Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 147
Filter
1.
Acad Radiol ; 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39084935

ABSTRACT

RATIONALE AND OBJECTIVES: Immune checkpoint inhibitors (ICIs) have revolutionized the treatment of non-small cell lung cancer (NSCLC) and programmed cell death-ligand 1 (PD-L1) is a companion biomarker. This study aims to use baseline arterial-phase enhanced CT (APECT) to construct efficient radiomic models for predicting PD-L1 expression and immunotherapy prognosis in NSCLC. MATERIALS AND METHODS: We extracted radiomics features from the baseline APECT images of 204 patients enrolled in a published multicenter clinical trial that commenced on August 23, 2018, and concluded on November 15, 2019 (ClinicalTrials.gov: NCT03607539). Of these patients, 146 patients from selected centers were assigned to the training cohort. The least absolute shrinkage and selection operator (LASSO) method was used to reduce dimensionality of radiomics features and calculate tumor scores. Models were created using naive bayes, decision trees, XGBoost, and random forest algorithms according to tumor scores. These models were then validated in an independent validation cohort comprising 58 patients from the remaining centers. RESULTS: The random forest algorithm outperformed the other methods. In the three-classification scenario, the random forest model achieving the area under the curve (AUC) values of 0.98 and 0.94 in the training and validation cohorts, respectively. In the two-classification scenario, the random forest model achieved AUCs of 0.99 (95%CI: 0.97-1.0, P < 0.0001) and 0.93 (95%CI: 0.83-0.98, P < 0.0001) in the training and validation cohorts, respectively. Furthermore, patients classified as PD-L1 high-expression by this model can predict treatment response (AUC=0.859, 95%CI: 0.7-0.96, P < 0.001) and improved survival (HR=0.2, 95%CI: 0.08-0.53, P = 0.001) only in validation sintilimab arm. CONCLUSION: Radiomics models based on APECT represent a potential non-invasive approach to robustly predict PD-L1 expression and ICI treatment outcomes in patients with NSCLC, which could significantly improve precision cancer immunotherapy.

2.
J Zhejiang Univ Sci B ; : 1-6, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39011644

ABSTRACT

(ASD), 。ASD(PTSD)。, 。ASD, 、、。(rTMS), 。, 1, 。, rTMSASD, 。.

3.
J Affect Disord ; 360: 336-344, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38824965

ABSTRACT

BACKGROUND: The absence of clinically-validated biomarkers or objective protocols hinders effective major depressive disorder (MDD) diagnosis. Compared to healthy control (HC), MDD exhibits anomalies in plasma protein levels and neuroimaging presentations. Despite extensive machine learning studies in psychiatric diagnosis, a reliable tool integrating multi-modality data is still lacking. METHODS: In this study, blood samples from 100 MDD and 100 HC were analyzed, along with MRI images from 46 MDD and 49 HC. Here, we devised a novel algorithm, integrating graph neural networks and attention modules, for MDD diagnosis based on inflammatory cytokines, neurotrophic factors, and Orexin A levels in the blood samples. Model performance was assessed via accuracy and F1 value in 3-fold cross-validation, comparing with 9 traditional algorithms. We then applied our algorithm to a dataset containing both the aforementioned protein quantifications and neuroimages, evaluating if integrating neuroimages into the model improves performance. RESULTS: Compared to HC, MDD showed significant alterations in plasma protein levels and gray matter volume revealed by MRI. Our new algorithm exhibited superior performance, achieving an F1 value and accuracy of 0.9436 and 94.08 %, respectively. Integration of neuroimaging data enhanced our novel algorithm's performance, resulting in an improved F1 value and accuracy, reaching 0.9543 and 95.06 %. LIMITATIONS: This single-center study with a small sample size requires future evaluations on a larger test set for improved reliability. CONCLUSIONS: In comparison to traditional machine learning models, our newly developed MDD diagnostic model exhibited superior performance and showed promising potential for inclusion in routine clinical diagnosis for MDD.


Subject(s)
Biomarkers , Depressive Disorder, Major , Magnetic Resonance Imaging , Neural Networks, Computer , Neuroimaging , Humans , Depressive Disorder, Major/blood , Depressive Disorder, Major/diagnostic imaging , Biomarkers/blood , Magnetic Resonance Imaging/methods , Adult , Female , Male , Neuroimaging/methods , Middle Aged , Algorithms , Orexins/blood , Gray Matter/diagnostic imaging , Gray Matter/pathology , Cytokines/blood , Machine Learning , Attention , Case-Control Studies
4.
BMC Psychol ; 12(1): 341, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38858753

ABSTRACT

BACKGROUND: Social media addiction (SMA) is an increasing problem, especially among young adults. Little is known about university students' SMA and family functioning. This study aimed to explore the mediating effect of depressive symptoms and the moderating effect of peer support in the relationship between family functioning and SMA among young adults. METHODS: A sample of 1862 Chinese university students completed an online survey including the Bergen Social Media Addiction Scale (BSMAS), Family APGAR, the Patient Health Questionnaire (PHQ-9), peer support, and demographic characteristics. Hierarchical regression and moderated mediation analysis were used to test the effects and pathways among them. RESULTS: Of the 1840 participants, 30.11% experienced SMA, 38.80% had family dysfunction and 15.98% had depressive symptoms. Hierarchical multiple regression showed better family functioning significantly predicted less SMA (ß = -0.26, p < 0.001) and lower depressive symptoms (ß = -0.58, p < 0.001), after adjusting for covariates. Mediation analysis verified that depressive symptoms mediated the effect of family functioning on SMA (indirect effect = -0.22, 95%CI[-0.28, -0.17]). Furthermore, the interaction of family functioning and peer support was negatively related to depressive symptoms (ß= -0.03, 95% CI[-0.05, -0.01]) and the interaction of depressive symptoms and peer support was positively related to SMA (ß = 0.01, 95%CI[0.004, 0.02]). Additional analysis further confirmed that peer support decreased depressive symptoms among young adults from dysfunctional families, and increased SMA behaviors in individuals with depressive symptoms. CONCLUSION: Better family functioning and lower depressive symptoms may contribute to less social media addiction among Chinese university students. Peer support could moderate the mediating role of depressive symptoms on social media addiction in individuals with family dysfunction.


Subject(s)
Depression , Peer Group , Social Support , Students , Humans , Male , Female , Students/psychology , Students/statistics & numerical data , Depression/psychology , Depression/epidemiology , Young Adult , Universities , Adult , Social Media/statistics & numerical data , Internet Addiction Disorder/psychology , China , Adolescent , Surveys and Questionnaires , Family Relations/psychology , Family/psychology , Mediation Analysis
5.
Front Microbiol ; 15: 1319654, 2024.
Article in English | MEDLINE | ID: mdl-38863759

ABSTRACT

Introduction: Systemic lupus erythematosus (SLE) is a chronic autoimmune disease. Mounting evidence suggests microbiota dysbiosis augment autoimmune response. This study aims to provide a systematic overview of this research field in SLE through a bibliometric analysis. Methods: We conducted a comprehensive search and retrieval of literature related to microbial researches in SLE from the Web of Science Core Collection (WOSCC) database. The retrieved articles were subjected to bibliometric analysis using VOSviewer and Bibliometricx to explore annual publication output, collaborative patterns, research hotspots, current research status, and emerging trends. Results: In this study, we conducted a comprehensive analysis of 218 research articles and 118 review articles. The quantity of publications rises annually, notably surging in 2015 and 2018. The United States and China emerged as the leading contributors in microbial research of SLE. Mashhad University of Medical Sciences had the highest publication outputs among the institutions. Frontiers in Immunology published the most papers. Luo XM and Margolles A were the most prolific and highly cited contributors among individual authors. Microbial research in SLE primarily focused on changes in microbial composition, particularly gut microbiota, as well as the mechanisms and practical applications in SLE. Recent trends emphasize "metabolites," "metabolomics," "fatty acids," "T cells," "lactobacillus," and "dietary supplementation," indicating a growing emphasis on microbial metabolism and interventions in SLE. Conclusion: This study provides a thorough analysis of the research landscape concerning microbiota in SLE. The microbial research in SLE mainly focused on three aspects: microbial dysbiosis, mechanism studies and translational studies (microbiota-based therapeutics). It identifies current research trends and focal points, offering valuable guidance for scholars in the field.

