACT

BACKGROUND: This meta-analysis was designed to compare the safety and efficiency of remimazolam with those of propofol in patients undergoing gastroscope sedation. METHODS: We searched PubMed, Cochrane Library, Embase, Ovid, Wanfang Database, China National Knowledge Infrastructure, SINOMED, and ClinicalTrials.gov for studies that reported on remimazolam versus propofol for gastroscope sedation from establishment to February 25, 2023. The sedative efficiency and the incidence of adverse events were assessed as outcomes. Version 2 of the Cochrane risk-of-bias assessment tool was used to assess the risk of bias. Review Manager 5.4 and STATA 17 were used to perform all statistical analyses. RESULTS: A total of 26 randomized controlled trials involving 3,641 patients were included in this meta-analysis. The results showed that remimazolam had a significantly lower incidence of respiratory depression (risk ratio [RR] = 0.40, 95% confidence interval [CI]: 0.28-0.57; p < 0.01, GRADE high), hypoxemia (RR = 0.34, 95% CI: 0.23-0.49; p < 0.01, GRADE high), bradycardia (RR = 0.34, 95% CI: 0.23-0.51; p < 0.01, GRADE high), dizziness (RR = 0.45, 95% CI: 0.31-0.65; p < 0.01, GRADE high), injection site pain (RR = 0.06, 95% CI: 0.03-0.13; p < 0.01, GRADE high), nausea or vomiting (RR = 0.79, 95% CI: 0.62-1.00; p = 0.05, GRADE moderate), and hypotension (RR = 0.36, 95% CI: 0.26-0.48; p < 0.01, GRADE low). CONCLUSIONS: Remimazolam can be used safely in gastroscopic sedation and reduces the incidence of respiratory depression, hypoxemia, bradycardia, injection site pain, and dizziness compared with propofol, and doesn't increase the incidence of nausea and vomiting.


Subject(s)
Benzodiazepines , Propofol , Respiratory Insufficiency , Humans , Propofol/adverse effects , Gastroscopes , Bradycardia/chemically induced , Bradycardia/epidemiology , Dizziness/chemically induced , Vomiting/chemically induced , Vomiting/epidemiology , Nausea/chemically induced , Nausea/epidemiology , Pain/chemically induced , Respiratory Insufficiency/chemically induced , Hypoxia/chemically induced , Hypoxia/epidemiology , Hypoxia/prevention & control , Randomized Controlled Trials as Topic
15.
J Gene Med ; 26(1): e3604, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37880853

ABSTRACT

BACKGROUND: Breast cancer (BC) is the most common cancer among women worldwide and a leading cause of cancer-associated deaths among women. However, there is a lack of accurate prognostic biomarkers for BC. In the present study, we aimed to identify a genomic instability (GI)-associated microRNA signature as a novel potential prognostic biomarker in BC. METHODS: We performed an integrative analysis to investigate the relationship between GI and BC and identify GI-associated microRNAs (miRNAs). Subsequently, we conducted a discovery and validation study using multicenter cohorts. The GI-associated miRNA signature was developed in the discovery cohort and independently validated in internal and external cohorts. RESULTS: GI-associated miRNAs expression in BC showed heterogeneity and was significantly correlated with BC prognosis. We identified a GI-associated two-miRNA signature (miR-105-5p and miR-767-5p), termed GI2miR, that stratified BC patients into high-risk and low-risk groups with significantly different clinical outcomes (log-rank p = 0.027) in The Cancer Genome Atlas (TCGA) discovery cohort (n = 763). The prognostic value of GI2miR was further validated in internal TCGA validation cohort (n = 253) (log-rank p = 0.035) and independent GSE22216 cohort (n = 210) (log-rank p = 0.036). The GI2miR demonstrated independent prognostic value in multivariate Cox proportional hazard regression analyses and stratification analysis. CONCLUSIONS: We have developed a novel prognostic signature based on GI-associated two miRNAs for BC, which may lay the foundation for BC to improve prognosis prediction.


