Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 854
Filter
1.
Stem Cell Res Ther ; 15(1): 247, 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-39113140

ABSTRACT

BACKGROUND: The role of periodontal ligament stem cells (PDLSCs) in repairing periodontal destruction is crucial, but their functions can be impaired by excessive oxidative stress (OS). Nocardamine (NOCA), a cyclic siderophore, has been shown to possess anti-cancer and anti-bacterial properties. This study aimed to investigate the protective mechanisms of NOCA against OS-induced cellular dysfunction in PDLSCs. METHODS: The cytotoxicity of NOCA on PDLSCs was assessed using a CCK-8 assay. PDLSCs were then treated with hydrogen peroxide (H2O2) to induce OS. ROS levels, cell viability, and antioxidant factor expression were analyzed using relevant kits after treatment. Small molecule inhibitors U0126 and XAV-939 were employed to block ERK signaling and Wnt pathways respectively. Osteogenic differentiation was assessed using alkaline phosphatase (ALP) activity staining and Alizarin Red S (ARS) staining of mineralized nodules. Expression levels of osteogenic gene markers and ERK pathway were determined via real-time quantitative polymerase chain reaction (RT-qPCR) or western blot (WB) analysis. ß-catenin nuclear localization was examined by western blotting and confocal microscopy. RESULTS: NOCA exhibited no significant cytotoxicity at concentrations below 20 µM and effectively inhibited H2O2-induced OS in PDLSCs. NOCA also restored ALP activity, mineralized nodule formation, and the expression of osteogenic markers in H2O2-stimulated PDLSCs. Mechanistically, NOCA increased p-ERK level and promoted ß-catenin translocation into the nucleus; however, blocking ERK pathway disrupted the osteogenic protection provided by NOCA and impaired its ability to induce ß-catenin nuclear translocation under OS conditions in PDLSCs. CONCLUSIONS: NOCA protected PDLSCs against H2O2-induced OS and effectively restored impaired osteogenic differentiation in PDLSCs by modulating the ERK/Wnt signaling pathway.


Subject(s)
Cell Differentiation , Hydrogen Peroxide , Osteogenesis , Oxidative Stress , Periodontal Ligament , Stem Cells , Periodontal Ligament/cytology , Periodontal Ligament/metabolism , Periodontal Ligament/drug effects , Humans , Oxidative Stress/drug effects , Stem Cells/metabolism , Stem Cells/drug effects , Hydrogen Peroxide/pharmacology , Hydrogen Peroxide/toxicity , Osteogenesis/drug effects , Cell Differentiation/drug effects , beta Catenin/metabolism , Cell Survival/drug effects , Wnt Signaling Pathway/drug effects , MAP Kinase Signaling System/drug effects , Cells, Cultured , Reactive Oxygen Species/metabolism
2.
Cytokine ; 182: 156734, 2024 Aug 09.
Article in English | MEDLINE | ID: mdl-39126766

ABSTRACT

BACKGROUND: Several studies have identified associations between some of circulating inflammatory cytokines and gestational diabetes mellitus (GDM). However, the causal role of these associations remains unclear and unsystematic. We aimed to provide evidence for the causal relationships between circulating inflammatory cytokines and gestational diabetes mellitus. METHODS: We performed bidirectional two-sample Mendelian randomization (2SMR) to investigate the causal connection between circulating inflammatory cytokines and gestational diabetes mellitus. Publicly accessible data for circulating inflammatory cytokines (8,293 individuals) and gestational diabetes mellitus (123,579 individuals) were obtained from genome-wide association study (GWAS). RESULTS: Only one causal association was identified between circulating inflammatory cytokines and GDM. The inverse variance weighting (IVW) method showed that macrophage migration inhibitory factor (MIF) increased the risk of GDM (OR 1.162, 95%CI 1.044,1.293). Moreover, two causal associations were detected between GDM and circulating inflammatory cytokines. GDM was negatively correlated with interferon gamma-induced protein 10 (IP10) (Beta -0.129, 95%CI -0.236,-0.231) and interleukin-18 (IL18) (Beta -0.133, 95%CI -0.241,-0.026). CONCLUSION: Mendelian randomization study revealed MIF as a risk factor for gestational diabetes mellitus. This finding offers a new and valuable insight into the pathophysiological mechanisms underlying GDM.

3.
Plant Dis ; 2024 Aug 10.
Article in English | MEDLINE | ID: mdl-39127879

ABSTRACT

Bidens pilosa L., an annual herbaceous plant with a wide distribution, possesses novel medicinal properties. In January 2021, a powdery mildew disease outbreak was documented on B. pilosa plants located in the roadside areas in Shenzhen, Guangdong Province, China, with 60 to 80% disease incidence. Initial symptoms manifested as small, irregular white powdery patches, primarily on the adaxial surfaces of leaves. Subsequently, the colonies expanded, forming coalescent colonies that spread across the leaves, petioles, and stems, eventually leading to the distortion and senescence of leaves. Hyphae are hyaline, flexuous to straight, septate, with thin walls and a width ranging from 2 to 8 µm. Hyphal appressoria are nipple-shaped. Conidophores are erect or slightly flexuous, ranging from 80 to 150 µm in length and 12 to 18 µm in width (n = 30). Typically, these conidophores bear chains of 2 to 5 immature conidia, displaying a sinuate outline. Foot-cells, located at the base of conidophores, are cylindrical and erect, approximately 33 to 100 µm in length and 6 to 10 µm in width (n = 30). Conidia are hyaline, ellipsoid-ovoid to barrel-shaped, and lack fibrosin bodies. Primary conidia are ellipsoid-ovoid in shape, characterized by a rounded apex and a subtruncate base, 25 to 40 µm × 15 to 22 µm in width. Secondary conidia are barrel-shaped with truncate or subtruncate ends, 27 to 35 µm × 15 to 20 µm in width. Germ tubes exhibit a longitubus pattern and are prominently produced at the perihilar or apical region of the conidia. No chasmothecia were observed in the collected samples. In order to conduct a molecular-level identification, mycelium and conidia were collected from B. pilosa leaves. Genomic DNA was subsequently extracted from these samples. The internal transcribed spacer (ITS), intergenic spacer (IGS) and beta-tubulin (tub2) sequences were performed using primer pairs ITS1/ITS4, IGS-12a/NS1R, and tub2, respectively (Carbone and Kohn 1999; Scholin et al. 1994; White et al.,1990). A 568-bp ITS, a 366-bp IGS, and a 354-bp tub2 sequences (GenBank accession nos. OR647592, OR978282 and OR978283) were obtained. The ITS sequence exhibited over 99.6% similarity to Golovinomyces ambrosiae (MT929773) and G. cichoracearum (MH590731). The IGS sequence displayed 100% similarity to G. ambrosiae (MK383490) and G. ambrosiae (OK349420). The tub2 sequence displayed 100% similarity to G. ambrosiae (MW981257) and G. ambrosiae (MW981256). Phylogenetic analysis of IGS, ITS and tub2 also grouped obtained sequences within the G. ambrosiae complex. Based on the analysis of morphological characteristics and sequence identity, the pathogen was identified as G. ambrosiae. In order to satisfy Koch's postulates, an infected leaf was carefully pressed onto leaves of six healthy young B. pilosa plants, each grown in a separate pot. Additionally, a control group consisted of six non-inoculated plants. All plants were placed in a greenhouse: 25°C, 14/10-h light/dark photoperiod, and relative humidity 50%. After 10 days, the inoculated leaves exhibited powdery mildew colonies similar to those observed in the original infected plants. At 16 days, the inoculated leaves exhibited discoloration and premature leaf drop. The pathogenicity test was conducted twice. Microscopic observation and sequencing confirmed that isolated fungus was identical to the original pathogen. G. ambrosiae has previously been documented on B. pilosa in Fuzhou, Fujian Province, China (Mukhtar et al., 2022). However, to the best of our knowledge, this study represents the first report of powdery mildew caused by G. ambrosiae on B. pilosa in Shenzhen, Guangdong Province, China.

4.
Article in English | MEDLINE | ID: mdl-39098378

ABSTRACT

BACKGROUND AND AIM: Cardiometabolic diseases (CMDs) are leading causes of death and disability, but little is known about the additive mortality effects of multiple CMDs. This study aimed to examine the association between single and multiple CMDs and all-cause mortality among older Chinese population. METHODS AND RESULTS: Using the Chinese Longitudinal Healthy Longevity Survey (CLHLS) database, we analyzed data from 2008 to 2018 to assess the relationship between CMDs and mortality. Cox regression models estimated hazard ratios (HRs) and 95% confidence intervals (CIs) for single and multiple CMDs. At baseline, 11,351 participants (56.9% female) aged 60 years or older were included. 11.91% of participants had a single CMD, 1.51% had two CMDs, and 0.22% had three CMDs. Over a decade follow-up, 8992 deaths (79.2%) were recorded. A dose-response relationship was observed, with the mortality risk increasing by 17% for each additional disease. The fully-adjusted HRs for all-cause mortality were 1.16, 1.36, and 2.03 for one, two, and three CMDs, respectively. Larger effects of single and multiple CMDs were observed in the male group (P = 0.015) and the younger senior group (P < 0.001). CONCLUSIONS: This large-scale study found that CMDs multiply mortality risks, especially in younger seniors and males. The risk is highest when heart disease and stroke coexist, and diabetes further increases it. Public health efforts should prioritize evidence-based management and prevention of CMDs.

