Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 80
Filter
1.
J Biol Chem ; : 107522, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38960034

ABSTRACT

Chemotherapy is still the main therapeutic strategy for gastric cancer (GC). However, most patients eventually acquire multidrug resistance (MDR). Hyperactivation of the EGFR signaling pathway contributes to MDR by promoting cancer cell proliferation and inhibiting apoptosis. We previously identified the secreted protein CGA as a novel ligand of EGFR and revealed a CGA/EGFR/GATA2 positive feedback circuit that confers MDR in GC. Herein, we outline a microRNA-based treatment approach for MDR reversal that targets both CGA and GATA2. We observed increased expression of CGA and GATA2 and increased activation of EGFR in GC samples. Bioinformatic analysis revealed that miR-107 could simultaneously target CGA and GATA2, and the low expression of miR-107 was correlated with poor prognosis in GC patients. The direct interactions between miR-107 and CGA or GATA2 were validated by luciferase reporter assays and western blot analysis. Overexpression of miR-107 in MDR GC cells increased their susceptibility to chemotherapeutic agents, including fluorouracil, adriamycin and vincristine, in vitro. Notably, intratumor injection of the miR-107 prodrug enhanced MDR xenograft sensitivity to chemotherapies in vivo. Molecularly, targeting CGA and GATA2 with miR-107 inhibited EGFR downstream signaling, as evidenced by the reduced phosphorylation of ERK and AKT. These results suggest that miR-107 may contribute to the development of a promising therapeutic approach for the treatment of MDR in GC.

2.
Bioresour Technol ; 406: 130990, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38885727

ABSTRACT

Chemoautotrophs, the crucial contributors to biological carbon fixation, derive energy from reducing specific inorganic substances and utilize CO2 for growth. However, the release of extracellular free organic carbon (EFOC) by chemoautotrophic microorganisms can inhibit their own growth and metabolism. To reduce the feedback inhibition effect, a low-release biochar (BC-LR) was applied to adsorb EFOC. BC-LR not only adsorbed EFOC, but also selectively adsorbed the main inhibitory component, low molecular weight organics, in EFOC. In contrast, ordinary biochar could not effectively adsorb EFOC and its addition inhibited microbial growth and CO2 fixation. In Transwell culture, BC-LR promoted microbial growth by 190% and CO2 fixation by 29%, and exhibited better economic advantage, when compared with granular activated carbon. These findings provide a novel insight into the interaction between biochar and autotrophic microbial metabolism, offering an economically feasible approach to mitigate feedback inhibition of metabolites and promoting biological CO2 fixation.

3.
Cancer Biol Med ; 21(6)2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38940668

ABSTRACT

Targeted therapy is crucial for advanced colorectal cancer (CRC) positive for genetic drivers. With advances in deep sequencing technology and new targeted drugs, existing standard molecular pathological detection systems and therapeutic strategies can no longer meet the requirements for careful management of patients with advanced CRC. Thus, rare genetic variations require diagnosis and targeted therapy in clinical practice. Rare gene mutations, amplifications, and rearrangements are usually associated with poor prognosis and poor response to conventional therapy. This review summarizes the clinical diagnosis and treatment of rare genetic variations, in genes including erb-b2 receptor tyrosine kinase 2 (ERBB2), B-Raf proto-oncogene, serine/threonine kinase (BRAF), ALK receptor tyrosine kinase/ROS proto-oncogene 1, receptor tyrosine kinase (ALK/ROS1), neurotrophic receptor tyrosine kinases (NTRKs), ret proto-oncogene (RET), fibroblast growth factor receptor 2 (FGFR2), and epidermal growth factor receptor (EGFR), to enhance understanding and identify more accurate personalized treatments for patients with rare genetic variations.


Subject(s)
Colorectal Neoplasms , Genetic Variation , Proto-Oncogene Mas , Humans , Colorectal Neoplasms/genetics , Colorectal Neoplasms/therapy , Colorectal Neoplasms/diagnosis , Mutation , Proto-Oncogene Proteins c-ret/genetics , Molecular Targeted Therapy , Proto-Oncogene Proteins B-raf/genetics , Precision Medicine , Biomarkers, Tumor/genetics , Protein-Tyrosine Kinases/genetics , Proto-Oncogene Proteins/genetics
4.
Biochem Biophys Res Commun ; 723: 150177, 2024 Sep 03.
Article in English | MEDLINE | ID: mdl-38810320

ABSTRACT

PURPOSE: We found a novel lncRNA named lncAC138150.2 related to the overall survival and staging of patients with colorectal cancer (CRC) by bioinformatic analysis using data from the Cancer Genome Atlas (TCGA), and the study aimed to elucidate the function of lncAC138150.2 and underlying mechanisms. METHODS: Target molecules were knocked down by transfection with antisense oligonucleotides (ASOs), siRNAs, or lentiviruses and overexpressed by transfection with plasmids. The function of lncAC138150.2 was determined using histological, cytological, and molecular biology methods. The underlying mechanism of lncAC138150.2 function was investigated using RNA-seq, bioinformatics analysis, and molecular biology methods. RESULTS: The expression of lncAC138150.2 was increased in colorectal tissues compared with paired normal tissues. The lncAC138150.2 knockdown increased apoptosis but did not change the cell proliferation, cell cycle distribution, or cell migration ability of CRC cells, while lncAC138150.2 overexpression decreased CRC apoptosis. lncAC138150.2 was mainly located in the cell nucleus, and each lncAC138150.2 transcript knockdown increased CRC apoptosis. BCL-2 pathway was significantly altered in apoptosis induced by lncAC138150.2 knockdown, which was alleviated by BAX knockdown. The expression of LYN was significantly decreased with lncAC138150.2 knockdown, LYN knockdown increased CRC apoptosis, and its overexpression completely alleviated CRC apoptosis induced by lncAC138150.2 knockdown. CONCLUSION: lncAC138150.2 significantly inhibited CRC apoptosis and affected the prognosis of patients with CRC, through the LYN/BCL-2 pathway.


Subject(s)
Apoptosis , Colorectal Neoplasms , Gene Expression Regulation, Neoplastic , Proto-Oncogene Proteins c-bcl-2 , RNA, Long Noncoding , Signal Transduction , src-Family Kinases , Humans , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , Colorectal Neoplasms/metabolism , Apoptosis/genetics , Proto-Oncogene Proteins c-bcl-2/metabolism , Proto-Oncogene Proteins c-bcl-2/genetics , Prognosis , src-Family Kinases/metabolism , src-Family Kinases/genetics , Cell Line, Tumor , Cell Proliferation/genetics , Female , Male , Cell Movement/genetics
5.
Organogenesis ; 20(1): 2356339, 2024 Dec 31.
Article in English | MEDLINE | ID: mdl-38796830

ABSTRACT

This study is to investigate the therapeutical effect and mechanisms of human-derived adipose mesenchymal stem cells (ADSC) in relieving adriamycin (ADR)-induced nephropathy (AN). SD rats were separated into normal group, ADR group, ADR+Losartan group (20 mg/kg), and ADR + ADSC group. AN rats were induced by intravenous injection with adriamycin (8 mg/kg), and 4 d later, ADSC (2 × 105 cells/mouse) were administrated twice with 2 weeks interval time (i.v.). The rats were euthanized after the 6 weeks' treatment. Biochemical indicators reflecting renal injury, such as blood urea nitrogen (BUN), neutrophil gelatinase alpha (NGAL), serum creatinine (Scr), inflammation, oxidative stress, and pro-fibrosis molecules, were evaluated. Results demonstrated that we obtained high qualified ADSCs for treatment determined by flow cytometry, and ADSCs treatment significantly ameliorated renal injuries in DN rats by decreasing BUN, Scr and NGAL in peripheral blood, as well as renal histopathological injuries, especially protecting the integrity of podocytes by immunofluorescence. Furthermore, ADSCs treatment also remarkably reduced the renal inflammation, oxidative stress, and fibrosis in DN rats. Preliminary mechanism study suggested that the ADSCs treatment significantly increased renal neovascularization via enhancing proangiogenic VEGF production. Pharmacodynamics study using in vivo imaging confirmed that ADSCs via intravenous injection could accumulate into the kidneys and be alive at least 2 weeks. In a conclusion, ADSC can significantly alleviate ADR-induced nephropathy, and mainly through reducing oxidative stress, inflammation and fibrosis, as well as enhancing VEGF production.


Subject(s)
Adipose Tissue , Doxorubicin , Kidney Diseases , Rats, Sprague-Dawley , Animals , Humans , Adipose Tissue/cytology , Male , Kidney Diseases/chemically induced , Kidney Diseases/therapy , Rats , Mesenchymal Stem Cells/cytology , Neovascularization, Physiologic , Mesenchymal Stem Cell Transplantation , Oxidative Stress/drug effects , Kidney/pathology , Fibrosis , Vascular Endothelial Growth Factor A/metabolism , Stromal Cells , Angiogenesis
6.
Cell ; 187(9): 2288-2304.e27, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38565142

ABSTRACT

Taurine is used to bolster immunity, but its effects on antitumor immunity are unclear. Here, we report that cancer-related taurine consumption causes T cell exhaustion and tumor progression. The taurine transporter SLC6A6 is correlated with aggressiveness and poor outcomes in multiple cancers. SLC6A6-mediated taurine uptake promotes the malignant behaviors of tumor cells but also increases the survival and effector function of CD8+ T cells. Tumor cells outcompete CD8+ T cells for taurine by overexpressing SLC6A6, which induces T cell death and malfunction, thereby fueling tumor progression. Mechanistically, taurine deficiency in CD8+ T cells increases ER stress, promoting ATF4 transcription in a PERK-JAK1-STAT3 signaling-dependent manner. Increased ATF4 transactivates multiple immune checkpoint genes and induces T cell exhaustion. In gastric cancer, we identify a chemotherapy-induced SP1-SLC6A6 regulatory axis. Our findings suggest that tumoral-SLC6A6-mediated taurine deficiency promotes immune evasion and that taurine supplementation reinvigorates exhausted CD8+ T cells and increases the efficacy of cancer therapies.


Subject(s)
CD8-Positive T-Lymphocytes , Membrane Glycoproteins , Taurine , Taurine/metabolism , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Animals , Humans , Mice , Cell Line, Tumor , Mice, Inbred C57BL , Endoplasmic Reticulum Stress , Activating Transcription Factor 4/metabolism , Signal Transduction , Female , Membrane Transport Proteins/metabolism , Membrane Transport Proteins/genetics , STAT3 Transcription Factor/metabolism
7.
J Immunother Cancer ; 12(3)2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38429070

ABSTRACT

BACKGROUND: The effectiveness of immune checkpoint inhibitors in colorectal cancer (CRC) is limited due to the low tumor neoantigen load and low immune infiltration in most microsatellite-stable (MSS) tumors. This study aimed to develop a mitochondria-targeted photodynamic therapy (PDT) approach to provoke host antitumor immunity of MSS-CRC and elucidate the underlying molecular mechanisms. METHODS: The role and mechanism of mitochondria-targeted PDT in inhibiting CRC progression and inducing pyroptosis were evaluated both in vitro and in vivo. The immune effects of PDT sensitization on PD-1 blockade were also assessed in CT26 and 4T1 tumor-bearing mouse models. RESULTS: Here, we report that PDT using IR700DX-6T, a photosensitizer targeting the mitochondrial translocation protein, may trigger an antitumor immune response initiated by pyroptosis in CRC. Mechanistically, IR700DX-6T-PDT produced reactive oxygen species on light irradiation and promoted downstream p38 phosphorylation and active caspase3 (CASP3)-mediated cleavage of gasdermin E (GSDME), subsequently inducing pyroptosis. Furthermore, IR700DX-6T-PDT enhanced the sensitivity of MSS-CRC cells to PD-1 blockade. Decitabine, a demethylation drug used to treat hematologic neoplasms, disrupted the abnormal methylation pattern of GSDME in tumor cells, enhanced the efficacy of IR700DX-6T-PDT, and elicited a potent antitumor immune response in combination with PD-1 blockade and IR700DX-6T-PDT. CONCLUSION: Our work provides clear a understanding of immunogenic cell death triggered by mitochondria-targeted PDT, offering a new approach for enhancing the efficacy of PD-1 blockade in CRC.


Subject(s)
Colorectal Neoplasms , Photochemotherapy , Animals , Mice , Cell Line, Tumor , Colorectal Neoplasms/therapy , Immunotherapy , Mitochondria/metabolism , Programmed Cell Death 1 Receptor/metabolism , Pyroptosis , Gasdermins/drug effects , Gasdermins/metabolism , Immune Checkpoint Inhibitors/pharmacology , Immune Checkpoint Inhibitors/therapeutic use
8.
Cancer Commun (Lond) ; 44(4): 469-490, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38512764

ABSTRACT

BACKGROUND: Chemoresistance is a major cause of treatment failure in gastric cancer (GC). Heterogeneous nuclear ribonucleoprotein A2B1 (hnRNPA2B1) is an N6-methyladenosine (m6A)-binding protein involved in a variety of cancers. However, whether m6A modification and hnRNPA2B1 play a role in GC chemoresistance is largely unknown. In this study, we aimed to investigate the role of hnRNPA2B1 and the downstream mechanism in GC chemoresistance. METHODS: The expression of hnRNPA2B1 among public datasets were analyzed and validated by quantitative PCR (qPCR), Western blotting, immunofluorescence, and immunohistochemical staining. The biological functions of hnRNPA2B1 in GC chemoresistance were investigated both in vitro and in vivo. RNA sequencing, methylated RNA immunoprecipitation, RNA immunoprecipitation, and RNA stability assay were performed to assess the association between hnRNPA2B1 and the binding RNA. The role of hnRNPA2B1 in maintenance of GC stemness was evaluated by bioinformatic analysis, qPCR, Western blotting, immunofluorescence, and sphere formation assays. The expression patterns of hnRNPA2B1 and downstream regulators in GC specimens from patients who received adjuvant chemotherapy were analyzed by RNAscope and multiplex immunohistochemistry. RESULTS: Elevated expression of hnRNPA2B1 was found in GC cells and tissues, especially in multidrug-resistant (MDR) GC cell lines. The expression of hnRNPA2B1 was associated with poor outcomes of GC patients, especially in those who received 5-fluorouracil treatment. Silencing hnRNPA2B1 effectively sensitized GC cells to chemotherapy by inhibiting cell proliferation and inducing apoptosis both in vitro and in vivo. Mechanically, hnRNPA2B1 interacted with and stabilized long noncoding RNA NEAT1 in an m6A-dependent manner. Furthermore, hnRNPA2B1 and NEAT1 worked together to enhance the stemness properties of GC cells via Wnt/ß-catenin signaling pathway. In clinical specimens from GC patients subjected to chemotherapy, the expression levels of hnRNPA2B1, NEAT1, CD133, and CD44 were markedly elevated in non-responders compared with responders. CONCLUSION: Our findings indicated that hnRNPA2B1 interacts with and stabilizes lncRNA NEAT1, which contribute to the maintenance of stemness property via Wnt/ß-catenin pathway and exacerbate chemoresistance in GC.


Subject(s)
Heterogeneous-Nuclear Ribonucleoprotein Group A-B , Heterogeneous-Nuclear Ribonucleoproteins , RNA, Long Noncoding , Stomach Neoplasms , Humans , Cell Line, Tumor , Drug Resistance, Neoplasm/genetics , Heterogeneous-Nuclear Ribonucleoprotein Group A-B/genetics , Heterogeneous-Nuclear Ribonucleoprotein Group A-B/metabolism , RNA, Long Noncoding/genetics , Stomach Neoplasms/drug therapy , Stomach Neoplasms/genetics , Stomach Neoplasms/metabolism
9.
PLoS One ; 19(3): e0299232, 2024.
Article in English | MEDLINE | ID: mdl-38446833

ABSTRACT

Digital economy has become a "new engine" that driving global economic growth. Nevertheless, numerous controversies persist regarding whether and how digital economy can facilitate the development of emerging industries. Thus, this paper investigates how digital economy affects creative industries development in China and whether innovation efficiency mediates this relationship. Drawing upon a panel data set containing 29 Chinese provinces from 2012 to 2019, an econometric model is constructed for empirical analysis. We find that digital economy significantly promotes creative industries development, and innovation efficiency plays a partial mediating role between digital economy and creative industries development. According to the influence mechanism, the digital economy of various regions could promote the creative industries development by improving the innovation efficiency. Finally, relevant suggestions were put forward from the expanding application paths, improving regional innovation efficiency, and creating an innovative environment.


Subject(s)
Industrial Development , Industry , China , Models, Econometric , Economic Development
10.
Gen Physiol Biophys ; 43(1): 73-84, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38312036

ABSTRACT

This study investigated whether microbubbles activated by low-frequency ultrasound enhanced the anti-tumor effects of curcumin in glioma cells. CCK8 proliferation assay, scratch migration assay, and transwell invasion assay were performed to estimate the proliferation, migration, and invasion rates of the glioma cells in blank control and different treatment groups, respectively. Quantitative RT-PCR (qRT-PCR) analysis was performed to determine the relative expression levels of VEGF and NCAM mRNAs in the various experimental groups. Western blotting was performed to determine the activity status of the TGF-ß1/Smad signaling pathway in various groups of glioma cells by estimating the expression levels of p-SMAD2/3, VEGF, and NCAM proteins. Combined treatment (Cur-Us-MBs) with microbubbles activated by low-frequency ultrasound and curcumin significantly reduced the in vitro proliferation, migration, and invasiveness of glioma cells compared to the control and other treatment groups. Furthermore, Cur-Us-MBs significantly reduced the expression levels of VEGF and NCAM mRNAs and proteins and p-Smad2/3 proteins , including those cells stimulated with rhTGF-ß. These suggested that microbubbles activated by low-frequency ultrasound enhanced the inhibition of TGF-ß1/Smad/VEGF/NCAM signaling pathway by curcumin,and enhanced the antitumor effects of curcumin by significantly reducing in vitro proliferation, migration, and invasiveness of glioma cells through this pathway.


Subject(s)
Curcumin , Glioma , Humans , Cell Line, Tumor , Cell Movement , Cell Proliferation , Curcumin/pharmacology , Glioma/drug therapy , Microbubbles , Neural Cell Adhesion Molecules/metabolism , Signal Transduction , Transforming Growth Factor beta1/metabolism , Vascular Endothelial Growth Factor A/metabolism , Smad Proteins/metabolism
11.
J Biol Chem ; 300(1): 105534, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38072050

ABSTRACT

Significant advances have been made in reprogramming various somatic cells into induced pluripotent stem cells (iPSCs) and in multi-lineage differentiation (transdifferentiation) into different tissues. These manipulable transdifferentiating techniques may be applied in cancer therapy. Limited works have been reported that cancer cell malignancy can be switched to benign phenotypes through reprogramming techniques. Here, we reported that two colorectal cancer (CRC) cell lines (DLD1, HT29) could be reprogrammed into iPSCs (D-iPSCs, H-iPSCs). D- and H-iPSCs showed reduced tumorigenesis. Furthermore, we successfully induced D- and H-iPSCs differentiation into terminally differentiated cell types such as cardiomyocyte, neuron, and adipocyte-like cells. Impressively, the differentiated cells exhibited further attenuated tumorigenesis in vitro and in vivo. RNA-Seq further indicated that epigenetic changes occurred after reprogramming and transdifferentiation that caused reduced tumorigenicity. Overall, our study indicated that CRC cells can be reprogrammed and further differentiated into terminally differentiated lineages with attenuation of their malignancy in vitro and in vivo. The current work sheds light on a potential multi-lineage differentiation therapeutic strategy for colorectal cancer.


Subject(s)
Carcinogenesis , Cell Transdifferentiation , Cellular Reprogramming Techniques , Colorectal Neoplasms , Induced Pluripotent Stem Cells , Humans , Carcinogenesis/pathology , Cell Differentiation/genetics , Colorectal Neoplasms/pathology , Colorectal Neoplasms/therapy
12.
Aging (Albany NY) ; 15(23): 14445-14456, 2023 Dec 13.
Article in English | MEDLINE | ID: mdl-38095633

ABSTRACT

Aims to investigate the relationship between nutritional biochemical indexes and hospitalization outcomes of COVID-19 patients, 132 continuous patients with COVID-19 from December 2022 to January 2023 in Lishui hospital were retrospectively analyzed, and the nutritional biochemical indexes in peripheral blood, such as total protein, albumin, calcium, phosphorus, and magnesium, were detected. Meanwhile, the levels of several cytokines and PBMC subtypes (CD4, CD3, CD8, NK and B cells) were detected too. The Spearman correlation analysis, one-way ANOVA and multivariate logit regression were conducted. Results suggested that the levels of total protein and albumin were significantly decreased in patients with poor outcomes, and the levels of calcium, phosphorus, and magnesium were significantly correlated with hospitalization outcomes. COVID-19 patients with diabetes had higher levels of IL-6 and IFN-γ than those patients without diabetes. The levels of IL-2, IFN-γ, IL-6 and Il-10 in the dead patients were significantly higher than those in the recovery and worse patients. Total protein and albumin were significantly positively correlated with levels of NK and B, CD4, CD8, CD3 lymphocytes. The levels of CD4, CD8 and CD3 lymphocytes were significantly decreased in dead patients than other patients. Multivariate logit regression analysis suggests that lymphocyte number, albumin and IL-6 are independent risk factors to evaluate the hospitalization outcome. In summary, nutritional biochemical indexes were significantly corelated with cytokines and PBMC subsets, and had an impact on the severity of COVID-19 patients. Improvement of low protein malnutrition is broad-spectrum and basic strategy to improve the hospitalization outcome of COVID-19.


Subject(s)
COVID-19 , Diabetes Mellitus , Humans , Retrospective Studies , Leukocytes, Mononuclear , Calcium , Interleukin-6 , Magnesium , Cytokines , Hospitalization , Albumins , Phosphorus
13.
Nutrients ; 15(22)2023 Nov 13.
Article in English | MEDLINE | ID: mdl-38004168

ABSTRACT

Crocin, a glycoside of crocetin, has been known as the principal component responsible for saffron's antidiabetic, anticancer, and anti-inflammatory effects. Crocetin, originating from the hydrolytic cleavage of crocin in biological systems, was subjected to ligand-based virtual screening in this investigation. Subsequent biochemical analysis unveiled crocetin, not crocin, as a novel dual GPR40 and GPR120 agonist, demonstrating a marked preference for GPR40 and GPR120 over peroxisome proliferator-activated receptors (PPAR)γ. This compound notably enhanced insulin and GLP-1 secretion from pancreatic ß-cells and intestinal neuroendocrine cells, respectively, presenting a dual mechanism of action in glucose-lowering effects. Docking simulations showed that crocetin emulates the binding characteristics of natural ligands through hydrogen bonds and hydrophobic interactions, whereas crocin's hindered fit within the binding pocket is attributed to steric constraints. Collectively, for the first time, this study unveils crocetin as the true active component of saffron, functioning as a GPR40/120 agonist with potential implications in antidiabetic interventions.


Subject(s)
Crocus , Hypoglycemic Agents , Hypoglycemic Agents/pharmacology , Crocus/chemistry , Receptors, G-Protein-Coupled/metabolism
14.
Sci Signal ; 16(803): eadh4210, 2023 09 19.
Article in English | MEDLINE | ID: mdl-37725664

ABSTRACT

Alternative splicing regulates gene expression and functional diversity and is often dysregulated in human cancers. Here, we discovered that the long noncoding RNA (lncRNA) MIR99AHG regulated alternative splicing to alter the activity of a chromatin remodeler and promote metastatic behaviors in colorectal cancer (CRC). MIR99AHG was abundant in invasive CRC cells and metastatic tumors from patients and promoted motility and invasion in cultured CRC cells. MIR99AHG bound to and stabilized the RNA splicing factor PTBP1, and this complex increased cassette exon inclusion in the mRNA encoding the chromatin remodeling gene SMARCA1. Specifically, MIR99AHG altered the nature of PTBP1 binding to the splice sites on intron 12 of SMARCA1 pre-mRNA, thereby triggering a splicing switch from skipping to including exon 13 to produce the long isoform, SMARCA1-L. SMARCA1, but not SMARCA1-L, suppressed invadopodia formation, cell migration, and invasion. Analysis of CRC samples revealed that the abundance of MIR99AHG transcript positively correlated with that of SMARCA1-L mRNA and PTBP1 protein and with poor prognosis in patients with CRC. Furthermore, TGF-ß1 secretion from cancer-associated fibroblasts increased MIR99AHG expression in CRC cells. Our findings identify an lncRNA that is induced by cues from the tumor microenvironment and that interacts with PTBP1 to regulate alternative splicing, potentially providing a therapeutic target and predictive biomarker for metastatic CRC.


Subject(s)
Colorectal Neoplasms , Podosomes , RNA, Long Noncoding , Humans , Alternative Splicing , Chromatin , Colorectal Neoplasms/genetics , Heterogeneous-Nuclear Ribonucleoproteins/genetics , Polypyrimidine Tract-Binding Protein/genetics , RNA Splicing , RNA, Long Noncoding/genetics , Tumor Microenvironment
15.
Oncogene ; 42(41): 3062-3074, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37634009

ABSTRACT

Gastric cancer (GC) is characterized by its vigorous chemoresistance to current therapies, which is attributed to the highly heterogeneous and immature phenotype of cancer stem cells (CSCs) during tumor initiation and progression. The secretory WNT2 ligand regulates multiple cancer pathways and has been demonstrated to be a potential therapeutic target for gastrointestinal tumors; however, its role involved in gastric CSCs (GCSCs) remains unclear. Here, we found that overexpression of WNT2 enhanced stemness properties to promote chemoresistance and tumorigenicity in GCSCs. Mechanistically, WNT2 was positively regulated by its transcription factor SOX4, and in turn, SOX4 was upregulated by the canonical WNT2/FZD8/ß-catenin signaling pathway to form an auto-regulatory positive feedback loop, resulting in the maintenance of GCSCs self-renewal and tumorigenicity. Furthermore, simultaneous overexpression of both WNT2 and SOX4 was correlated with poor survival and reduced responsiveness to chemotherapy in clinical GC specimens. Blocking WNT2 using a specific monoclonal antibody significantly disrupted the WNT2-SOX4 positive feedback loop in GCSCs and enhanced the chemotherapeutic efficacy when synergized with the chemo-drugs 5-fluorouracil and oxaliplatin in a GCSC-derived mouse xenograft model. Overall, this study identified a novel WNT2-SOX4 positive feedback loop as a mechanism for GCSCs-induced chemo-drugs resistance and suggested that the WNT2-SOX4 axis may be a potential therapeutic target for gastric cancer treatment.

16.
Cancer Biol Med ; 20(8)2023 08 08.
Article in English | MEDLINE | ID: mdl-37553810

ABSTRACT

Colorectal cancer (CRC) remains an enormous challenge to human health worldwide. Unfortunately, the mechanism underlying CRC progression is not well understood. Mounting evidence has confirmed that exosomes play a vital role in CRC progression, which has attracted extensive attention among researchers. In addition to acting as messengers between CRC cells, exosomes also participate in the CRC immunomodulatory process and reshape immune function. As stable message carriers and liquid biopsy option under development, exosomes are promising biomarkers in the diagnosis or treatment of CRC. In this review we have described and analyzed the biogenesis and release of exosomes and current research on the role of exosomes in immune regulation and metastasis of CRC. Moreover, we have discussed candidate exosomal molecules as potential biomarkers to diagnose CRC, predict CRC progression, or determine CRC chemoresistance, and described the significance of exosomes in the immunotherapy of CRC. This review provides insight to further understand the role of exosomes in CRC progression and identify valuable biomarkers that facilitate the clinical management of CRC patients.


Subject(s)
Colorectal Neoplasms , Exosomes , Humans , Colorectal Neoplasms/drug therapy , Biomarkers, Tumor
17.
Cancer Med ; 12(17): 17613-17631, 2023 09.
Article in English | MEDLINE | ID: mdl-37602699

ABSTRACT

BACKGROUND: Better predictors of patients with stage II/III gastric cancer (GC) most likely to benefit from adjuvant chemotherapy are urgently needed. This study aimed to assess the ability of CDX2 and mucin markers to predict prognosis and fluorouracil-based adjuvant chemotherapy benefits. METHODS: CDX2 and mucin protein expressions were examined by immunohistochemistry and compared with survival and adjuvant chemotherapy benefits in a prospective evaluation cohort of 782 stage II/III GC patients. Then, the main findings were validated in an independent validation cohort (n = 386) and an external mRNA sequencing dataset (ACRG cohort, n = 193). RESULTS: In the evaluation cohort, CDX2, CD10, MUC2, MUC5AC, and MUC6 expressions were observed in 59.7%, 26.7%, 27.6%, 55.1%, and 57.7% of patients, respectively. However, only the expression of CDX2 was found to be associated with adjuvant chemotherapy benefits. Most importantly, CDX2-negative patients had a poorer prognosis when treated with surgery only, while the prognosis of CDX2-negative and CDX2-positive patients was similar when receiving postoperative adjuvant chemotherapy. Further analysis revealed that patients with CDX2 negative tumors benefited from chemotherapy (5-year overall survival rates: 60.0% with chemotherapy vs. 23.2% with surgery-only, p < 0.001), whereas patients with CDX2 positive tumors did not (pinteraction = 0.004). Consistent results were obtained in the validation and ACRG cohorts. CONCLUSIONS: Negative expression of CDX2 is an independent risk factor for survival in stage II/III GC, but subsequent adjuvant chemotherapy is able to compensate for this unfavorable effect. Therefore, active chemotherapy is more urgent for patients with negative CDX2 expression than for patients with positive CDX2 expression.