Subject(s)
Breast Neoplasms , MicroRNAs , Humans , Female , Breast Neoplasms/genetics , Prognosis , MicroRNAs/genetics , MicroRNAs/metabolism , Biomarkers
16.
Environ Res ; 241: 117591, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-37926226

ABSTRACT

It is hard to achieve robustness in anaerobic biodegradation of trichlorophenol (TCP). We hypothesized that specific combinations of environmental factors determine phylogenetic diversity and play important roles in the decomposition and stability of TCP-biodegrading bacteria. The anaerobic bioreactor was operated at 35 °C (H condition) or 30 °C (L condition) and mainly fed with TCP (from 28 µM to 180 µM) and organic material. Metagenome sequencing was combined with 16S rRNA gene amplicon sequencing for the microbial community analysis. The results exhibited that the property of robustness occurred in specific conditions. The corresponding co-occurrence and diversity patterns suggest high collectivization, degree and evenness for robust communities. Two types of core functional taxa were recognized: dechlorinators (unclassified Anaerolineae, Thermanaerothrix and Desulfovibrio) and ring-opening members (unclassified Proteobacteria, Methanosarcina, Methanoperedens, and Rubrobacter). The deterministic process of the expansion of niche of syntrophic bacteria at higher temperatures was confirmed. The reductive and hydrolytic dechlorination mechanisms jointly lead to C-Cl bond cleavage. H ultimately adapted to the stress of high TCP loading, with more abundant ring-opening enzyme (EC 3.1.1.45, ∼55%) and hydrolytic dechlorinase (EC 3.8.1.5, 26.5%) genes than L (∼47%, 10.5%). The functional structure (based on KEGG) in H was highly stable despite the high loading of TCP (up to 60 µM), but not in L. Furthermore, an unknown taxon with multiple functions (dechlorinating and ring-opening) was found based on genetic sequencing; its functional contribution of EC 3.8.1.5 in H (26.5%) was higher than that in L (10.5%), and it possessed a new metabolic pathway for biodegradation of halogenated aromatic compounds. This new finding is supplementary to the robust mechanisms underlying organic chlorine biodegradation, which can be used to support the engineering, regulation, and design of synthetic microbiomes.


Subject(s)
Chlorophenols , Anaerobiosis , Phylogeny , RNA, Ribosomal, 16S/genetics , Bacteria/metabolism , Biodegradation, Environmental
17.
Sci Total Environ ; 912: 169517, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38142007

ABSTRACT

Actual wastewater generated from N-methylpyrrolidone (NMP) manufacture was used as electron donor for tertiary denitrification. The organic components of NMP wastewater were mainly NMP and monomethylamine (CH3NH2), and their biodegradation released ammonium that was nitrified to nitrate that also had to be denitrified. Bench-scale experiments documented that alternating denitrification and nitrification realized effective total­nitrogen removal. Ammonium released from NMP was nitrified in the aerobic reactor and then denitrified when actual NMP wastewater was used as the electron donor for endogenous and exogenous nitrate. Whereas TN and NMP removals occurred in the denitrification step, dissolved organic carbon (DOC) and CH3NH2 removals occurred in the denitrification and nitrification stages. The genera Thauera and Paracoccus were important for NMP biodegradation and denitrification in the denitrification reactor; in the nitrification stage, Amaricoccus and Sphingobium played key roles for biodegrading intermediates of NMP, while Nitrospira was responsible for NH4+ oxidation to NO3-. Pilot-scale demonstration was achieved in a two-stage vertical baffled bioreactor (VBBR) in which total­nitrogen removal was realized sequential anoxic-oxic treatment without biomass recycle. Although the bench-scale reactors and the VBBR had different configurations, both effectively removed total nitrogen through the same mechanisms. Thus, an N-containing organic compound in an industrial wastewater could be used to drive total-N removal in a tertiary-treatment scenario.