5.
Dalton Trans ; 2024 Aug 06.
Article in English | MEDLINE | ID: mdl-39105496

ABSTRACT

A series of novel diphosphinoamine (PNP) ligands bearing a P-alkenyl group were synthesized and applied in chromium-catalyzed selective ethylene tri-/tetramerization by in situ combination of Cr(acac)3 and modified methylalumoxane (MMAO-3A). The ligand substitution and oligomerization conditions have a remarkable influence on the catalytic activity and controllable selectivity. Most of these PNP ligands are highly active for ethylene tri-/tetramerization with considerable selectivity. An asymmetric diisopropenylphosphanyl ligand with an N-cyclohexyl group achieved the highest activity of 2036 kg (g Cr h-1)-1 with a high total selectivity of 81.1 wt% toward valuable 1-hexene (43.0 wt%) and 1-octene (38.1 wt%) at 40 bar ethylene and 60 °C. An asymmetric mixed isopropenyl/ethylphosphanyl ligand with an N-isopropyl group exhibited a high 1-octene selectivity of 65.5 wt% and a high total 1-hexene/1-octene selectivity (91.5 wt%) with a high activity of 1256 kg (g Cr h-1)-1.

6.
Toxicon ; 247: 107850, 2024 Aug 28.
Article in English | MEDLINE | ID: mdl-38971137

ABSTRACT

BACKGROUND: Enterobacter cloacae insecticidal proteins have been reported to kill Galleria mellonella larvae through affecting their midgut microbiome. However, the mechanisms involved remain unclear. Here we aim to investigate how the insecticidal proteins act on the midgut Duox-ROS system and microbial community of G. mellonella larvae. METHODS: Reverse transcription qPCR and fluorescence probes were utilized to assess the Duox expression levels and to evaluate quantitative changes of the ROS levels. Sequencing of the 16S rRNA gene sequences of the midgut bacteria of G. mellonella larvae was conducted for further analyses of bacterial diversity, composition, and abundance. RESULTS: After the injection of the insecticidal proteins, the Duox expression levels first increased within 28 h, then dramatically peaked at 36 h, and slowly decreased thereafter. Simultaneously, the ROS levels increased significantly at 36 h, peaked at 48 h, and rapidly declined to the normal level at 60 h. Responsive to the change of the ROS levels, the structure of the midgut microbial community was altered substantially, compared to that of the untreated larvae. The relative abundance of Enterobacteriaceae and other specific pathogenic bacteria increased significantly, whereas that of Lactobacillus decreased sharply. Importantly, notable shifts were observed in the crucial midgut predicted metabolic functions, including membrane transportation, carbohydrate metabolism, and amino acid metabolism. CONCLUSION: Insecticidal proteins of E. cloacae kill G. mellonella larvae mainly through generation of high oxidative stress, alterations of the midgut microbial community and function, and damage to the physiological functions. These findings provide insights into the inhibition mechanism of E. cloacae insecticidal proteins to G. mellonella larvae.


Subject(s)
Enterobacter cloacae , Gastrointestinal Microbiome , Larva , Moths , Reactive Oxygen Species , Animals , Larva/microbiology , Moths/microbiology , Gastrointestinal Microbiome/drug effects , Reactive Oxygen Species/metabolism , Insecticides , Bacterial Proteins , RNA, Ribosomal, 16S , Dual Oxidases
7.
J Chromatogr A ; 1730: 465150, 2024 Aug 16.
Article in English | MEDLINE | ID: mdl-38991603

ABSTRACT

The precise determination of polypeptide antibiotics (PPTs) in foods has been always challenging because of the interference of various endogenous peptides in complex matrix. Herin, a novel large-pore covalent organic framework (TABPT-SPDA-COF) with accessible pore size of 7.9 nm was synthesized as a solid phase extraction (SPE) absorbent for efficiently enriching four PPTs existed in foods originating from animals. The parameters of SPE process were systematically optimized. Subsequently, four PPTs were determined by UHPLC-MS/MS. Under the optimal conditions, TABPT-SPDA-COF shows outstanding enrichment capacity for PPTs in contrast to commercial absorbents ascribed to size selectivity and multiple interaction effects. The method exhibits excellent linear range (0.005-100 ng mL-1), satisfactory limits of detection (0.1 pg mL-1) as well as relative recoveries (86.2-116 %). This work offers a practicable platform to monitor trace PPTs from complex animal-derived foodstuffs.


Subject(s)
Anti-Bacterial Agents , Limit of Detection , Metal-Organic Frameworks , Peptides , Solid Phase Extraction , Tandem Mass Spectrometry , Solid Phase Extraction/methods , Anti-Bacterial Agents/analysis , Anti-Bacterial Agents/isolation & purification , Anti-Bacterial Agents/chemistry , Animals , Metal-Organic Frameworks/chemistry , Tandem Mass Spectrometry/methods , Chromatography, High Pressure Liquid/methods , Peptides/analysis , Peptides/isolation & purification , Peptides/chemistry , Food Contamination/analysis
8.
Biosens Bioelectron ; 262: 116547, 2024 Oct 15.
Article in English | MEDLINE | ID: mdl-38968775

ABSTRACT

5-formylcytosine (5 fC) and 5-carboxylcytosine (5caC) serve as key intermediates in DNA demethylation process with significant implications for gene regulation and disease progression. In this study, we introduce a novel electrochemical sensing platform specifically designed for the sensitive and selective detection of 5 fC and 5caC in DNA. Protein A-modified magnetic beads (ProtA-MBs) coupled with specific antibodies facilitate the immunorecognition and enrichment of these modified bases. Signal amplification is achieved through several chemical reactions involving the interaction between N3-kethonaxl and guanine, copper-free click chemistry for the attachment of dibenzocyclooctyne (DBCO)-Biotin, and the subsequent recognition by streptavidin-conjugated horseradish peroxidase (SA-HRP). The assay's readout is performed on a disposable laser-induced graphene (LIG) electrode, modified with the bead-antibody-DNA complex in a magnetic field, and analyzed using differential pulse voltammetry in a system employing hydroquinone (HQ) as the redox mediator and H2O2 as the substrate. This immunosensor displayed excellent sensitivity, with detection limits of 14.8 fM for 5 fC across a 0.1-1000 pM linear range and 87.4 fM for 5caC across a 0.5-5000 pM linear range, and maintained high selectivity even in the presence of interferences from other DNA modifications. Successful application in quantifying 5 fC and 5caC in genomic DNA from cell extracts, with recovery rates between 97.7% to 102.9%, underscores its potential for clinical diagnostics. N3-kethoxal was used for the first time in an electrochemical sensor. This work not only broadens the toolkit for detecting DNA modifications but also provides a fresh impetus for the development of point-of-care testing (POCT) technologies.


Subject(s)
Biosensing Techniques , Cytosine , DNA , Electrochemical Techniques , Limit of Detection , DNA/chemistry , Electrochemical Techniques/methods , Cytosine/chemistry , Cytosine/analogs & derivatives , Humans , Immunoassay/methods , Immunoassay/instrumentation , Graphite/chemistry
9.
Phytomedicine ; 132: 155851, 2024 Jul 06.
Article in English | MEDLINE | ID: mdl-39018943

ABSTRACT

BACKGROUND: Evodiamine (EVO) is one of the primary components of Evodia rutaecarpa and has been found to have a positive therapeutic effect on various digestive system diseases. However, no systematic review has been conducted on the research progress and mechanisms of EVO in relation to digestive system diseases, and its toxicity. PURPOSE: This study aimed to provide a reference for future research in this field. STUDY DESIGN: A systematic review and meta-analysis of the research progress, mechanisms, and toxicity of EVO in the treatment of digestive system diseases. METHODS: Five electronic databases were utilized to search for relevant experiments. We conducted a comprehensive review and meta-analysis of the pertinent literature following the guidelines of Preferred Reporting Items for Systematic Review and Meta-analysis (PRISMA). RESULTS: EVO's animal experiments in digestive system diseases primarily focus on colorectal cancer, gastric ulcers, liver cancer, liver fibrosis, ulcerative colitis, colitis-associated cancer, and functional gastrointestinal disorders. EVO also has positive effects on pancreatic cancer, radiation enteritis, gastric cancer, tongue squamous cancer, hepatitis B, oral cancer, and esophageal cancer in vivo. EVO's in cellular experiments primarily focus on SGC7901, HT29, HCT-116, and HepG2 cells. EVO also exhibits positive effects on SW480, LoVo, BGC-823, AGS, COLO-205, MKN45, SMMC-7721, Bel-7402, QGY7-701, PANC-1, SW1990, BxPC-3, HSC4, MC3, HONE1, and CNE1 cells in vitro. The potential common pathways include TGF-ß, PI3K-AKT, Wnt, ErbB, mTOR, MAPK, HIF-1, NOD-like receptor, NF-κB, VEGF, JAK-STAT, AMPK, Toll-like receptor, EGFR, Ras, TNF, AGE-RAGE, Relaxin, FoxO, IL-17, Hippo, and cAMP. The mechanisms of EVO on ulcerative colitis, gastric cancer, and HCT116 cells are still controversial in vivo. EVO may have a bidirectional regulatory effect on functional gastrointestinal disorders through calcium signaling. The mechanisms of EVO on HCT116, HT29, SW480, AGS, COLO-205, and SW1990 cells are still controversial in vitro. The question of whether EVO has obvious toxicity is controversial. CONCLUSION: In both cellular and animal experiments, EVO has demonstrated positive impacts on digestive system diseases. Nevertheless, additional in vivo and in vitro research is required to confirm the beneficial effects and mechanisms of EVO on digestive system diseases, as well as its potential toxicity.