6.
Discov Oncol ; 15(1): 209, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38834851

ABSTRACT

Colorectal cancer is a leading cause of cancer-related mortality worldwide. Traditionally, colorectal cancer has been recognized as a disease caused by genetic mutations. However, recent studies have revealed the significant role of epigenetic alterations in the progression of colorectal cancer. Epithelial-mesenchymal transition, a critical step in cancer cell metastasis, has been found to be closely associated with the tumor microenvironment and immune factors, thereby playing a crucial role in many kinds of biological behaviors of cancers. In this review, we explored the impact of N6-methyladenosine and post-translational modifications (like methylation, acetylation, ubiquitination, SUMOylation, glycosylation, etc.) on the process of epithelial-mesenchymal transition in colorectal cancer and the epigenetic regulation for the transcription factors and pathways correlated to epithelial-mesenchymal transition. Furthermore, we emphasized that the complex regulation of epithelial-mesenchymal transition by epigenetics can provide new strategies for overcoming drug resistance and improving treatment outcomes. This review aims to provide important scientific evidence for the prevention and treatment of colorectal cancer based on epigenetic modifications.

7.
PLoS Negl Trop Dis ; 18(6): e0012235, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38870200

ABSTRACT

BACKGROUND: Schistosomiasis japonica represents a significant public health concern in South Asia. There is an urgent need to optimize existing schistosomiasis diagnostic techniques. This study aims to develop models for the different stages of liver fibrosis caused by Schistosoma infection utilizing ultrasound radiomics and machine learning techniques. METHODS: From 2018 to 2022, we retrospectively collected data on 1,531 patients and 5,671 B-mode ultrasound images from the Second People's Hospital of Duchang City, Jiangxi Province, China. The datasets were screened based on inclusion and exclusion criteria suitable for radiomics models. Liver fibrosis due to Schistosoma infection (LFSI) was categorized into four stages: grade 0, grade 1, grade 2, and grade 3. The data were divided into six binary classification problems, such as group 1 (grade 0 vs. grade 1) and group 2 (grade 0 vs. grade 2). Key radiomic features were extracted using Pyradiomics, the Mann-Whitney U test, and the Least Absolute Shrinkage and Selection Operator (LASSO). Machine learning models were constructed using Support Vector Machine (SVM), and the contribution of different features in the model was described by applying Shapley Additive Explanations (SHAP). RESULTS: This study ultimately included 1,388 patients and their corresponding images. A total of 851 radiomics features were extracted for each binary classification problems. Following feature selection, 18 to 76 features were retained from each groups. The area under the receiver operating characteristic curve (AUC) for the validation cohorts was 0.834 (95% CI: 0.779-0.885) for the LFSI grade 0 vs. LFSI grade 1, 0.771 (95% CI: 0.713-0.835) for LFSI grade 1 vs. LFSI grade 2, and 0.830 (95% CI: 0.762-0.885) for LFSI grade 2 vs. LFSI grade 3. CONCLUSION: Machine learning models based on ultrasound radiomics are feasible for classifying different stages of liver fibrosis caused by Schistosoma infection.


Subject(s)
Feasibility Studies , Liver Cirrhosis , Schistosoma japonicum , Schistosomiasis japonica , Ultrasonography , Humans , Schistosomiasis japonica/diagnostic imaging , Ultrasonography/methods , Male , Liver Cirrhosis/diagnostic imaging , Female , Retrospective Studies , Middle Aged , Adult , Schistosoma japonicum/classification , Schistosoma japonicum/isolation & purification , China , Animals , Machine Learning , Support Vector Machine , Aged , Young Adult , Adolescent , Liver/diagnostic imaging , Liver/parasitology , Liver/pathology , Radiomics
9.
PLoS One ; 19(5): e0302142, 2024.
Article in English | MEDLINE | ID: mdl-38722957

ABSTRACT

We explore theoretically Goos-Hänchen (GH) shift around the defect mode in superconducting defective photonic crystals (PCs) in cryogenic environment. The defective PCs are constructed by alternating semiconductors and superconductors. A defect mode arises in the photonic bandgap and sensitively depends on environment temperature and hydrostatic pressure. Reflection and transmission coefficient phases make an abruptly jump at the defect mode and giant GH shifts have been achieved around this mode. The maximum GH shift can get as high as 103λ (incident wavelength), which could be modulated by the values of temperature and hydrostatic pressure. This study may be utilized for pressure- or temperature-sensors in cryogenic environment.


Subject(s)
Photons , Crystallization , Superconductivity , Semiconductors , Hydrostatic Pressure , Temperature
10.
Int J Nanomedicine ; 19: 3943-3956, 2024.
Article in English | MEDLINE | ID: mdl-38708179

ABSTRACT

Autoimmune diseases refer to a group of conditions where the immune system produces an immune response against self-antigens, resulting in tissue damage. These diseases have profound impacts on the health of patients. In recent years, with the rapid development in the field of biomedicine, engineered exosomes have emerged as a noteworthy class of biogenic nanoparticles. By precisely manipulating the cargo and surface markers of exosomes, engineered exosomes have gained enhanced anti-inflammatory, immunomodulatory, and tissue reparative abilities, providing new prospects for the treatment of autoimmune diseases. Engineered exosomes not only facilitate the efficient delivery of bioactive molecules including nucleic acids, proteins, and cytokines, but also possess the capability to modulate immune cell functions, suppress inflammation, and restore immune homeostasis. This review mainly focuses on the applications of engineered exosomes in several typical autoimmune diseases. Additionally, this article comprehensively summarizes the current approaches for modification and engineering of exosomes and outlines their prospects in clinical applications. In conclusion, engineered exosomes, as an innovative therapeutic approach, hold promise for the management of autoimmune diseases. However, while significant progress has been made, further rigorous research is still needed to address the challenges that engineered exosomes may encounter in the therapeutic intervention process, in order to facilitate their successful translation into clinical practice and ultimately benefit a broader population of patients.


Subject(s)
Autoimmune Diseases , Exosomes , Exosomes/immunology , Humans , Autoimmune Diseases/therapy , Autoimmune Diseases/immunology , Animals , Nanoparticles/chemistry
12.
BMC Psychol ; 12(1): 190, 2024 Apr 06.
Article in English | MEDLINE | ID: mdl-38582933

ABSTRACT

BACKGROUND: Social anxiety has been shown to affect college students' academic performance. However, the role of social media addiction and academic engagement in this association is unclear. METHODS: A total 2661 college students completed a self-report questionnaire including Liebowitz Social Anxiety Scale, the Bergen Social Media Addiction Scale, the Utrecht Student Work Engagement Scale for Students, and the grade point average. Hayes' PROCESS macro for SPSS was employed to test the serial mediation effect. RESULTS: Results indicated that social anxiety was negatively related to academic performance, only academic engagement played a single mediating role in the relationship between social anxiety and academic performance, meanwhile social media addiction and academic engagement acted as serial mediators between social anxiety on academic performance. CONCLUSIONS: Social media addiction and academic engagement can explain the potential mechanisms of the association between social anxiety and academic performance, which have implications for devising intervention strategies to enhance the mental health and academic outcomes of college students.


Subject(s)
Academic Performance , Acceptance and Commitment Therapy , Humans , Internet Addiction Disorder , Students , Anxiety
13.
Environ Sci Technol ; 58(19): 8215-8227, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38687897

ABSTRACT

Per- and polyfluoroalkyl substances (PFAS) are extensively utilized in varieties of products and tend to accumulate in the human body including umbilical cord blood and embryos/fetuses. In this study, we conducted an assessment and comparison of the potential early developmental toxicity of perfluorooctanoic acid (PFOA), undecafluorohexanoic acid (PFHxA), heptafluorobutyric acid, perfluorooctanesulfonate (PFOS), perfluorohexanesulfonate, and perfluorobutyric acid at noncytotoxic concentrations relevant to human exposure using models based on human embryonic stem cells in both three-dimensional embryoid body (EB) and monolayer differentiation configurations. All six compounds influenced the determination of cell fate by disrupting the expression of associated markers in both models and, in some instances, even led to alterations in the formation of cystic EBs. The expression of cilia-related gene IFT122 was significantly inhibited. Additionally, PFOS and PFOA inhibited ciliogenesis, while PFOA specifically reduced the cilia length. Transcriptome analysis revealed that PFOS altered 1054 genes and disrupted crucial signaling pathways such as WNT and TGF-ß, which play integral roles in cilia transduction and are critical for early embryonic development. These results provide precise and comprehensive insights into the potential adverse health effects of these six PFAS compounds directly concerning early human embryonic development.


Subject(s)
Fluorocarbons , Human Embryonic Stem Cells , Humans , Human Embryonic Stem Cells/drug effects , Fluorocarbons/toxicity , Cell Differentiation/drug effects
14.
iScience ; 27(2): 108899, 2024 Feb 16.
Article in English | MEDLINE | ID: mdl-38559585

ABSTRACT

Preeclampsia (PE) is a pregnancy-specific hypertensive disorder that severely impairs maternal and fetal health. However, its pathogenesis remains elusive. NOP2/Sun5 (NSUN5) is an RNA methyltransferase. This study discovered a significant correlation between rs77133388 of NSUN5 and PE in a cohort of 868 severe PE patients and 982 healthy controls. To further explore this association, the researchers generated single-base mutant mice (NSUN5 R295C) at rs77133388. The pregnant NSUN5 R295C mice exhibited PE symptoms. Additionally, compared to the controls, the decidual area of the placenta was significantly reduced in NSUN5 R295C mice, and their decidualization was impaired with a significantly decrease in polyploid cell numbers after artificially induced decidualization. The study also found a decrease in phosphorylated JAK2, STAT3, and IL-11Rα, Cyclin D3 expression in NSUN5 R295C mice. Overall, these findings suggest that NSUN5 mutation potentially alters decidualization through the IL-11Rα/JAK2/STAT3/Cyclin D3 pathway, ultimately impairing placental development and contributing to PE occurrence.

15.
BMC Public Health ; 24(1): 899, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38532400

ABSTRACT

PURPOSE: To examine the knowledge, attitudes, and practices (KAP) of caregivers of children with Kawasaki disease toward Kawasaki disease. METHODS: This cross-sectional study was conducted at four hospitals in China from March 2023 to June 2023. The KAP scores were evaluated using a self-designed questionnaire (Cronbach's α = 0.840; KMO = 0.7381). Correlations between dimension scores were evaluated by Pearson correlation analysis. A structural equation model (SEM) was used to examine the relationships among factors. RESULTS: Of 643 surveyed, 49.50% were male caregivers. The mean knowledge, attitude, and practice scores were 7.12 ± 2.34 (possible range, 0-11), 29.23 ± 5.67 (possible range, 12-60), and 21.57 ± 5.34 (possible range, 6-30). Knowledge correlated with attitude (r = 0.172, P < 0.001) and practice (r = 0.280, P < 0.001). Attitude was significantly related to practice (r = 0.598, P < 0.001). SEM showed knowledge had a positive effect on attitudes (ß = 0.581, P < 0.001) and practices (ß = 0.786, P < 0.001). In addition, attitudes also positively affected practices (ß = 0.554, P < 0.001). Occupation type (ß = 0.598, P = 0.025) and monthly per capita income (ß=-0.750, P = 0.020) had different effects on attitudes, while monthly per capita income also had negative effects on practices (ß=-0.410, P = 0.021). CONCLUSION: Caregivers of children with Kawasaki disease have moderate knowledge and unfavorable attitudes but proactive practices toward this disease. The results could help design an educational intervention to improve KAP, which could translate into better patient management and outcomes. TRIAL REGISTRATION: Not applicable.


Subject(s)
Caregivers , Mucocutaneous Lymph Node Syndrome , Child , Humans , Male , Female , Cross-Sectional Studies , Health Knowledge, Attitudes, Practice , Surveys and Questionnaires
16.
Environ Pollut ; 347: 123743, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38462195

ABSTRACT

Newly synthesized chemicals are being introduced into the environment without undergoing proper toxicological evaluation, particularly in terms of their effects on the vulnerable neurodevelopment. Thus, it is important to carefully assess the developmental neurotoxicity of these novel environmental contaminants using methods that are closely relevant to human physiology. This study comparatively evaluated the potential developmental neurotoxicity of 19 prevalent environmental chemicals including neonicotinoids (NEOs), organophosphate esters (OPEs), and synthetic phenolic antioxidants (SPAs) at environment-relevant doses (100 nM and 1 µM), using three commonly employed in vitro neurotoxicity models: human neural stem cells (NSCs), as well as the SK-N-SH and PC12 cell lines. Our results showed that NSCs were more sensitive than SK-N-SH and PC12 cell lines. Among all the chemicals tested, the two NEOs imidaclothiz (IMZ) and cycloxaprid (CYC), as well as the OPE tris(1,3-dichloro-2-propyl) phosphate (TDCIPP), generated the most noticeable perturbation by impairing NSC maintenance and neuronal differentiation, as well as promoting the epithelial-mesenchymal transition process, likely via activating NF-κB signaling. Our data indicate that novel NEOs and OPEs, particularly IMZ, CYC, and TDCIPP, may not be safe alternatives as they can affect NSC maintenance and differentiation, potentially leading to neural tube defects and neuronal differentiation dysplasia in fetuses.


Subject(s)
Flame Retardants , Humans , Flame Retardants/analysis , Organophosphates/toxicity , Phosphates/analysis , Cell Differentiation , Esters , Environmental Monitoring
17.
J Cell Mol Med ; 28(8): e18247, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38520212

ABSTRACT

Malignant melanoma (MM) is a highly aggressive and deadly form of skin cancer, primarily caused by recurrence and metastasis. Therefore, it is crucial to investigate the regulatory mechanisms underlying melanoma recurrence and metastasis. Our study has identified a potential targeted regulatory relationship between LINC02202, miR-526b-3p and XBP1 in malignant melanoma. Through the regulation of the miR-526b-3p/XBP1 signalling pathway, LINC02202 may play a role in tumour progression and immune infiltration and inhibiting the expression of LINC02202 can increase the efficacy of immunotherapy for melanoma. Our findings shed light on the impact of LINC02202/XBP1 on the phenotype and function of malignant melanoma cells. Furthermore, this study provides a theoretical foundation for the development of novel immunotherapy strategies for malignant melanoma.


Subject(s)
Melanoma , MicroRNAs , Skin Neoplasms , Humans , Melanoma/drug therapy , Melanoma/genetics , Melanoma/pathology , MicroRNAs/metabolism , Programmed Cell Death 1 Receptor/metabolism , Antibodies, Monoclonal/pharmacology , Antibodies, Monoclonal/therapeutic use , Cell Line, Tumor , Skin Neoplasms/genetics , Drug Delivery Systems , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , X-Box Binding Protein 1/genetics , X-Box Binding Protein 1/metabolism
18.
Chem Biol Interact ; 392: 110953, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38471628

ABSTRACT

Kawasaki disease (KD), an acute exanthematous febrile pediatric illness involving systemic non-specific inflammatory reactions in small- and medium-sized arteries, poses a significant risk of coronary artery and myocardial inflammatory injury. Developing new KD treatments with improved safety and fewer side-effects is highly desirable. Forsythoside B (FTS-B), extracted from the Forsythia suspensa plant, exerts anti-inflammatory activity by inhibiting NF-κB, which is regulated by SIRT1, the reduced expression of which is strongly associated with cardiovascular disease. However, it has yet to be established whether FTS-B influences KD-related inflammatory damage. In this study, we investigated the effects of FTS-B on inflammation in cellular and murine models of KD. Our findings revealed that KD is associated with cardiac dysfunction and inflammatory injury to myocardial and human coronary artery endothelial cells (HCAECs), resulting in a pyroptosis-feedback loop. Both cellular and KD models were characterized by reduced SIRT1 expression and increased NF-κB p65 expression. Contrastingly, the rates of pyroptosis in both murine model myocardial tissues and HCAECs were significantly alleviated in response to FTS-B treatment. Also in both models, we detected an increase of SIRT1 expression and a decrease in the expression of p65. Further examination of the protective mechanism of FTS-B using the SIRT1-specific inhibitor, EX 527, revealed that this inhibitor blocked the palliative effects of FTS-B on inflammatory injury-induced pyroptosis. These results highlight the potential utility of the SIRT1-NF-κB-p65 pathway as a therapeutic target for KD treatment and demonstrate that FTS-B can alleviate KD-induced cardiac and HCAEC inflammatory injury via inhibition of pyroptosis.


