Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters








Database
Language
Publication year range
1.
World J Gastroenterol ; 29(41): 5683-5698, 2023 Nov 07.
Article in English | MEDLINE | ID: mdl-38077157

ABSTRACT

BACKGROUND: Extrahepatic cholangiocarcinoma sarcoma is extremely rare in clinical practice. These cells consist of both epithelial and mesenchymal cells. Patient-derived cell lines that maintain tumor characteristics are valuable tools for studying the molecular mechanisms associated with carcinosarcoma. However, cholangiocarcinoma sarcoma cell lines are not available in cell banks. AIM: To establish and characterize a new extrahepatic cholangiocarcinoma sarcoma cell line, namely CBC2T-2. METHODS: We conducted a short tandem repeat (STR) test to confirm the identity of the CBC2T-2 cell line. Furthermore, we assessed the migratory and invasive properties of the cells and performed clonogenicity assay to evaluate the ability of individual cells to form colonies. The tumorigenic potential of CBC2T-2 cells was tested in vivo using non-obese diabetic/severe combined immunodeficient (NOD/SCID) mice. The cells were injected subcutaneously and tumor formation was observed. In addition, immunohistochemical analysis was carried out to examine the expression of epithelial marker CK19 and mesenchymal marker vimentin in both CBC2T-2 cells and xenografts. The CBC2T-2 cell line was used to screen the potential therapeutic effects of various clinical agents in patients with cholangiocarcinoma sarcoma. Lastly, whole-exome sequencing was performed to identify genetic alterations and screen for somatic mutations in the CBC2T-2 cell line. RESULTS: The STR test showed that there was no cross-contamination and the results were identical to those of the original tissue. The cells showed round or oval-shaped epithelioid cells and mesenchymal cells with spindle-shaped or elongated morphology. The cells exhibited a high proliferation ratio with a doubling time of 47.11 h. This cell line has migratory, invasive, and clonogenic abilities. The chromosomes in the CBC2T-2 cells were polyploidy, with numbers ranging from 69 to 79. The subcutaneous tumorigenic assay confirmed the in vivo tumorigenic ability of CBC2T-2 cells in NOD/SCID mice. CBC2T-2 cells and xenografts were positive for both the epithelial marker, CK19, and the mesenchymal marker, vimentin. These results suggest that CBC2T-2 cells may have both epithelial and mesenchymal characteristics. The cells were also used to screen clinical agents in patients with cholangiocarcinoma sarcoma, and a combination of paclitaxel and gemcitabine was found to be the most effective treatment option. CONCLUSION: We established the first human cholangiocarcinoma sarcoma cell line, CBC2T-2, with stable biogenetic traits. This cell line, as a research model, has a high clinical value and would facilitate the understanding of the pathogenesis of cholangiocarcinoma sarcoma.


Subject(s)
Bile Duct Neoplasms , Cholangiocarcinoma , Sarcoma , Mice , Animals , Humans , Vimentin , Cell Line, Tumor , Mice, SCID , Mice, Inbred NOD , Sarcoma/genetics , Sarcoma/pathology , Cholangiocarcinoma/genetics , Cholangiocarcinoma/pathology , Bile Duct Neoplasms/pathology , Bile Ducts, Intrahepatic/pathology
2.
Oxid Med Cell Longev ; 2022: 4163188, 2022.
Article in English | MEDLINE | ID: mdl-36160703

ABSTRACT

The earth land area is heterogeneous in terms of elevation; about 45% of its land area belongs to higher elevation with altitude above 500 meters compared to sea level. In most cases, oxygen concentration decreases as altitude increases. Thus, high-altitude hypoxic stress is commonly faced by residents in areas with an average elevation exceeding 2500 meters and those who have just entered the plateau. High-altitude hypoxia significantly affects advanced neurobehaviors including learning and memory (L&M). Hippocampus, the integration center of L&M, could be the most crucial target affected by high-altitude hypoxia exposure. Based on these points, this review thoroughly discussed the relationship between high-altitude hypoxia and L&M impairment, in terms of hippocampal neuron apoptosis and dysfunction, neuronal oxidative stress disorder, neurotransmitters and related receptors, and nerve cell energy metabolism disorder, which is of great significance to find potential targets for medical intervention. Studies illustrate that the mechanism of L&M damaged by high-altitude hypoxia should be further investigated based on the entire review of issues related to this topic.


Subject(s)
Altitude Sickness , Altitude , Altitude Sickness/metabolism , Humans , Hypoxia/metabolism , Maze Learning , Oxygen/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL