Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 108
Filter
1.
Sci Total Environ ; 954: 176684, 2024 Oct 04.
Article in English | MEDLINE | ID: mdl-39369997

ABSTRACT

Cold damage caused by low temperatures is known as chilling injury (CI), and it has consistently been one of the primary meteorological disasters affecting maize. With ongoing global climate change, the issue of chilling injury is becoming more prominent, exhibiting new characteristics and presenting new challenges. Consequently, understanding the disaster process and conducting a more refined real-time chilling injury identification have become significant challenges. In this study, we divided maize planting areas into seven maturity types based on the accumulated temperature, constructed a standard curve of the daily accumulated temperature from 1991 to 2020, proposed real-time identification indicators based on the CI process, and developed a real-time CI hazard assessment model. The results indicated that the model can capture independent CI events and rapidly determine the location, intensity, duration and scope of CIs, thereby providing a basis for accurately understanding the impact of chilling injury and taking timely countermeasures. The combination of accumulated temperature standard curves for seven maturity types of maize and the CI curve was used to construct the CI daily scale identification indicator, ΔEAT. Judgment thresholds for the CI identification indicators at various maturity levels were obtained by correlating them with historical disaster data. The frequency and intensity of maize CI gradually increased from the extremely late-maturing zone to the extremely early-maturing zone, with the seeding and emergence periods being the peak periods for CI. The spatiotemporal evolution characteristics of the three different degrees of CI events in 1992, 2004, and 2017 were consistent with the historical disaster records. Northeastern Inner Mongolia and most of Heilongjiang were found to be high-hazard areas for maize CIs. The constructed daily CI identification indicators can accurately and rapidly identify maize CIs, providing practical and targeted guidance for combating these injuries.

2.
Clin Transl Oncol ; 2024 Oct 05.
Article in English | MEDLINE | ID: mdl-39367181

ABSTRACT

PURPOSE: This study aimed to investigate the predictive value of intratumoral and peritumoral radiomics model for the cribriform component (CC) of invasive lung adenocarcinoma (LUAD). MATERIALS AND METHODS: The 144 patients with invasive LUAD from our center were randomly divided into training set (n = 100) and internal validation set (n = 44) in a ratio of 7:3, and 75 patients from center 2 were regarded as the external validation set. Clinical risk factors were examined using univariate and multivariate logistic regression to construct the clinical model. We extracted radiomics features from gross tumor volume (GTV), gross and peritumoral volume (GPTV), and peritumoral volume (PTV), respectively. Radiomics models were constructed with selected features. A combined model based on the optimal Radscore and clinically independent predictors was constructed, and its predictive performance was assessed by receiver operating characteristic curve (ROC), calibration curve, and decision curve analysis (DCA). RESULTS: The area under curves (AUCs) of the GTV model were 0.882 (95% CI 0.817-0.948), 0.794 (95% CI 0.656-0.932), and 0.766 (95% CI 0.657-0.875) in the training, internal validation, and external validation sets, and the PTV model had AUCs of 0.812 (95% CI 0.725-0.899), 0.749 (95% CI 0.597-0.902), and 0.670 (95% CI 0.543-0.798) in the training, internal validation, and external validation sets, respectively. However, the GPTV radiomics model showed better predictive performance compared with the GTV and PTV radiomics models, with the AUCs of 0.950 (95% CI 0.911-0.989), 0.844 (95% CI 0.728-0.959), and 0.815 (95% CI 0.713-0.917) in the training, internal validation and external validation sets, respectively. In the clinical model, tumor shape, lobulation sign and maximal diameter were the independent predictors of CC in invasive LUAD. The combined model including independent clinical predictors and GPTV-Radscore show the considerable instructive to clinical practice, with the AUCs of 0.954(95% CI 0.918-0.990), 0.861(95% CI 0.752-0.970), and 0.794(95% CI 0.690-0.898) in training, internal validation, and external validation sets, respectively. DCA showed that the combined model had good clinical value and correction effect. CONCLUSION: Radiomics model is a very powerful tool for predicting CC growth pattern in invasive LUAD and can help clinicians make the strategies of treatment and surveillance in patients with invasive LUAD.