10.
Anal Chem ; 96(28): 11383-11389, 2024 07 16.
Article in English | MEDLINE | ID: mdl-38946419

ABSTRACT

Apurinic/apyrimidinic endonuclease 1 (APE1), as a vital base excision repair enzyme, is essential for maintaining genomic integrity and stability, and its abnormal expression is closely associated with malignant tumors. Herein, we constructed an electrochemiluminescence (ECL) biosensor for detecting APE1 activity by combining nanoconfined ECL silver nanoclusters (Ag NCs) with X-shaped DNA recognizer-triggered cascade amplification. Specifically, the Ag NCs were prepared and confined in the glutaraldehyde-cross-linked chitosan hydrogel network using the one-pot method, resulting in a strong ECL response and exceptional stability in comparison with discrete Ag NCs. Furthermore, the self-assembled X-shaped DNA recognizers were designed for APE1 detection, which not only improved reaction kinetics due to the ordered arrangement of recognition sites but also achieved high sensitivity by utilizing the recognizer-triggered cascade amplification of strand displacement amplification (SDA) and DNAzyme catalysis. As expected, this biosensor achieved sensitive ECL detection of APE1 in the range of 1.0 × 10-3 U·µL-1 to 1.0 × 10-10 U·µL-1 with the detection limit of 2.21 × 10-11 U·µL-1, rendering it a desirable approach for biomarker detection.


Subject(s)
Biosensing Techniques , DNA-(Apurinic or Apyrimidinic Site) Lyase , Electrochemical Techniques , Luminescent Measurements , Metal Nanoparticles , Silver , DNA-(Apurinic or Apyrimidinic Site) Lyase/metabolism , DNA-(Apurinic or Apyrimidinic Site) Lyase/analysis , Silver/chemistry , Humans , Metal Nanoparticles/chemistry , Electrochemical Techniques/methods , Luminescent Measurements/methods , Biosensing Techniques/methods , Nucleic Acid Amplification Techniques/methods , DNA/chemistry , Limit of Detection , DNA, Catalytic/chemistry , DNA, Catalytic/metabolism
11.
Front Immunol ; 15: 1403272, 2024.
Article in English | MEDLINE | ID: mdl-39040102

ABSTRACT

Introduction: Granulocytic myeloid-derived suppressor cells (G-MDSCs) show fast recovery following allogeneic hematopoietic stem cell transplantation (allo-HSCT) constituting the major part of peripheral blood in the early phase. Although G-MDSCs mediate immune suppression through multiple mechanisms, they may also promote inflammation under specific conditions. Methods: G-MDSCs were isolated from 82 patients following allo-HSCT within 90 days after allo-HSCT, and their interactions with autologous CD3+ T-cells were examined. T-cell proliferation was assessed by flow cytometry following CFSE staining, while differentiation and interferon-γ secretion were characterized using chemokine receptor profiling and ELISpot assays, respectively. NK cell cytotoxicity was evaluated through co-culture with K562 cells. An aGVHD xenogeneic model in humanized mice was employed to study the in vivo effects of human leukocytes. Furthermore, transcriptional alterations in G-MDSCs were analyzed via RNA sequencing to investigate functional transitions. Results: G-MDSCs promoted inflammation in the early-stage, by facilitating cytokine secretion and proliferation of T cells, as well as their differentiation into pro-inflammatory T helper subsets. At day 28, patients with a higher number of G-MDSCs exhibited an increased risk of developing grades II-IV aGvHD. Besides, adoptive transfer of G-MDSCs from patients at day 28 into humanized mice exacerbated aGvHD. However, at day 90, G-MDSCs led to immunosuppression, characterized by upregulated expression of indoleamine 2,3-dioxygenase gene and interleukin-10 secretion, coupled with the inhibition of T cell proliferation. Furthermore, transcriptional analysis of G-MDSCs at day 28 and day 90 revealed that 1445 genes were differentially expressed. These genes were associated with various pathways, revealing the molecular signatures of early post-transplant differentiation in G-MDSCs. In addition, genes linked to the endoplasmic reticulum stress were upregulated in patients without aGvHD. The acquisition of immunosuppressive function by G-MDSCs may depend on the activation of CXCL2 and DERL1 genes. Conclusion: Our findings revealed the alteration in the immune characteristics of G-MDSCs within the first 90 days post-allo-HSCT. Moreover, the quantity of G-MDSCs at day 28 may serve as a predictive indicator for the development of aGvHD.


Subject(s)
Hematopoietic Stem Cell Transplantation , Myeloid-Derived Suppressor Cells , Transplantation, Homologous , Humans , Hematopoietic Stem Cell Transplantation/adverse effects , Animals , Myeloid-Derived Suppressor Cells/immunology , Myeloid-Derived Suppressor Cells/metabolism , Mice , Female , Male , Adult , Middle Aged , HLA-DR Antigens/metabolism , HLA-DR Antigens/immunology , HLA-DR Antigens/genetics , Graft vs Host Disease/immunology , Inflammation/immunology , Young Adult , Granulocytes/immunology , Granulocytes/metabolism , Adolescent , CD11b Antigen/metabolism , CD11b Antigen/immunology
12.
Angew Chem Int Ed Engl ; : e202407920, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38877853

ABSTRACT

Axially chiral biaryl δ-amino acids possess significantly different conformational properties and chiral environment from centrally chiral amino acids, therefore, have drawn considerable attention in the fields of synthetic and medicinal chemistry. Herein, a novel chiral phenanthroline-potassium catalyst has been developed by constructing a well-organized axially chiral ligand composed of one 1,10-phenanthroline unit and two axially chiral 1,1'-bi-2-naphthol (BINOL) units. In the presence of this catalyst, good to excellent yields and enantioselectivities (up to 99 % yield, 98 : 2 er) have been achieved in the ring-opening alcoholytic dynamic kinetic resolution of a variety of biaryl lactams, thereby providing an efficient protocol for catalytic asymmetric synthesis of unnatural axially chiral biaryl δ-amino acid derivatives.

13.
Int J Biol Macromol ; 274(Pt 1): 133260, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38901505

ABSTRACT

Hydroxypropyl starch-based composite system has high potential for many applications such as food packaging and biomedical fields. Here, how the incorporation of curdlan, a thermo-irreversible heating-set gel, tailors the processability, structure, and film performance of hydroxypropyl starch, a cooling-set gel, has been systematically investigated, aiming to achieve enhanced material properties favorable for edible packaging applications. Curdlan incorporation increased the shear-thinning behavior and viscosity of hydroxypropyl starch solution, which was also strongly affected by temperature. The miscibility and comparability between the two polymers with distinct gelation behaviors is a practical and interesting scientific topic. Scanning electron microscopy, dynamic mechanical analysis, and thermogravimetric analysis all indicated good compatibility between hydroxypropyl starch and curdlan. There was no observable phase boundary between the two materials, and all composite films showed only a single relaxation peak and only one polymer thermal decomposition peak. This resulted in improved structural density and overall performance. Compared with pure HPS film, the 7:3 HPS/CD film showed increases in tensile strength by 66.12 % and thermal decomposition temperature by 3 °C, and a reduction in water solubility by 11.72 %. This knowledge gained here may facilitate the development of edible films based on hydroxypropyl starch with satisfying film performance and processability.


Subject(s)
Edible Films , Food Packaging , Starch , beta-Glucans , beta-Glucans/chemistry , Food Packaging/methods , Starch/chemistry , Starch/analogs & derivatives , Tensile Strength , Solubility , Viscosity , Temperature
14.
Cell Commun Signal ; 22(1): 315, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38849890

ABSTRACT

BACKGROUND: Aberrant inflammatory responses drive the initiation and progression of various diseases, and hyperactivation of NLRP3 inflammasome is a key pathogenetic mechanism. Pharmacological inhibitors of NLRP3 represent a potential therapy for treating these diseases but are not yet clinically available. The natural product butein has excellent anti-inflammatory activity, but its potential mechanisms remain to be investigated. In this study, we aimed to evaluate the ability of butein to block NLRP3 inflammasome activation and the ameliorative effects of butein on NLRP3-driven diseases. METHODS: Lipopolysaccharide (LPS)-primed bone-marrow-derived macrophages were pretreated with butein and various inflammasome stimuli. Intracellular potassium levels, ASC oligomerization and reactive oxygen species production were also detected to evaluate the regulatory mechanisms of butein. Moreover, mouse models of LPS-induced peritonitis, dextran sodium sulfate-induced colitis, and high-fat diet-induced non-alcoholic steatohepatitis were used to test whether butein has protective effects on these NLRP3-driven diseases. RESULTS: Butein blocks NLRP3 inflammasome activation in mouse macrophages by inhibiting ASC oligomerization, suppressing reactive oxygen species production, and upregulating the expression of the antioxidant pathway nuclear factor erythroid 2-related factor 2 (Nrf2). Importantly, in vivo experiments demonstrated that butein administration has a significant protective effect on the mouse models of LPS-induced peritonitis, dextran sodium sulfate-induced colitis, and high-fat diet-induced non-alcoholic steatohepatitis. CONCLUSION: Our study illustrates the connotation of homotherapy for heteropathy, i.e., the application of butein to broaden therapeutic approaches and treat multiple inflammatory diseases driven by NLRP3.