Subject(s)
Ammonium Compounds , Pyrrolidinones , Wastewater , Denitrification , Nitrates/metabolism , Electrons , Nitrification , Nitrogen/metabolism , Bioreactors , Sewage
18.
Rapid Commun Mass Spectrom ; 38(1): e9662, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38073199

ABSTRACT

RATIONALE: Tetrandrine, the Q-marker in Stephaniae Tetrandrae Radix, was proven to present an obvious antitumor effect. Until now, the metabolism and antitumor mechanism of tetrandrine have not been fully elucidated. METHODS: The metabolites of tetrandrine in rats were profiled using ultra-high-performance liquid chromatography coupled with time-of-flight mass spectrometry. The potential antitumor mechanism of tetrandrine in vivo was predicted using network pharmacology. RESULTS: A total of 30 metabolites were characterized in rats after ingestion of tetrandrine (10 mg/kg), including 0 in plasma, 7 in urine, 11 in feces, 9 in liver, 8 in spleen, 4 in lung, 5 in kidney, 5 in heart, and 4 in brain. This study was the first to show the metabolic processes demethylation, hydroxylation, and carbonylation in tetrandrine. The pharmacology network results showed that tetrandrine and its metabolites could regulate AKT1, TNF, MMP9, MMP2, PAK1, and so on by involving in proteoglycan tumor pathway, PI3K-Akt signaling pathway, tumor pathway, MAPK signaling pathway, and Rap1 signaling pathway. CONCLUSIONS: The metabolism features of tetrandrine and its potential antitumor mechanism were summarized, providing data for further pharmacological validation.


Subject(s)
Drugs, Chinese Herbal , Neoplasms , Rats , Animals , Phosphatidylinositol 3-Kinases , Network Pharmacology , Chromatography, High Pressure Liquid/methods , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/chemistry
19.
Mol Ther Oncolytics ; 31: 100746, 2023 Dec 19.
Article in English | MEDLINE | ID: mdl-38020061

ABSTRACT

[This corrects the article DOI: 10.1016/j.omto.2019.12.007.].

20.
J Asthma Allergy ; 16: 1007-1024, 2023.
Article in English | MEDLINE | ID: mdl-37780080

ABSTRACT

Background: Asthma is a public health problem requiring focused attention. This study aimed to systematically evaluate the association between dietary structure and asthma or wheezing in children. Methods: The study protocol of this meta-analysis has been registered in the International Prospective Register of Systematic Reviews (PROSPERO) with the registration code CRD42023390191. A total of 8397 articles were retrieved, searching PubMed, Medline, Embase, Web of Science, and Scopus databases as of November 21, 2022. Two independent authors were responsible for independently conducting the literature screening process. Effect-size estimates were expressed as odds ratio (OR) in cross-sectional studies and risk ratio (RR) in cohort studies with a 95% confidence interval (CI). Summary effect estimates were evaluated with random-effect models. Meanwhile, subgroup and sensitivity analyses were performed to assess the potential sources of heterogeneity and the robustness of the pooled estimation. Results: A total of 65 studies, including 567,426 subjects had been analyzed. Overall analyses of cross-sectional studies revealed that a healthy diet was protective against asthma (adjusted OR=0.85, 95% CI: 0.80-0.89, P <0.001, I2=69.8%, Tau2=0.026) and wheezing (adjusted OR=0.85, 95% CI: 0.81-0.89, P <0.001, I2=66.8%, Tau2=0.015) in children and adolescents. Conversely, unhealthy diets can exacerbate asthma (adjusted OR=1.28, 95% CI: 1.20-1.36, P <0.001, I2=64.9%, Tau2=0.019) and wheeze (adjusted OR=1.09, 95% CI: 1.02-1.16, P =0.006, I2=75.2%, Tau2=0.023) in children and adolescents. The same trend was found in cohort studies (adjusted RR=0.72, 95% CI: 0.58-0.90, P =0.003, I2=83.5%, Tau2=0.105). A clear trend was observed between high-frequency healthy diets (OR=0.80; 95% CI: 0.71-0.89; P <0.001) is more protective against asthma than low-frequency healthy diets (OR=0.81; 95% CI: 0.70-0.94; P =0.007). Conclusion: Our findings highlight the protective effects of a healthy diet on asthma and wheezing in children, including fruit, seafood, cereals, and the Mediterranean diet.

SELECTION OF CITATIONS
SEARCH DETAIL