3.
Immunobiology ; 229(6): 152854, 2024 Sep 16.
Article in English | MEDLINE | ID: mdl-39340956

ABSTRACT

BACKGROUND: Regulatory B cells (Bregs) reduce allergic and autoimmune inflammation. However, their role in chronic rhinosinusitis (CRS) remains unknown. This study investigated the frequency and function of Breg subsets in the peripheral blood of patients with CRS. METHODS: The demographic and clinical characteristics were compared among control, CRSsNP, neCRSwNP, and eCRSwNP groups. The expression of various Breg subtypes was evaluated in peripheral blood mononuclear cells (PBMCs) of patients with eosinophilic CRS with nasal polyps (eCRSwNP), non-eosinophilic CRS with nasal polyps (neCRSwNP), CRS without nasal polyps (CRSsNP). CD19+CD24hiCD27+ B cells (B10 cells) were isolated by flow cytometry, followed by RNA sequencing (RNA-seq). Finally, IL-10 secreted by B10 cells were evaluated through the intracellular stain. RESULTS: A higher number of eosinophils in peripheral blood and nasal polyps were found in eCRSwNP compared with neCRSwNP, CRSsNP, and control groups. The frequency of B10 in the peripheral blood B cells (B10%) of patients with eCRSwNP was significantly lower than that in the neCRSwNP and control groups. B10% was negatively correlated with the quantity of tissue eosinophils, and the percentage and absolute value of peripheral blood eosinophils. The eCRSwNP, neCRSwNP and control groups had 1403 differentially expressed genes, 35 of which were identified in four highly enriched pathways. Additionally, the frequency of IL-10+B10 cells in peripheral blood was lower in patients with eCRSwNP than in the neCRSwNP and control groups. CONCLUSION: This study is the first to reveal differences in both the quantity and IL-10 secretion of B10 cells in patients with eCRSwNP and neCRSwNP. These variations were strongly negatively associated with eosinophils in nasal polyps and peripheral blood. IL-10+B10 cells may play a key role in the pathological mechanisms of CRS, particularly the recurrence of eCRSwNP.

4.
Int J Biol Macromol ; 279(Pt 4): 135310, 2024 Nov.
Article in English | MEDLINE | ID: mdl-39270904

ABSTRACT

Sulfation of polysaccharides can affect their biological activity by introducing sulfate groups. Skin burns occur regularly and have a great impact on normal survival. In this study, sulfated arabinogalactan (SAG) was prepared by sulfation, and polyvinyl alcohol (PVA) was used to prepare hydrogels for the treatment of scalded skin in mouse. The results show that the main chain of SAG consists of →3-ß-D-Galactose (Gal)-(1, →3, 6)-ß-D-Gal-(1 and →4)-ß-d-Glucose (Glc)-(1. The chain is a neutral polysaccharide composed of T-ß-L-Arabinose (Araf)-(1→, with a molecular weight of 17.9 kDa. At the same time, PVA + SAG hydrogel can promote the scald repair of mouse skin by promoting collagen deposition and angiogenesis, and regulating the TLR4/MyD88/NF-κB signaling pathway. Interestingly, the effect of SAG on promoting the repair of scald wounds is enhanced after AG is derivatized by sulfation. Therefore, the preparation of SAG by sulfation can promote scald repair, and has great application potential in the field of food and medicine.


Subject(s)
Burns , Disease Models, Animal , Galactans , Hydrogels , Wound Healing , Animals , Galactans/chemistry , Galactans/pharmacology , Wound Healing/drug effects , Mice , Hydrogels/chemistry , Hydrogels/pharmacology , Burns/drug therapy , Sulfates/chemistry , Polyvinyl Alcohol/chemistry , Toll-Like Receptor 4/metabolism , NF-kappa B/metabolism , Male , Signal Transduction/drug effects , Skin/drug effects , Skin/injuries , Skin/metabolism , Collagen/metabolism
5.
Sci Total Environ ; 946: 174427, 2024 Oct 10.
Article in English | MEDLINE | ID: mdl-38964413

ABSTRACT

Hazard assessment is fundamental in the field of disaster risk management. With the increase in global warming, compound water and temperature events have become more frequent. Current research lacks risk assessments of low temperatures and their compound events, necessitating relevant hazard assessment work to improve the accuracy and diversity of maize disaster prevention and mitigation strategies. This study comparatively analyzed the dynamic evolution characteristics and hazards of compound drought/waterlogging and low temperature events (CDLEs and CWLEs) for maize in the Songliao Plain during different growth periods from 1981 to 2020. First, composite drought/waterlogging and low temperature magnitude indices (CDLMI and CWLMI) were constructed to quantify the intensity of CDLEs and CWLEs by fitting non-exceedance probabilities. Next, static and dynamic hazard assessment models were developed by fitting probability density and cumulative probability density curves to CDLMI and CWLMI. The results showed that the correlations between SPRI and LTI across different decades were mainly negative during the three growth periods. The hazard ratings for both CDLEs and CWLEs were relatively high in the northern part of the study area, consistent with the higher occurrence, duration, and severity of both CDLEs and CWLEs at higher latitudes. Relative to 2001-2010, the center of gravity of hazard shifted southward for CDLEs and northward for CWLEs in 2011-2020. The mean duration, frequency, and hazard were generally higher for CWLEs, but CDLEs were associated with more severe maize yield reductions. This study provides new insights into compound disaster risk assessment, and the research methodology can be generalized to other agricultural growing areas to promote sustainable development of agricultural systems and food security.


Subject(s)
Droughts , Zea mays , Zea mays/growth & development , Risk Assessment , Cold Temperature , China , Environmental Monitoring/methods
6.
Front Endocrinol (Lausanne) ; 15: 1416462, 2024.
Article in English | MEDLINE | ID: mdl-39015177

ABSTRACT

Background: Prior research has indicated the importance of insulin resistance in the development of heart failure (HF). The metabolic score for insulin resistance (METS-IR), a novel measure for assessing insulin resistance, has been found to be associated with cardiovascular disease (CVD). Nevertheless, the relationship between METS-IR and heart failure remains uncertain. Methods: This cross-sectional study collected data from the 2007-2018 National Health and Nutrition Examination Survey (NHANES). Multivariable logistic regression analysis and smoothing curve fitting were performed to explore the relationship between METS-IR and the risk of heart failure. Subgroup analysis and receiver operating characteristic (ROC) curve analysis were also conducted. Results: A total of 14772 patients were included, of whom 485 (3.28%) had heart failure. We observed a significant positive association between METS-IR and the risk of heart failure in a fully adjusted model (per 1-unit increment in METS-IR: OR: 2.44; 95% CI: 1.38, 4.32). Subgroup analysis and interaction tests revealed no significant influence on this relationship. A saturation effect and nonlinear relationship between METS-IR and heart failure risk were found using a smoothing curve fitting analysis. The relationship was represented by a J-shaped curve with an inflection point at 40.966. Conclusions: The results of our study indicated a J-shaped association between METS-IR and HF in adults in the United States. METS-IR may be a promising novel index for predicting the risk of heart failure. More longitudinal studies are needed to further verify causal relationships and validate the results in different classifications of heart failure populations.


Subject(s)
Heart Failure , Insulin Resistance , Metabolic Syndrome , Nutrition Surveys , Humans , Heart Failure/epidemiology , Cross-Sectional Studies , Female , Male , Middle Aged , Metabolic Syndrome/epidemiology , Metabolic Syndrome/complications , Aged , Adult , Risk Factors
7.
Pestic Biochem Physiol ; 202: 105969, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38879313

ABSTRACT

Populus pseudo-cathayana × Populus deltoides is a crucial artificial forest tree species in Northeast China. The presence of the fall webworm (Hyphantria cunea) poses a significant threat to these poplar trees, causing substantial economic and ecological damage. This study conducted an insect-feeding experiment with fall webworm on P. pseudo-cathayana × P. deltoides, examining poplar's physiological indicators, transcriptome, and metabolome under different lengths of feeding times. Results revealed significant differences in phenylalanine ammonia-lyase activity, total phenolic content, and flavonoids at different feeding durations. Transcriptomic analysis identified numerous differentially expressed genes, including AP2/ERF, MYB, and WRKY transcription factor families exhibiting the highest expression variations. Differential metabolite analysis highlighted flavonoids and phenolic acid compounds of poplar's leaves as the most abundant in our insect-feeding experiment. Enrichment analysis revealed significant enrichment in the plant hormone signal transduction and flavonoid biosynthetic pathways. The contents of jasmonic acid and jasmonoyl-L-isoleucine increased with prolonged fall webworm feeding. Furthermore, the accumulation of dihydrokaempferol, catechin, kaempferol, and naringenin in the flavonoid biosynthesis pathway varied significantly among different samples, suggesting their crucial role in response to pest infestation. These findings provide novel insights into how poplar responds to fall webworm infestation.


Subject(s)
Populus , Populus/genetics , Populus/metabolism , Animals , Flavonoids/metabolism , Coleoptera/physiology , Coleoptera/metabolism , Oxylipins/metabolism , Phenylalanine Ammonia-Lyase/metabolism , Phenylalanine Ammonia-Lyase/genetics , Cyclopentanes/metabolism , Plant Leaves/metabolism , Transcriptome , Gene Expression Regulation, Plant , Moths/genetics , Moths/physiology , Plant Growth Regulators/metabolism
8.
Plants (Basel) ; 13(10)2024 May 07.
Article in English | MEDLINE | ID: mdl-38794358

ABSTRACT

Melatonin (MT) plays an important role in alleviating the stress of soil heavy metal pollution on plants. However, its ability to improve the tolerance of Rhus typhina to Ni stress and its mechanism of action are still unclear. Therefore, MT (0, 50, 100, and 200 µmol·L-1) was sprayed on the leaf surface of R. typhina seedlings under Ni (0 and 250 mg·kg-1) stress to study the differences in growth, physiology, and gene expression. The results showed that exogenous MT could improve the ability of R. typhina to resist Ni stress by inhibiting the degradation of chlorophyll and carotenoid, enhancing photosynthesis, and augmenting the activity of antioxidant enzymes. Moreover, 100 µmol·L-1 MT could increase the Ni concentration in R. typhina seedlings and reduce the translocation factor. Transcriptome analysis showed that MT mainly regulated the expression of related genes in plant hormone signal transduction, starch and sucrose metabolism, and various amino acid metabolism pathways. This study combined physiological and transcriptomic analysis to reveal the molecular mechanism of MT enhancing Ni resistance in R. typhina, and provides a new direction for expanding its application in phytoremediation.

9.
Heart Lung ; 65: 78-83, 2024.
Article in English | MEDLINE | ID: mdl-38442526

ABSTRACT

BACKGROUND: Heart Failure (HF) is a chronic disease that impairs patients' ability to care for themselves. The accumulation of caregiving activities by caregivers to patients creates stress. OBJECTIVES: This study intends to investigate the mediating role of caregiving burden in the relationship between health literacy and quality of life of caregivers. METHODS: This study is a cross-sectional research conducted through a questionnaire survey. A convenience sampling method was employed to select 410 primary caregivers for the study. RESULTS: The overall mean score for quality of life for caregivers of patients with HF was (49.30±9.64). The results showed that the caregiving burden mediated the relationship between health literacy and quality of life, with the mediating effect accounting for 39.04 % (P < 0.05) of the total effect. CONCLUSION: Caregiving burden is a mediating variable in the relationship between health literacy and quality of life. Therefore, we offer some recommendations for healthcare professionals: ①We suggest that healthcare professionals provide relevant education and training to caregivers, as this can enhance their knowledge and skills in effectively managing the health condition of patients;②Healthcare professionals can also proactively assess the caregiver's burden level and design personalized support plans based on the assessment results.


Subject(s)
Health Literacy , Heart Failure , Humans , Quality of Life , Caregivers , Cross-Sectional Studies , Heart Failure/therapy
10.
Molecules ; 29(5)2024 Mar 06.
Article in English | MEDLINE | ID: mdl-38474690

ABSTRACT

Ardisia crenata Sims, an important ethnic medicine, is recorded in the Chinese Pharmacopoeia for treating laryngeal diseases and upper respiratory tract infections. This study aimed to evaluate the antimicrobial effect of extracts and potential antimicrobial compounds of A. crenata Sims. It was found that the roots of A. crenata Sims have a potential inhibitory effect on Candida albicans and Aspergillus flavus, with MICs of 1.56 mg/mL and 0.39 mg/mL, and the leaves of A. crenata Sims have a potential inhibitory effect on Pseudomonas aeruginosa and Staphylococcus aureus, with MICs of 3.12 mg/mL and 6.77 mg/mL, respectively. Meanwhile, five compounds including one catechin and four bergenins were obtained from roots. These components were identified on the fingerprint spectrum, representing chromatographic peaks 16, 21, 22, 23, and 25, respectively. Among these, 11-ß-d-glucopyranosyl-bergenin and (-)-gallocatechin showed potential inhibition for Staphylococcus aureus and Pseudomonas aeruginosa with MIC of 0.26 and 0.33 mg/mL, respectively. The roots, stems, and leaves of A. crenata Sims are very similar in chemical composition, with large differences in content. Principal component analysis (PCA) and Hierarchical cluster analysis (HCA) showed that 16 batches of A. crenata Sims could be divided into four main production areas: Guizhou, Jiangsu, Guangxi, and Jiangxi. Furthermore, molecular docking results showed that 11-ß-d-glucopyranosyl-bergenin had a better affinity for Casein lytic proteinase P (ClpP), and (-)-gallocatechin possessed a strong affinity for LasA hydrolysis protease and LasB elastase. These findings suggest catechin and bergenins from A. crenata Sims can be used as antimicrobial activity molecules.


Subject(s)
Anti-Infective Agents , Ardisia , Catechin , Chromatography, High Pressure Liquid , Molecular Docking Simulation , China
11.
Am J Transl Res ; 16(1): 272-284, 2024.
Article in English | MEDLINE | ID: mdl-38322575

ABSTRACT

Evidence suggests that damage to the ribbon synapses (RS) may be the main cause of auditory dysfunction in noise-induced hearing loss (NIHL). Oxidative stress is implicated in the pathophysiology of synaptic damage. However, the relationship between oxidative stress and RS damage in NIHL remains unclear. To investigate the hypothesis that noise-induced oxidative stress is a key factor in synaptic damage within the inner ear, we conducted a study using mice subjected to single or repeated noise exposure (NE). We assessed auditory function using auditory brainstem response (ABR) test and examined cochlear morphology by immunofluorescence staining. The results showed that mice that experienced a single NE exhibited a threshold shift and recovered within two weeks. The ABR wave I latencies were prolonged, and the amplitudes decreased, suggesting RS dysfunction. These changes were also demonstrated by the loss of RS as evidenced by immunofluorescence staining. However, we observed threshold shifts that did not return to baseline levels following secondary NE. Additionally, ABR wave I latencies and amplitudes exhibited notable changes. Immunofluorescence staining indicated not only severe damage to RS but also loss of outer hair cells. We also noted decreased T-AOC, ATP, and mitochondrial membrane potential levels, alongside increased hydrogen peroxide concentrations post-NE. Furthermore, the expression levels of 4-HNE and 8-OHdG in the cochlea were notably elevated. Collectively, our findings suggest that the production of reactive oxygen species leads to oxidative damage in the cochlea. This mitochondrial dysfunction consequently contributes to the loss of RS, precipitating an early onset of NIHL.

12.
Sci Rep ; 14(1): 1545, 2024 01 17.
Article in English | MEDLINE | ID: mdl-38233457

ABSTRACT

Dynamic miRNA detection using the qRT-PCR technique requires appropriate reference genes to ensure data reliability. Previous studies have screened internal reference genes in plants during embryonic development and various stress treatment, involving relatively few tissues and organs. There is no relevant miRNA study in Lilium henryi Baker and limited research on the optimal miRNA reference genes in lilies, such as 5S, 18S, U6 and Actin. Twelve genes were selected as candidate reference genes whose expression stability was analyzed in petals at different developmental stages and other tissues using various algorithms, such as geNorm, NormFinder, BestKeeper, and Delta CT. The results revealed that the optimal combination of reference genes for Lilium henryi Baker petals at different developmental stages was osa-miR166m and osa-miR166a-3p, while that for different tissues of Lilium henryi Baker was osa-miR166g-3p and osa-miR166a-3p.Four important genes related to growth and development regulation, namely, osa-miR156a, osa-miR395b, osa-miR396a-3p, and osa-miR396a-5p, were selected for validation. The findings of the present study could contribute to future investigations onmiRNA expression and the related functions in Lilium henryi Baker while providing important references for the normalization of the miRNA expression in other varieties of lily.


Subject(s)
Lilium , MicroRNAs , Female , Pregnancy , Humans , Lilium/genetics , Reproducibility of Results , Real-Time Polymerase Chain Reaction , MicroRNAs/genetics , Actins/genetics , Reference Standards , Gene Expression Profiling
13.
Chem Biodivers ; 21(1): e202300983, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38108118

ABSTRACT

One new lactone (1) named Ardisicreolide C, together with three saponin compounds, Ardisiacrispin B (2), Ardisicrenoside A (3), Ardisiacrispin A (4) were isolated and identified from the leaves of Ardisia crenata Sims. The structures of 1-4 were elucidated by 1D, 2D-NMR and HR-MS spectra and together with the published data. In view of structures with lactone moieties showed good anti-inflammatory activity, the anti-inflammatory effects of Ardisicreolide C on LPS-induced RAW264.7 cells were evaluated by enzyme linked immunosorbent assay (ELISA) method. As a result, Ardisicreolide C could reduce release of nitric oxide (NO), tumour necrosis factor α (TNF-α), interleukin 1ß (IL-1ß), interleukin 4 (IL-4) and interleukin 10 (IL-10) of the cell supernatant to exert anti-inflammatory activity. This indicates that the leaves as non-medicinal parts of Ardisia crenata Sims contain compounds with good anti-inflammatory activity, which provides a new direction for the discovery of anti-inflammatory drugs.


Subject(s)
Ardisia , Ardisia/chemistry , Lactones/pharmacology , Anti-Inflammatory Agents/pharmacology , Lipopolysaccharides/pharmacology
14.
ACS Appl Mater Interfaces ; 15(51): 59610-59617, 2023 Dec 27.
Article in English | MEDLINE | ID: mdl-38100368

ABSTRACT

Lead-free metal halide perovskites have attracted attention because of their excellent optical properties and nontoxicity. Here, we report the synthesis of Sb3+-doped indium halide perovskite Cs2InCl5·H2O:Sb3+ by an improved solution coprecipitation method. The treatment of the Sb3+-doped indium halide perovskite with selected monovalent cation halides led to Cs2MInCl6 (Ag+, K+, Na+) in different crystal structures or phases. Sb3+ has an isolated ns2 electron, and Sb3+-doped metal halide acts as the luminescence center and exhibits bright broadband emission that originated from self-trapped excitons. Under UV light excitation, these phosphors with different crystal structures emitted multicolored luminescence ranging from blue, green, yellow, and red depending on whether or not or which monovalent metal ion was used. The phosphor samples were used to print high-resolution 2D color barcodes for security and anticounterfeiting applications. The study presented here provides a new approach for the design and synthesis of lead-free metal halide perovskites with different crystal structures and unique optical properties.

15.
Inorg Chem ; 62(42): 17382-17389, 2023 Oct 23.
Article in English | MEDLINE | ID: mdl-37815517

ABSTRACT

Two-dimensional (2D) layered double perovskites have attracted much attention because of their excellent photoelectric properties. However, few reports have been published on the synthesis of 2D layered double perovskites from halide perovskites as precursors. Here, we report that CsCdCl3 and Cs3Bi2Cl9 were synthesized by the coprecipitation method, and a two-dimensional layered double perovskite Cs4CdBi2Cl12 was readily synthesized by mixing the two halide perovskites. We doped different amounts of Mn2+ into CsCdCl3 to form CsCd1-xMnxCl3, which introduced impurity states into the energy level and exhibited an orange-red light emission that is characteristic of Mn2+. A series of 2D layered double perovskites Cs4Cd1-xMnxBi2Cl12 were synthesized from CsCd1-xMnxCl3 and Cs3Bi2Cl9, which showed a bright orange-yellow luminescence under ultraviolet excitation. The presence of high concentrations of Cd2+ in the two-dimensional layered double perovskites weakened the strong Mn-Mn coupling and suppressed the energy transfer to defects, thus minimizing nonradiative decay and promoting efficient energy transfer. Our work provides a new concept for the synthesis of low-dimensional metal halide perovskites with unique optical properties.

16.
Int J Mol Sci ; 24(20)2023 Oct 18.
Article in English | MEDLINE | ID: mdl-37894985

ABSTRACT

Lily (Lilium spp.) is a popular ornamental plant. Traditional genetic transformation methods have low efficiency in lily, thus development of a high-efficiency genetic transformation system is important. In this study, a novel transient transformation method involving pollen magnetofection was established and optimized pollen viability, and exogenous gene expression in magnetofected pollen and that of different germplasm were assessed. The highest germination percentage of Lilium regale pollen was 85.73% in medium containing 100 g/L sucrose, 61.5 mg/L H3BO3, and 91.5 mg/L CaCl2. A 1:4 ratio of nanomagnetic beads to DNA plasmid and transformation time of 0.5 h realized the highest transformation efficiency (88.32%). The GFP activity in transformed pollen averaged 69.66%, while that of the control pollen was 0.00%. In contrast to the control, transgenic seedlings obtained by pollination with magnetofected pollen showed strong positive GUS activity with 56.34% transformation efficiency. Among the lily germplasm tested, 'Sweet Surrender' and L. leucanthum had the highest transformation efficiency (85.80% and 54.47%), whereas L. davidii var. willmottiae was not successfully transformed. Transformation efficiency was positively correlated with pollen equatorial diameter and negatively correlated with polar axis/equatorial diameter ratio. The results suggest that pollen magnetofection-mediated transformation can be applied in Lilium but might have species or cultivar specificity.


Subject(s)
Lilium , Lilium/genetics , Lilium/metabolism , Pollen/genetics , Pollen/metabolism , Plant Proteins/genetics
17.
J Phys Chem Lett ; 14(40): 9011-9018, 2023 Oct 12.
Article in English | MEDLINE | ID: mdl-37782028

ABSTRACT

Lanthanide ions are widely used as dopants for halide perovskites for their broad energy level coverage from the visible to near-infrared (NIR) range. In this work, Cs2NaScCl6:Er3+ was synthesized by an improved solid-state reaction method, which showed effective NIR emission under ultraviolet excitation. Through calculations based on density functional theory and Bader charge analysis, it is shown that [ErCl6]3- octahedra show a strong localization effect in the Cs2NaScCl6:Er3+ lattice, which is conducive to the charge transfer process of Cl-Er3+, and charge transfer sensitization is responsible for the efficient visible to NIR luminescence of Er3+, where the NIR emission around λem = 1540 nm originated from the Er3+:4I13/2 → 4I15/2 transition with an ultrahigh photoluminescence quantum yield that reached ∼28.3%. Notably, Cs2NaScCl6:Er3+ also exhibited bright upconversion luminescence of green light (at 540 nm) under excitation by a variety of NIR laser diodes (808, 980, and 1550 nm) via self-sensitization processes.

18.
ACS Appl Mater Interfaces ; 15(33): 39550-39558, 2023 Aug 23.
Article in English | MEDLINE | ID: mdl-37614000

ABSTRACT

Near-infrared phosphor-converted light-emitting diodes (NIR pc-LEDs) offer numerous advantages, including compact size, tunable emission spectra, energy efficiency, and high integration potential. These features make them highly promising for various applications, such as night vision monitoring, food safety inspection, biomedical imaging, and theragnostics. All-inorganic halide double-perovskite materials, known for their large absorption cross section, excellent defect tolerance, and long carrier diffusion radius, serve as unique matrices for constructing near-infrared fluorescent materials. In this study, we successfully prepared the all-inorganic metal halide double-perovskite Cs2NaYCl6:Cr3+ using a grinding-sintering method. A small fraction of the [YCl6] octahedra within the host material's lattice was substituted with Cr3+ ions, resulting in the creation of the Cs2NaYCl6:Cr3+ phosphor. When excited with λ = 310 nm UV light, the phosphor exhibited a broad emission range spanning from 800 to 1400 nm, covering the NIR-I and NIR-II regions. It had a broad bandwidth emission of 185 nm and achieved a fluorescence quantum yield of 20.2%. The unique broadband emission of the phosphor originates from the weak crystal field environment provided by the Cs2NaYCl6 host matrix, which enhances the luminescence properties of the Cr3+ ions. To create NIR pc-LEDs, the phosphor was encapsulated onto a commercially available UV LED chip operating at 310 nm. The potential application of these NIR pc-LEDs in night vision imaging was successfully validated.

19.
Brain Behav Immun ; 114: 221-239, 2023 11.
Article in English | MEDLINE | ID: mdl-37648006

ABSTRACT

Epidemiological investigations show that noise exposure in early life is associated with health and cognitive impairment. The gut microbiome established in early life plays a crucial role in modulating developmental processes that subsequently affect brain function and behavior. Here, we examined the impact of early-life exposure to noise on cognitive function in adolescent rats by analyzing the gut microbiome and metabolome to elucidate the underlying mechanisms. Chronic noise exposure during early life led to cognitive deficits, hippocampal injury, and neuroinflammation. Early-life noise exposure showed significant difference on the composition and function of the gut microbiome throughout adolescence, subsequently causing axis-series changes in fecal short-chain fatty acid (SCFA) metabolism and serum metabolome profiles, as well as dysregulation of endothelial tight junction proteins, in both intestine and brain. We also observed sex-dependent effects of microbiota depletion on SCFA-related beneficial bacteria in adolescence. Experiments on microbiota transplantation and SCFA supplementation further confirmed the role of intestinal bacteria and related SCFAs in early-life noise-exposure-induced impairments in cognition, epithelial integrity, and neuroinflammation. Overall, these results highlight the homeostatic imbalance of microbiota-gut-brain axis as an important physiological response toward environmental noise during early life and reveals subtle differences in molecular signaling processes between male and female rats.


Subject(s)
Cognitive Dysfunction , Gastrointestinal Microbiome , Male , Female , Rats , Animals , Brain-Gut Axis , Neuroinflammatory Diseases , Gastrointestinal Microbiome/physiology , Fatty Acids, Volatile/metabolism , Fatty Acids, Volatile/pharmacology , Homeostasis
20.
BMC Mol Cell Biol ; 24(1): 27, 2023 Aug 21.
Article in English | MEDLINE | ID: mdl-37605129

ABSTRACT

BACKGROUND: Age-related hearing loss, known as presbycusis, is the result of auditory system degeneration. Numerous studies have suggested that reactive oxygen species (ROS) and mitochondrial oxidative damage play important roles in the occurrence and progression of aging. The D-galactose (D-gal)-induced aging model is well known and widely utilized in aging research. Our previous studies demonstrate that administration of D-gal causes mitochondrial oxidative damage and causes subsequent dysfunction in the cochlear ribbon synapses, which in turn leads to hearing changes and early stage presbycusis. Stria vascularis (SV) cells are vital for hearing function. However, it is unclear to what extent D-gal induces oxidative damage and apoptosis in the cochlear SV of mice. In addition, the source of the causative ROS in the cochlear SV has not been fully investigated. METHODS: In this study, we investigated ROS generation in the cochlear SV of mice treated with D-gal. Hearing function was measured using the auditory brainstem response (ABR). Immunofluorescence was used to examine apoptosis and oxidative damage. Transmission electron microscopy was also used to investigate the mitochondrial ultrastructure. DNA fragmentation was determined using the terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end-labeling (TUNEL) assay. Mitochondrial membrane potential (MMP) and ATP were also measured. RESULTS: We found that D-gal-treated mice exhibited a significant shift in the mean amplitude and latency of the ABR; a remarkable increase in the levels of NADPH oxidase (NOX-2), Uncoupling protein 2 (UCP2) and cleaved caspase-3 (c-Cas3) was observed, as well as an increase in the number of TUNEL-positive cells were observed in the SV of mice. Both the expression of the DNA oxidative damage biomarker 8-hydroxy-2-deoxyguanosine (8-OHdG) and a commonly occurring mitochondrial DNA deletion were markedly elevated in the SV of mice that had been treated with D-gal to induce aging. Conversely, the ATP level and MMP were significantly reduced in D-gal-induced aging mice. We also found alterations in the mitochondrial ultrastructure in the SV of aging mice, which include swollen and distorted mitochondrial shape, shortened and thickened microvilli, and the accumulation of lysosomes in the SV. CONCLUSION: Our findings suggest that the impairment of cochlear SV during presbycusis may be caused by mitochondrial oxidative damage and subsequent apoptosis.


Subject(s)
Presbycusis , Stria Vascularis , Animals , Mice , Galactose/pharmacology , Reactive Oxygen Species , Oxidative Stress , Apoptosis , Adenosine Triphosphate
SELECTION OF CITATIONS
SEARCH DETAIL