Subject(s)
Chalcones , Inflammasomes , Lipopolysaccharides , Macrophages , Mice, Inbred C57BL , NLR Family, Pyrin Domain-Containing 3 Protein , Reactive Oxygen Species , Animals , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , Chalcones/pharmacology , Chalcones/therapeutic use , Mice , Reactive Oxygen Species/metabolism , Inflammasomes/metabolism , Macrophages/metabolism , Macrophages/drug effects , Lipopolysaccharides/pharmacology , Male , Disease Models, Animal , Colitis/chemically induced , Colitis/pathology , Colitis/metabolism , Non-alcoholic Fatty Liver Disease/metabolism , Non-alcoholic Fatty Liver Disease/drug therapy , Non-alcoholic Fatty Liver Disease/pathology
15.
Chembiochem ; : e202400269, 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38923255

ABSTRACT

The human malaria parasite Plasmodium falciparum (P. falciparum) continues to pose a significant public health challenge, leading to millions of fatalities globally. Halofuginone (HF) has shown a significant anti-P. falciparum effect, suggesting its potential as a therapeutic agent for malaria treatment. In this study, we synthesized a photoaffinity labeling probe of HF to identify its direct target in P. falciparum. Our results reveal that ubiquitin carboxyl-terminal hydrolase 3 (PfUCHL3) acts as a crucial target protein of HF, which modulates parasite growth in the intraerythrocytic cycle. In particular, we discovered that HF potentially forms hydrogen bonds with the Leu10, Glu11, and Arg217 sites of PfUCHL3, thereby inducing an allosteric effect by promoting the embedding of the helix 6' region on the protein surface. Furthermore, HF disrupts the expression of multiple functional proteins mediated by PfUCHL3, specifically those that play crucial roles in amino acid biosynthesis and metabolism in P. falciparum. Taken together, this study highlights PfUCHL3 as a previously undisclosed druggable target of HF, which contributes to the development of novel anti-malarial agents in the future.

16.
J Am Coll Emerg Physicians Open ; 5(3): e13190, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38827500

ABSTRACT

Objective: To analyze the risk factors associated with intubated critically ill patients in the emergency department (ED) and develop a prediction model by machine learning algorithms. Methods: This study was conducted in an academic tertiary hospital in Hangzhou, China. Critically ill patients admitted to the ED were retrospectively analyzed from May 2018 to July 2022. The demographic characteristics, distribution of organ dysfunction, parameters for different organs' examination, and status of mechanical ventilation were recorded. These patients were assigned to the intubation and non-intubation groups according to ventilation support. We used the eXtreme Gradient Boosting (XGBoost) algorithm to develop the prediction model and compared it with other algorithms, such as logistic regression, artificial neural network, and random forest. SHapley Additive exPlanations was used to analyze the risk factors of intubated critically ill patients in the ED. Results: Of 14,589 critically ill patients, 10,212 comprised the training group and 4377 comprised the test group; 2289 intubated patients were obtained from the electronic medical records. The mean age, mean scores of vital signs, parameters of different organs, and blood oxygen examination results differed significantly between the two groups (p < 0.05). The white blood cell count, international normalized ratio, respiratory rate, and pH are the top four risk factors for intubation in critically ill patients. Based on the risk factors in different predictive models, the XGBoost model showed the highest area under the receiver operating characteristic curve (0.84) for predicting ED intubation. Conclusions: For critically ill patients in the ED, the proposed model can predict potential intubation based on the risk factors in the clinically predictive model.

17.
Acta Pharm Sin B ; 14(6): 2716-2731, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38828148

ABSTRACT

Lipogenesis is often highly upregulated in breast cancer brain metastases to adapt to intracranial low lipid microenvironments. Lipase inhibitors hold therapeutic potential but their intra-tumoral distribution is often blocked by the blood‒tumor barrier (BTB). BTB activates its Wnt signaling to maintain barrier properties, e.g., Mfsd2a-mediated BTB low transcytosis. Here, we reported VCAM-1-targeting nano-wogonin (W@V-NPs) as an adjuvant of nano-orlistat (O@V-NPs) to intensify drug delivery and inhibit lipogenesis of brain metastases. W@V-NPs were proven to be able to inactivate BTB Wnt signaling, downregulate BTB Mfsd2a, accelerate BTB vesicular transport, and enhance tumor accumulation of O@V-NPs. With the ability to specifically kill cancer cells in a lipid-deprived environment with IC50 at 48 ng/mL, W@V-NPs plus O@V-NPs inhibited the progression of brain metastases with prolonged survival of model mice. The combination did not induce brain edema, cognitive impairment, and systemic toxicity in healthy mice. Targeting Wnt signaling could safely modulate the BTB to improve drug delivery and metabolic therapy against brain metastases.

18.
Technol Health Care ; 2024 May 25.
Article in English | MEDLINE | ID: mdl-38875060

ABSTRACT

BACKGROUND: The theory of Chinese medicine (TCM) constitution contributes to the optimisation of individualised healthcare programmes. However, at present, TCM constitution identification mainly relies on inefficient questionnaires with subjective bias. Efficient and accurate TCM constitution identification can play an important role in individualised medicine and healthcare. OBJECTIVE: Building an efficient model for identifying traditional Chinese medicine constitutions using objective tongue features and machine learning techniques. METHODS: The DS01-A device was applied to collect tongue images and extract features. We trained and evaluated five machine learning models: Support Vector Machine (SVM), Decision Tree (DT), Random Forest (RF), LightGBM (LGBM), and CatBoost (CB). Among these, we selected the model with the best performance as the base classifier for constructing our heterogeneous ensemble learning model. Using various performance metrics, including classification accuracy, precision, recall, F1 score, and area under curve (AUC), to comprehensively evaluate model performance. RESULTS: A total of 1149 tongue images were obtained and 45 features were extracted, forming dataset 1. RF, LGBM, and CB were selected as the base learners for the RLC-Stacking. On dataset 1, RLC-Stacking1 achieved an accuracy of 0.8122, outperforming individual classifiers. After feature selection, the classification accuracy of RLC-Stacking2 improved to 0.8287, an improvement of 0.00165 compared to RLC-Stacking1. RLC-Stacking2 achieved an accuracy exceeding 0.85 for identifying each TCM constitution type, indicating excellent identification performance. CONCLUSION: The study provides a reliable method for the accurate and rapid identification of TCM constitutions and can assist clinicians in tailoring individualized medical treatments based on personal constitution types and guide daily health care. The information extracted from tongue images serves as an effective marker for objective TCM constitution identification.

19.
J Org Chem ; 89(12): 8691-8705, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38856011

ABSTRACT

Organocatalyzed diastereo- and enantioselective [3 + 2] cycloaddition reactions of donor-acceptor (D-A) cyclopropanes with isatin-derived ketimines are presented. Different from well-developed Lewis acid activation protocols which promote the reactivity of D-A cyclopropanes through coordinating to the acceptor group, in this reaction, dicyanocyclopropylmethyl ketones can be activated through nucleophilic activation of the donor group by using dihydroquinine-derived squaramide as Brønsted base catalyst. The reaction affords functionalized spiro[oxindole-3,2'-pyrrolidines] with two nonadjacent tetra- and tri-substituted stereocenters in 83-99% yields, moderate to excellent diastereoselectivities (up to >20:1 diastereomeric ratio (dr)), and excellent enantioselectivities (up to >99% enantiomeric excess (ee)) under mild conditions.

20.
Foods ; 13(11)2024 May 31.
Article in English | MEDLINE | ID: mdl-38890956

ABSTRACT

L-Arabinose isomerase (L-AI) has been commonly used as an efficient biocatalyst to produce D-tagatose via the isomerization of D-galactose. However, it remains a significant challenge to efficiently synthesize D-tagatose using the native (wild type) L-AI at an industrial scale. Hence, it is extremely urgent to redesign L-AI to improve its catalytic efficiency towards D-galactose, and herein a structure-based molecular modification of Lactobacillus plantarum CY6 L-AI (LpAI) was performed. Among the engineered LpAI, both F118M and F279I mutants showed an increased D-galactose isomerization activity. Particularly, the specific activity of double mutant F118M/F279I towards D-galactose was increased by 210.1% compared to that of the wild type LpAI (WT). Besides the catalytic activity, the substrate preference of F118M/F279I was also largely changed from L-arabinose to D-galactose. In the enzymatic production of D-tagatose, the yield and conversion ratio of F118M/F279I were increased by 81.2% and 79.6%, respectively, compared to that of WT. Furthermore, the D-tagatose production of whole cells expressing F118M/F279I displayed about 2-fold higher than that of WT cell. These results revealed that the designed site-directed mutagenesis is useful for improving the catalytic efficiency of LpAI towards D-galactose.

SELECTION OF CITATIONS
SEARCH DETAIL