Subject(s)
Caffeic Acids , Glucosides , Mucocutaneous Lymph Node Syndrome , NF-kappa B , Humans , Mice , Animals , Child , NF-kappa B/metabolism , Mucocutaneous Lymph Node Syndrome/complications , Mucocutaneous Lymph Node Syndrome/drug therapy , Mucocutaneous Lymph Node Syndrome/metabolism , Pyroptosis , Endothelial Cells/metabolism , Sirtuin 1/metabolism , Signal Transduction , Inflammation/drug therapy
19.
Mol Biotechnol ; 2024 Mar 18.
Article in English | MEDLINE | ID: mdl-38498283

ABSTRACT

Propofol (Pro), a prevalent intravenous anesthetic, has recently been recognized for its potential in mitigating ischemia-reperfusion (I/R) injuries. Despite a plethora of evidence suggesting the beneficial effects of low-dose Pro in renal I/R injury (RI/R), its role in modulating pyroptosis in renal tubular epithelial cells consequent to RI/R has not been thoroughly elucidated. In our investigation, we explored the therapeutic potential of Pro against pyroptosis in renal tubular epithelial cells under the duress of RI/R, employing both in vivo and in vitro models, while deciphering the intricate molecular pathways involved. Our results demonstrate an elevation in the expression of miR-143-3p, contrasted by a diminution in ATPase Na + /K + Transporting Subunit Alpha 2 (ATP1A2) under RI/R conditions. Pro effectively mitigates apoptosis in renal tubular epithelial cells induced by RI/R, principally characterized by the inhibition of pro-inflammatory cytokines interleukin (IL-)-1ß and IL-18, enhancement of cellular viability, reduction in the ratio of pyroptotic cells, and suppression of nucleotide-binding domain and leucine-rich repeat-related family, pyrin domain containing 3 inflammasome activation along with the expression of cleaved caspase-1, and gasdermin D. Both knockdown and overexpression studies of miR-143-3p revealed its pivotal role in modulating RI/R-induced tubular cell pyroptosis. Notably, Pro's capacity to inhibit pyroptosis in renal tubular epithelial cells was found to be reversible following ATP1A2 knockdown. Furthermore, our study unveils miR-143-3p as a targeted regulator of ATP1A2 expression. From a mechanistic standpoint, Pro's therapeutic efficacy is attributed to its regulatory influence on miR-143-3p and ATP1A2 expression levels. In conclusion, our findings pioneer the understanding that Pro can significantly ameliorate pyroptosis in renal tubular epithelial cells in the context of RI/R, predominantly through the modulation of the miR-143-3p/ATP1A2 axis. This novel insight furnishes robust empirical support for the development of targeted therapeutics and clinical strategies in addressing RI/R.

20.
Environ Sci Pollut Res Int ; 31(14): 21578-21590, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38393566

ABSTRACT

The impediment of sludge resource utilization stems from the presence of heavy metals within the sludge matrix. To optimize heavy metal removal techniques from undried sludge, it is essential to study the distribution of heavy metals in the sludge flocs structure and the changes in morphology in the sludge cells after different treatments. In this study, the sludge was subjected to chemical treatments using citric acid (CA), EDTA, and saponin, as well as electrokinetic treatment at 2 V/cm. The distribution and migration of Cu, Ni, and Zn in sludge flocs after various treatment methods were analyzed. The heavy metals were found to migrate from intracellular to extracellular polymeric substances (EPS) without causing extensive sludge cell lysis. They gradually diffused outward with the dispersion of the EPS layer. The migration efficiency of the three heavy metals in the sludge flocs was Zn, Ni, and Cu. This was mainly related to the initial distribution and morphology of the heavy metals. Under the influence of chemicals and an electric field, the acid-soluble and reducible heavy metals in the cells partially migrated to the EPS, while the stable heavy metals transformed into an unstable state. Furthermore, the order of chemical reagents in terms of their effect on the migration efficiency of heavy metals was CA > EDTA > Saponin, owing to the varying binding strengths of heavy metals and their impact on the degree of loosening of the EPS. Especially after CA treatment a greater proportion of Cu, Ni, and Zn were transferred from the cells to the EPS. The acidification effect near the anode during electrokinetic treatment intensifies the migration of heavy metals. This study provides basic research for subsequent engineering optimization aimed at removing heavy metals from sludge.


Subject(s)
Metals, Heavy , Saponins , Water Pollutants, Chemical , Sewage/chemistry , Extracellular Polymeric Substance Matrix/chemistry , Edetic Acid , Water Pollutants, Chemical/analysis , Metals, Heavy/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL