Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 500
Filter
1.
Am J Cancer Res ; 14(7): 3372-3387, 2024.
Article in English | MEDLINE | ID: mdl-39113855

ABSTRACT

Glioma, a prevalent primary tumor of the central nervous system, is targeted by molecular therapies aiming to intervene in specific genes and signaling pathways to inhibit tumor growth and spread. Our previous bioinformatics study revealed that significant CDC6 overexpression in gliomas was closely correlated with poor patient prognosis. Through qPCR, western blotting, and immunohistochemistry, we will further validate CDC6 expression in clinical glioma specimens, while the effects of silencing and overexpressing CDC6 in the U87 and LN229 glioma cell lines on malignancy will be assessed through MTS, EdU, transwell, and migration assays. Luciferase reporter assays, ChIP, qPCR, and western blotting were used to explore the upstream and downstream molecular mechanisms of CDC6. Our study confirmed the abnormal overexpression of CDC6 in gliomas, particularly in glioblastomas. CDC6 promotes glioma cell activity, proliferation, invasion, and migration by activating the IL6-mediated JAK2/STAT3 signaling pathway. The transcription Factor E2F8 directly regulates CDC6 transcription, playing a crucial role in its abnormal overexpression in gliomas. This research provides vital evidence supporting CDC6 as a molecular target for glioma therapy.

2.
Article in English | MEDLINE | ID: mdl-39099334

ABSTRACT

Endoplasmic reticulum (ER) degradation via autophagy is a process that maintains ER homeostasis when cells are in a state of stress and is associated with many diseases; however, the role of hypoxia inducible factor-1α (HIF-1α)-mediated ER degradation and the related regulatory pathway in acute kidney injury (AKI) still needs to be further established. In the present study, an in vivo AKI model was induced in mice via the ischemia‒reperfusion (IR) method. The results revealed that HIF-1α and BNIP3 were increased, and autophagy and ER degradation were activated in the kidneys of AKI mice, whereas HIF-1α knockout significantly inhibited BNIP3, autophagy and ER degradation, accompanied by aggravated kidney injury. Overexpression of HIF-1α in vitro significantly increased BNIP3, autophagy and ER degradation, whereas inhibition of BNIP3 significantly reversed the effects of HIF-1α. In addition, the in vitro inhibition of autophagy with chloroquine significantly reversed the effects of HIF-1α on cell apoptosis. Moreover, selectively overexpressing BNIP3 on the ER membrane significantly increased ER degradation via autophagy and decreased cell apoptosis in vitro. These data indicate that HIF-1α/BNIP3-mediated ER degradation via autophagy in tubular cells protects against IR-induced AKI.

3.
Ann Med Surg (Lond) ; 86(7): 4217-4221, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38989227

ABSTRACT

Introduction and Importance: Postoperative neck hematoma (PNH), a rare complication following thyroidectomy, occurs in only 1.1-3.15% of cases and can lead to life-threatening outcomes. More rarely, delayed PNHs with atypical clinical manifestations and positions have not yet been reported. Early identification and immediate medical intervention are of utmost importance in such cases. Case Presentation: The authors represented a patient with thyroid cancer adherent to the trachea, who underwent post-thyroidectomy, experienced delayed PNH in the retrosternal region and was infected by respiratory pathogens. Meanwhile, the patient developed recurrent laryngeal nerve (RLN) paralysis after surgery. PNH was not identified in the clinical manifestations; instead, it was detected only through successive cervical ultrasound examinations. Clinical Discussion: Although rare, PNH can lead to serious complications, especially delayed complications or those in atypical positions, without neck swelling. When simultaneously with RLN paralysis, the hematoma may be neglected. Therefore, early diagnosis and treatment are crucial. Conclusion: Clinicians should be vigilant of atypical PNH because neck swelling may be absent. Cervical ultrasonography is essential for diagnosis and can be performed multiple times. Cervical CT scans should be part of the routine procedure, while contrast-enhanced ultrasound can help detect active bleeding. Early postoperative antibiotics are recommended if the tumor is closely attached to the trachea.

4.
Environ Res ; 261: 119646, 2024 Jul 18.
Article in English | MEDLINE | ID: mdl-39032622

ABSTRACT

Domoic acid (DA) is a neurotoxin produced by marine microalgae. It tends to accumulate in marine shellfish and fish, posing a threat to aquaculture and seafood consumers' health. In this study, DA in the surface and bottom seawater, sediment, and porewater of the Jiaozhou Bay, a typical mariculture bay in China, was systematically investigated for the first time over different seasons. Surprisingly, a high concentration of DA was discovered in the marine sediment porewater (maximum detected concentration: 289.49 ng/L) for the first time. DA was found to be extensively distributed in the water body and sedimentary environment of the Jiaozhou Bay. DA in the surface and bottom seawater of Jiaozhou Bay in spring was uniformly distributed, whereas DA showed obvious spatial variations in summer and winter. The high concentration areas of DA are located in the north of Jiaozhou Bay and decreased to the south areas. DA was also distributed in the sediment (spring mean: 316.57 ng/kg; summer mean: 10.22 ng/kg; winter mean: 237.08 ng/kg) and porewater (spring mean: 129.70 ng/L; summer mean: 53.54 ng/L; winter mean: 19.90 ng/L) of Jiaozhou Bay. The DA concentrations in the surface sediment and porewater were higher in the spring than in the winter and summer, contrary to the seasonal variation pattern observed in the surface and bottom seawater. The DA concentration in porewater was significantly higher than in the surface and bottom seawater, indicating that the risk of pollution contamination from DA to benthic fishery organisms may be underestimated. Overall, DA is widely distributed in the seawater and also in the benthic environment of Jiaozhou Bay and exhibited potential harm to fishery organisms varied greatly with seasons. It is an important discovery for marine algae toxins and has important guiding significance and important indicative role for the routine monitoring and management of DA pollution in water and benthic environment.

5.
Nat Food ; 5(7): 581-591, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38982281

ABSTRACT

China's imports of livestock feed, particularly protein-rich feeds, pose challenges to global environmental sustainability. Achieving protein self-sufficiency for food and feed in China without exceeding environmental boundaries requires integrated measures and optimization of China's food system. Here we propose holistic food system innovation strategies consisting of three components-technological innovation, integrated spatial planning and demand-side options-to reduce protein import dependency and promote global environmental sustainability. We find that food system innovations can close almost 80% of China's future protein gaps while reducing 57-85% of agricultural import-embodied environmental impacts. Deploying these innovations would also reduce greenhouse gas emissions (22-27%) and people's harmful exposure to ammonia (73-81%) compared with the baseline scenario in 2050. Technological innovations play a key role in closing protein gaps, while integrated crop-livestock spatial planning is imperative for achieving environmental and health targets.


Subject(s)
Dietary Proteins , China , Humans , Animals , Food Supply , Environment , Livestock , Agriculture , Animal Feed/analysis , Conservation of Natural Resources , Crops, Agricultural , Greenhouse Gases/adverse effects
6.
Acta Biomater ; 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39025390

ABSTRACT

Transcatheter arterial chemoembolization (TACE) is the first-line therapy for hepatocellular carcinoma (HCC). However, the exacerbated hypoxia microenvironment induces tumor relapse and metastasis post-TACE. Here, temperature-sensitive block polymer complexed with polyphosphate-cisplatin (Pt-P@PND) was prepared for the enhancement of tumor artery embolization by coagulation activation. After supra-selective infusion into the tumor vessels, Pt-P@PND nanogels performed efficient embolization of tumor arteries by sol-gel transition at body temperature. Meanwhile, coagulation cascade was evoked to form blood clots in the peripheral arteries inaccessible to the nanogels by released PolyP. The blood clots-filled hydrogel networks composed of gel and clots showed a denser structure and higher modulus, thereby achieving long-term embolization of all levels of tumor arteries. Pt-P@PND nanogels efficiently inhibited tumor growth and reduced the expression of HIF-1α, VEGF, CD31, and MMP-9 on VX2 tumor-bearing rabbit model. The released Nitro-Pt stimulated the immunogenic cell death of tumor cells, thus enhancing the antitumor immune response to suppress tumor relapse and metastasis post-TACE. It is hoped that Pt-P@PND nanogels can be developed as a promising embolic agent with procoagulant activity for enhancing the antitumor immune response through a combination of embolism, coagulation, and chemotherapy. STATEMENT OF SIGNIFICANCE: Clinical embolic agents, such as Lipiodol and polyvinyl alcohol (PVA) microspheres, are limited by their rapid elimination or larger size, thus lead to incomplete embolization of trans-catheter arterial chemoembolization (TACE). Herein, temperature-sensitive Pt-P@PND nanogels were developed to achieve long-term embolization of all levels of tumor arteries by gel/clot generation. The released Nitro-Pt induced immunogenic cell death in tumor cells, which improved the antitumor immune microenvironment by the maturation of DCs and lymphocytic infiltration. Pt-P@PND nanogels successfully inhibited tumor growth and activated an antitumor immune response to curb the recurrence and metastasis of residual tumor cells both in VX2 tumor-bearing rabbit model and 4T1 tumor-bearing mouse model. These findings suggested that Pt-P@PND could be developed as an ideal embolic agent for clinical TACE treatment.

7.
APL Bioeng ; 8(2): 021506, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38841688

ABSTRACT

During cancer metastasis, cancer cells will encounter various microenvironments with diverse physical characteristics. Changes in these physical characteristics such as tension, stiffness, viscosity, compression, and fluid shear can generate biomechanical cues that affect cancer cells, dynamically influencing numerous pathophysiological mechanisms. For example, a dense extracellular matrix drives cancer cells to reorganize their cytoskeleton structures, facilitating confined migration, while this dense and restricted space also acts as a physical barrier that potentially results in nuclear rupture. Identifying these pathophysiological processes and understanding their underlying mechanobiological mechanisms can aid in the development of more effective therapeutics targeted to cancer metastasis. In this review, we outline the advances of engineering microfluidic devices in vitro and their role in replicating tumor microenvironment to mimic in vivo settings. We highlight the potential cellular mechanisms that mediate their ability to adapt to different microenvironments. Meanwhile, we also discuss some important mechanical cues that still remain challenging to replicate in current microfluidic devices in future direction. While much remains to be explored about cancer mechanobiology, we believe the developments of microfluidic devices will reveal how these physical cues impact the behaviors of cancer cells. It will be crucial in the understanding of cancer metastasis, and potentially contributing to better drug development and cancer therapy.

8.
Heliyon ; 10(11): e31918, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38841500

ABSTRACT

Purpose: Primary medical workers constitute a high-risk group for mental health problems, and psychological resilience might protect them from the negative psychological impacts of their work. Therefore, this study aimed to investigate the current situation of psychological resilience among primary care workers in Wuhan, China, as well as related factors. Methods: In this cross-sectional study, a total of 417 primary care workers (30.0 % men; 38.5 ± 8.5 years old) were randomly selected to complete a questionnaire. The brief version of the National Mental Health Literacy Questionnaire and the Psychological Resilience Scale were used to assess participants' mental health literacy and psychological resilience, respectively. Multiple linear regression was performed to identify factors associated with the psychological resilience of primary care workers. Results: More than four-fifths of the primary care workers included in this study exhibited appropriate levels of mental health knowledge. In terms of mental health skills, participants' attainment rates, ranging from high to low, were 60.9 % for distracting attention, 45.3 % for interpersonal support and 43.9 % for cognitive reappraisal. The average psychological resilience score obtained by primary care workers was 27.81 ± 5.71, and the factors associated with increased psychological resilience included being male, being older, and possessing higher mental health skills, including skills pertaining to interpersonal support and distracting attention. Conclusion: The psychological resilience of primary care workers in Wuhan is at a moderate level and thus requires further improvement. Although these medical staff exhibit appropriate levels of mental health knowledge, their mental health skills are relatively poor, despite the fact that interpersonal support and distracting attention are significantly associated with psychological resilience. Hence, interventions targeting mental health skills are recommended to promote psychological resilience among primary care workers.

9.
bioRxiv ; 2024 Jun 02.
Article in English | MEDLINE | ID: mdl-38853924

ABSTRACT

The design of bioelectronics capable of stably tracking brain-wide, single-cell, and millisecond-resolved neural activities in the developing brain is critical to the study of neuroscience and neurodevelopmental disorders. During development, the three-dimensional (3D) structure of the vertebrate brain arises from a 2D neural plate 1,2 . These large morphological changes previously posed a challenge for implantable bioelectronics to track neural activity throughout brain development 3-9 . Here, we present a tissue-level-soft, sub-micrometer-thick, stretchable mesh microelectrode array capable of integrating into the embryonic neural plate of vertebrates by leveraging the 2D-to-3D reconfiguration process of the tissue itself. Driven by the expansion and folding processes of organogenesis, the stretchable mesh electrode array deforms, stretches, and distributes throughout the entire brain, fully integrating into the 3D tissue structure. Immunostaining, gene expression analysis, and behavioral testing show no discernible impact on brain development or function. The embedded electrode array enables long-term, stable, brain-wide, single-unit-single-spike-resolved electrical mapping throughout brain development, illustrating how neural electrical activities and population dynamics emerge and evolve during brain development.

11.
J Phys Chem Lett ; 15(26): 6763-6770, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38912978

ABSTRACT

Ion migration is significantly enhanced in lead-halide perovskites with a soft crystal lattice, which can promote the formation of a heterogeneous interface between two such materials with different halide-anion compositions. Here we have deposited a single CsPbI3 nanocrystal (NC) on top of an individual CsPbBr3 microplate to create a mixed-halide CsPbBrxI3-x (0 < x < 3) NC by means of the anion exchange process. The formation of a CsPbBrxI3-x/CsPbBr3 heterostructure is confirmed by the much-enlarged geometric volume of the CsPbBrxI3-x NC as compared to the original CsPbI3 one, as well as by its capability of receiving photogenerated excitons from the CsPbBr3 microplate with a larger bandgap energy. The quantum nature of this heterostructure is reflected from single-photon emission of the composing CsPbBrxI3-x NC, which can also be bulk-like during phase segregation to demonstrate a red shift in the photoluminescence peak that is opposite to the common trend observed in smaller-sized mixed-halide NCs.

12.
Angew Chem Int Ed Engl ; : e202407163, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38864252

ABSTRACT

Electrosynthesis of hydrogen peroxide (H2O2) based on proton exchange membrane (PEM) reactor represents a promising approach to industrial-level H2O2 production, while it is hampered by the lack of high-efficiency electrocatalysts in acidic medium. Herein, we present a strategy for the specific oxygen functional group (OFG) regulation to promote the H2O2 selectivity up to 92 % in acid on cobalt-porphyrin molecular assembled with reduced graphene oxide. In situ X-ray adsorption spectroscopy, in situ Raman spectroscopy and Kelvin probe force microscopy combined with theoretical calculation unravel that different OFGs exert distinctive regulation effects on the electronic structure of Co center through either remote (carboxyl and epoxy) or vicinal (hydroxyl) interaction manners, thus leading to the opposite influences on the promotion in 2e- ORR selectivity. As a consequence, the PEM electrolyzer integrated with the optimized catalyst can continuously and stably produce the high-concentration of ca. 7 wt % pure H2O2 aqueous solution at 400 mA cm-2 over 200 h with a cell voltage as low as ca. 2.1 V, suggesting the application potential in industrial-scale H2O2 electrosynthesis.

13.
Anal Chem ; 96(24): 9780-9789, 2024 06 18.
Article in English | MEDLINE | ID: mdl-38848497

ABSTRACT

Dental caries is one of the most common diseases affecting more than 2 billion people's health worldwide. In a clinical setting, it is challenging to predict and proactively guard against dental cavities prior to receiving a confirmed diagnosis. Streptococcus mutans (S. mutans) in saliva has been recognized as the main causative bacterial agent that causes dental caries. High sensitivity, good selectivity, and a wide detection range are incredibly important factors to affect S. mutans detection in practical applications. In this study, we present a portable saliva biosensor designed for the early detection of S. mutans with the potential to predict the occurrence of dental cavities. The biosensor was fabricated using a S. mutans-specific DNA aptamer and S. mutans-imprinted polymers. Methylene blue was utilized as a redox probe in the sensor to generate current signals for analysis. When S. mutans enters complementarily S. mutans cavities, it blocks electron transfer between methylene blue and the electrode, resulting in decreases in the reduction current signal. The signal variations are associated with S. mutans concentrations that are useful for quantitative analysis. The linear detection range of S. mutans is 102-109 cfu mL-1, which covers the critical concentration of high caries risk. The biosensor exhibited excellent selectivity toward S. mutans in the presence of other common oral bacteria. The biosensor's wide detection range, excellent selectivity, and low limit of detection (2.6 cfu mL-1) are attributed to the synergistic effect of aptamer and S. mutans-imprinted polymers. The sensor demonstrates the potential to prevent dental caries.


Subject(s)
Aptamers, Nucleotide , Biosensing Techniques , Dental Caries , Saliva , Streptococcus mutans , Saliva/microbiology , Saliva/chemistry , Streptococcus mutans/isolation & purification , Biosensing Techniques/instrumentation , Dental Caries/diagnosis , Dental Caries/microbiology , Aptamers, Nucleotide/chemistry , Humans , Methylene Blue/chemistry , Electrochemical Techniques/instrumentation
14.
Ann Hematol ; 2024 May 01.
Article in English | MEDLINE | ID: mdl-38691144

ABSTRACT

Refractory/relapsed idiopathic multicentric Castleman disease (R/R iMCD) has limited treatment options. With studies showing increased mTOR activation in iMCD patients, sirolimus becomes an attractive and promising therapy for R/R iMCD. Here we report the results of a retrospective study involving 26 R/R iMCD patients treated with sirolimus-containing regimen. The median age at sirolimus initiation was 40.5 years (23-60), with a median prior treatment line of 2 (1-5). 18 patients (69.2%) achieved symptomatic and biochemical response, with a median time to at least overall partial remission of 1.9 months (0.5-14.6). The median follow-up time from sirolimus initiation was 11.7 months (1.6-50.7) and the median time to next treatment (TTNT) was 46.2 months. No patients died at the end of follow-up. Most of the patients in the cohort are in ongoing responses and continue sirolimus therapy. Sirolimus is well tolerated with minor adverse effects. In conclusion, sirolimus is effective for R/R iMCD patients with good tolerance.

15.
Nano Lett ; 24(19): 5705-5713, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38701226

ABSTRACT

Ruthenium (Ru) is an ideal substitute to commercial Pt/C for the acidic hydrogen evolution reaction (HER), but it still suffers from undesirable activity due to the strong adsorption free energy of H* (ΔGH*). Herein, we propose crystalline phase engineering by loading Ru clusters on precisely prepared cubic and hexagonal molybdenum carbide (α-MoC/ß-Mo2C) supports to modulate the interfacial interactions and achieve high HER activity. Advanced spectroscopies demonstrate that Ru on ß-Mo2C shows a lower valence state and withdraws more electrons from the support than that of Ru on α-MoC, indicative of a strong interfacial interaction. Density functional theory reveals that the ΔGH* of Ru/ß-Mo2C approaches 0 eV, illuminating an enhancement mechanism at the Ru/ß-Mo2C interface. The resultant Ru/ß-Mo2C exhibits an encouraging performance in a proton exchange membrane water electrolyzer with a low cell voltage (1.58 V@ 1.0 A cm-2) and long stability (500 h@ 1.0 A cm-2).

16.
Environ Sci Pollut Res Int ; 31(23): 33993-34009, 2024 May.
Article in English | MEDLINE | ID: mdl-38696011

ABSTRACT

Water contamination by hexavalent chromium (Cr(VI)) seriously jeopardizes human health, which is a pressing environmental concern. Biochar-loaded green-synthesized nZVI, as a green and environmentally friendly material, can efficiently reduce Cr(VI) to Cr(III) while removing Cr(VI) from water. Therefore, in this study, an efficient green-modified biochar material (TP-nZVI/BC) was successfully prepared using tea polyphenol (TP) and sludge biochar (BC) using a low-cost and environmentally friendly green synthesis method. The preparation conditions of TP-nZVI/BC were optimized using response surface methodology (RSM), revealing that the dosage of tea polyphenols plays a crucial role in the removal performance (R2 = 1271.09), followed by reaction time and temperature. The quadratic regression model proved accurate. The optimal preparation conditions are as follows: tea polyphenols (TP) dosage at 48 g/L, reaction temperature at 75 ℃, and a reaction time of 3 h. TP-nZVI/BC removed Cr(VI) from water at a rate 7.6 times greater than BC. The pseudo-second-order kinetic model (R2 = 0.987) accurately describes the adsorption process, suggesting that chemical adsorption predominantly controls the removal process. The adsorption of Cr(VI) by TP-nZVI/BC can be well described by the Langmuir model, and the maximum adsorption capacity reached 105.65 mg/g. FTIR and XPS analyses before and after adsorption demonstrate that nZVI plays a crucial role in the reduction process of Cr(VI), and the synergistic effects of surface adsorption, reduction, and co-precipitation enhance Cr(VI) removal. In summary, using green-modified biochar for Cr(VI) removal is a feasible and promising method with significant potential.


Subject(s)
Charcoal , Chromium , Water Pollutants, Chemical , Charcoal/chemistry , Chromium/chemistry , Water Pollutants, Chemical/chemistry , Adsorption , Water Purification/methods , Kinetics , Green Chemistry Technology
17.
J Phys Chem A ; 128(20): 4068-4082, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38728207

ABSTRACT

The thermo-kinetic aspects of 3-hydroxybutyric acid (3-HBA) pyrolysis in the gas phase were investigated using density functional theory (DFT), specifically the M06-2X theoretical level in conjunction with the cc-pVTZ basis set. The obtained data were compared with benchmark CBS-QB3 results. The degradation mechanism was divided into 16 pathways, comprising 6 complex fissions and 10 barrierless reactions. Energy profiles were calculated and supplemented with computations of rate coefficients and branching ratios over the temperature range of 600-1700 K at a pressure of 1 bar using transition state theory (TST) and Rice-Ramsperger-Kassel-Marcus (RRKM) methods. Thermodynamics results indicated the presence of six stable conformers within a 4 kcal mol-1 energy range. The estimated chemical kinetics results suggested that TST and RRKM approaches are comparable, providing confidence in our calculations. The branching ratio analysis reveals that the dehydration reaction pathway leading to the formation of H2O and CH3CH═CHCO2H dominates entirely at T ≤ 650 K. At these temperatures, there is a minor contribution from the simple homolytic bond fission reaction, yielding related radicals [CH3•CHOH + •CH2CO2H]. However, at T ≥ 700 K, this reaction becomes the primary decomposition route. At T = 1700 K, there is a minor involvement of a reaction pathway resulting in the formation of CH3CH(OH)•CH2 + •CHO(OH) with an approximate contribution of 16%, and a reaction leading to [•CH3 + •CH2OHCH2CO2H] with around 9%.

18.
Acta Biochim Pol ; 71: 12461, 2024.
Article in English | MEDLINE | ID: mdl-38721305

ABSTRACT

Objective: To analyze the clinical characteristics of primary Sjögren's syndrome (pSS) combined with interstitial lung disease (ILD), so as to provide a theoretical basis for the early diagnosis, treatment and prevention of PSS-ILD. Methods: From October 2017 to January 2022, patients with pSS who were admitted to the Department of Rheumatology at Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine were included in this retrospective study. Patients were divided into the pSS-ILD (102 cases) and pSS-non-ILD groups (154 cases) based on the presence or absence of ILD on high-resolution computed tomography (HRCT). Demographics information, clinical symptoms, laboratory indicators and HRCT features were compared, and the logistic regression analysis was utilized to identify the risk factors. Results: A total of 256 patients were included. Patients with pSS-ILD were more often female, and their age and disease duration were significantly higher than those in the pSS-non-ILD group (p < 0.05). The HRCT imaging classification included ground glass-like shadow (78.4%) and patchy solid shadow (17.6%), and Non-specific interstitial pneumonitis (NSIP) (72.5%) was the predominant typology. Regarding the laboratory indexes, the positive rates of erythrocyte sedimentation rate, C-reactive protein, white blood cell count, neutrophil/lymphocyte ratio, triglycerides, total cholesterol, and anti-SS-A52 antibodies were significantly higher in the pSS-ILD patients than in the pSS-non-ILD group, while the positive rates of anti-synaptic antibodies were lower than in the pSS-non-ILD group, and the differences between two groups were statistically significant (p < 0.05). Logistic regression showed that age >60 years, longer duration of disease, higher triglycerides, and cholesterol were risk factors for pSS-ILD patients. Conclusion: The clinical features of pSS-ILD patients were xerophthalmia, cough and shortness of breath, and HRCT can help to diagnose the disease at an early stage. Age over 60 years, chronic course of disease, and elevated lipid levels are risk factors for ILD in pSS patients, and the relationship between autoimmune antibody levels and the occurrence of ILD needs to be further confirmed in follow-up studies with large sample sizes. These findings have the potential to provide useful information for early diagnosis, treatment, and prevention of the development of pSS-ILD.


Subject(s)
Lung Diseases, Interstitial , Sjogren's Syndrome , Tomography, X-Ray Computed , Humans , Sjogren's Syndrome/complications , Lung Diseases, Interstitial/etiology , Lung Diseases, Interstitial/epidemiology , Lung Diseases, Interstitial/diagnosis , Lung Diseases, Interstitial/complications , Female , Retrospective Studies , Male , Middle Aged , Risk Factors , Adult , Aged , China/epidemiology
19.
Biochem Genet ; 2024 May 09.
Article in English | MEDLINE | ID: mdl-38724713

ABSTRACT

As a member of Rho GAPs family, Rho GTPase-Activating Protein 17 (ARHGAP17) regulates cytoskeletal recombination, cell polarity, cell proliferation and cell migration. ARHGAP17 is identified as a tumor suppressor in numerous cancer types. Current study intends to examine ARHGAP17 expression and its possible influence on the progression of hepatocellular carcinoma (HCC). ARHGAP17 expression in HCC cells was verified by RT-PCR and western blot. The proliferation and invasion of HCC cells were evaluated by CCK8 assay and transwell assay, respectively. The mRNA expression of ARHGAP17, PCNA, E-cadherin, N-cadherin, ß-catenin, GSK-3ß, Axin1, and APC were detected by RT-PCR. The protein expression of ARHGAP17, PCNA, E-cadherin, N-cadherin, ß-catenin, p-ß-catenin, GSK-3ß, p-GSK-3ß, Axin1, and APC were detected by western blot. ARHGAP17 staining was evaluated by immunohistochemistry and immunofluorescence. ARHGAP17 expression decreased significantly in HCC tumors and HCC cells after EMT. In response to overexpression of ARHGAP17, the capacities of HCC cell proliferation and invasion were reduced significantly, which were also confirmed by tumorigenesis experiments in vivo. With overexpression of ARHGAP17 in HCC cells, the p-GSK3ß/GSK3ß decreased, while the p-ß-catenin/ß-catenin, Axin1 and APC increased. In conclusion, ARHGAP17 inhibits HCC progression by inactivating the Wnt/ß-catenin signaling pathway.

20.
Innovation (Camb) ; 5(3): 100627, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38706956

ABSTRACT

Neural fields can efficiently encode three-dimensional (3D) scenes, providing a bridge between two-dimensional (2D) images and virtual reality. This method becomes a trendsetter in bringing the metaverse into vivo life. It has initially captured the attention of macroscopic biology, as demonstrated by computed tomography and magnetic resonance imaging, which provide a 3D field of view for diagnostic biological images. Meanwhile, it has also opened up new research opportunities in microscopic imaging, such as achieving clearer de novo protein structure reconstructions. Introducing this method to the field of biology is particularly significant, as it is refining the approach to studying biological images. However, many biologists have yet to fully appreciate the distinctive meaning of neural fields in transforming 2D images into 3D perspectives. This article discusses the application of neural fields in both microscopic and macroscopic biological images and their practical uses in biomedicine, highlighting the broad prospects of neural fields in the future biological metaverse. We stand at the threshold of an exciting new era, where the advancements in neural field technology herald the dawn of exploring the mysteries of life in innovative ways.

SELECTION OF CITATIONS
SEARCH DETAIL