Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters








Database
Language
Publication year range
1.
Mol Biol Rep ; 51(1): 891, 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-39110355

ABSTRACT

BACKGROUND: Peptide transporter 1 (PepT1) transports bacterial oligopeptide products and induces inflammation of the bowel. Nutritional peptides compete for the binding of intestinal bacterial products to PepT1. We investigated the mechanism of short-peptide-based enteral nutrition (SPEN) on the damage to the gut caused by the bacterial oligopeptide product muramyl dipeptide (MDP), which is transported by PepT1. The gut-lung axis is a shared mucosal immune system, and immune responses and disorders can affect the gut-respiratory relationship. METHODS AND RESULTS: Sprague-Dawley rats were gavaged with solutions containing MDP, MDP + SPEN, MDP + intact-protein-based enteral nutrition (IPEN), glucose as a control, or glucose with GSK669 (a NOD2 antagonist). Inflammation, mitochondrial damage, autophagy, and apoptosis were explored to determine the role of the PepT1-nucleotide-binding oligomerization domain-containing protein 2 (NOD2)-beclin-1 signaling pathway in the small intestinal mucosa. MDP and proinflammatory factors of lung tissue were explored to determine that MDP can migrate to lung tissue and cause inflammation. Induction of proinflammatory cell accumulation and intestinal damage in MDP gavage rats was associated with increased NOD2 and Beclin-1 mRNA expression. IL-6 and TNF-α expression and apoptosis were increased, and mitochondrial damage was severe, as indicated by increased mtDNA in the MDP group compared with controls. MDP levels and expression of proinflammatory factors in lung tissue increased in the MDP group compared with the control group. SPEN, but not IPEN, eliminated these impacts. CONCLUSIONS: Gavage of MDP to rats resulted in damage to the gut-lung axis. SPEN reverses the adverse effects of MDP. The PepT1-NOD2-beclin-1 pathway plays a role in small intestinal inflammation, mitochondrial damage, autophagy, and apoptosis.


Subject(s)
Acetylmuramyl-Alanyl-Isoglutamine , Beclin-1 , Enteral Nutrition , Lung Injury , Nod2 Signaling Adaptor Protein , Peptide Transporter 1 , Rats, Sprague-Dawley , Signal Transduction , Animals , Peptide Transporter 1/metabolism , Peptide Transporter 1/genetics , Rats , Beclin-1/metabolism , Beclin-1/genetics , Nod2 Signaling Adaptor Protein/metabolism , Nod2 Signaling Adaptor Protein/genetics , Signal Transduction/drug effects , Lung Injury/metabolism , Male , Acetylmuramyl-Alanyl-Isoglutamine/pharmacology , Enteral Nutrition/methods , Apoptosis/drug effects , Intestinal Mucosa/metabolism , Intestinal Mucosa/drug effects , Intestinal Mucosa/pathology , Autophagy/drug effects , Lung/metabolism , Lung/pathology , Lung/drug effects , Inflammation/metabolism
2.
Shock ; 62(1): 139-145, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38546380

ABSTRACT

ABSTRACT: Introduction: Intestinal flora and the translocation of its products, such as muramyl dipeptide (MDP), are common causes of sepsis. MDP is a common activator of the intracellular pattern recognition receptor NOD2, and MDP translocation can cause inflammatory damage to the small intestine and systemic inflammatory responses in rats. Therefore, this study investigated the effects of MDP on the intestinal mucosa and distant organs during sepsis and the role of the NOD2/AMPK/LC3 pathway in MDP-induced mitochondrial dysfunction in the intestinal epithelium. Methods: Fifty male Sprague Dawley rats were randomly divided into five treatment groups: lipopolysaccharide (LPS) only, 1.5 and 15 mg/kg MDP+LPS, and 1.5 and 15 mg/kg MDP+short-peptide enteral nutrition (SPEN)+LPS. The total caloric intake was the same per group. The rats were euthanized 24 h after establishing the model, and peripheral blood and small intestinal mucosal and lung tissues were collected. Results: Compared to the LPS group, both MDP+LPS groups had aggravated inflammatory damage to the intestinal mucosal and lung tissues, increased IL-6 and MDP production, increased NOD2 expression, decreased AMPK and LC3 expression, increased mitochondrial reactive oxygen species production, and decreased mitochondrial membrane potential. Compared to the MDP+LPS groups, the MDP+SPEN+LPS groups had decreased IL-6 and MDP production, increased AMPK and LC3 protein expression, and protected mitochondrial and organ functions. Conclusions: MDP translocation reduced mitochondrial autophagy by regulating the NOD2/AMPK/LC3 pathway, causing mitochondrial dysfunction. SPEN protected against MDP-induced impairment of intestinal epithelial mitochondrial function during sepsis.


Subject(s)
Acetylmuramyl-Alanyl-Isoglutamine , Intestinal Mucosa , Mitochondria , Nod2 Signaling Adaptor Protein , Rats, Sprague-Dawley , Animals , Acetylmuramyl-Alanyl-Isoglutamine/pharmacology , Male , Rats , Mitochondria/metabolism , Mitochondria/drug effects , Nod2 Signaling Adaptor Protein/metabolism , Intestinal Mucosa/metabolism , Intestinal Mucosa/drug effects , Cytokines/metabolism , Lipopolysaccharides/toxicity , Sepsis/metabolism , Interleukin-6/metabolism , Microtubule-Associated Proteins/metabolism , Inflammation/metabolism , Reactive Oxygen Species/metabolism
3.
Kaohsiung J Med Sci ; 28(8): 457-61, 2012 Aug.
Article in English | MEDLINE | ID: mdl-22892169

ABSTRACT

We describe a woman with flank pain and hydronephrosis. Computed tomography (CT) urography and maximum intensity projection (MIP) reformatted images clearly showed that a long finger-like intraluminal filling defects mass in the left middle ureter. The pathologic biopsy by ureteroscopy revealed that the lesion mainly consists of benign fibrinoid necrosis. A large soft smooth, spindle-like, dark brown mass (approximately 13.5 cm in length) was identified in left middle ureter when open surgery was performed. The segment of the ureter part attached to the stalk of the polyp was excised, then a dismembered ureteroplasty was performed. Pathologic examination revealed that the total polyp was an ischemic infarction, characteristic of cellular swelling, tissue degeneration, fibrinoid necrosis, and thrombosis in its vessels. The surface of the polyp was hardly covered with urothelium, but fibroepithelial polyp was still diagnosed. There was no recurrence during the 3 years of follow-up.


Subject(s)
Epithelium/physiopathology , Hydronephrosis/diagnosis , Infarction/physiopathology , Polyps/diagnosis , Ureter/pathology , Adult , Female , Humans , Ureteroscopy
SELECTION OF CITATIONS
SEARCH DETAIL