Subject(s)
Mucins , Stomach Neoplasms , Humans , Mucins/genetics , Stomach Neoplasms/drug therapy , Stomach Neoplasms/genetics , Stomach Neoplasms/metabolism , CDX2 Transcription Factor/genetics , Biomarkers, Tumor/genetics , Prognosis , Chemotherapy, Adjuvant
18.
Sci Rep ; 13(1): 13673, 2023 08 22.
Article in English | MEDLINE | ID: mdl-37608034

ABSTRACT

Microclimate ecology is attracting renewed attention because of its fundamental importance in understanding how organisms respond to climate change. Many hot issues can be investigated in desert ecosystems, including the relationship between species distribution and environmental gradients (e.g., elevation, slope, topographic convergence index, and solar insolation). Species Distribution Models (SDMs) can be used to understand these relationships. We used data acquired from the important desert plant Nitraria tangutorum Bobr. communities and desert topographic factors extracted from LiDAR (Light Detection and Ranging) data of one square kilometer in the inner Mongolia region of China to develop SDMs. We evaluated the performance of SDMs developed with a variety of both the parametric and nonparametric algorithms (Bioclimatic Modelling (BIOCLIM), Domain, Mahalanobi, Generalized Linear Model, Generalized Additive Model, Random Forest (RF), and Support Vector Machine). The area under the receiver operating characteristic curve was used to evaluate these algorithms. The SDMs developed with RF showed the best performance based on the area under curve (0.7733). We also produced the Nitraria tangutorum Bobr. distribution maps with the best SDM and suitable habitat area of the Domain model. Based on the suitability map, we conclude that Nitraria tangutorum Bobr. is more suited to southern part with 0-20 degree slopes at an elevation of approximately 1010 m. This is the first attempt of modelling the effects of topographic heterogeneity on the desert species distribution on a small scale. The presented SDMs can have important applications for predicting species distribution and will be useful for preparing conservation and management strategies for desert ecosystems on a small scale.


Subject(s)
Ecosystem , Magnoliopsida , Algorithms , China , Climate Change , Ecology
19.
Life Sci ; 327: 121864, 2023 Aug 15.
Article in English | MEDLINE | ID: mdl-37336359

ABSTRACT

AIMS: Cisplatin is a widely-used drug in the clinical treatment of tumors, but kidney nephrotoxicity is one of the reasons that limits its widespread use. We previously found that 7-hydroxycoumarin-ß-D-glucuronide (7-HCG) was one of metabolites of skimmin and highly enriched in the kidneys and maintained a high blood concentration in skimmin-treated rats. Therefore, we investigated whether 7-HCG has a protective effect on cisplatin-induced acute kidney injury. MATERIALS AND METHODS: Male C57BL/6 mice were continuously administered 7-HCG for five days, and on the third day, an intraperitoneal injection of cisplatin was given to induce acute kidney injury. After 72 h, the mice were sacrificed for analysis. Serum and renal tissue were collected for renal function evaluation. RNA sequencing was used to explore mechanism, and further validated by western blot and immunohistochemistry. In addition, pharmacokinetic study of oral 7-HCG administration was performed to examine how much 7-hydroxycoumarin (7-HC) was metabolized and 7-HC possible effect on renal protection. KEY FINDINGS: 7-HCG significantly reduced serum BUN and SCR levels, and alleviated pathological damage in renal tissue, and reduced the renal index. RNA sequencing revealed that 7-HCG could reverse p38 MAPK regulation and apoptosis. By western blotting, it was found that 7-HCG could reduce renal injury by reducing p-p38, p-ERK, p-JNK, cleaved-caspase3 and Bax. The immunohistochemical results of cleaved-caspase3 were consistent with western blotting. 7-HCG also significantly reduced the production of ROS in kidney tissue. Pharmacokinetic experiments have shown that 7-HCG in the blood increased rapidly and was eliminated slowly, with an average t1/2ß of 18.3 h. And the concentration of 7-HCG in the target organ kidney was about 4 times higher than that in blood. SIGNIFICANCE: Our findings indicate that 7-HCG could exert its protective effect against cisplatin-induced acute kidney injury by inhibiting apoptosis via p38 MAPK regulation and elucidates its pharmacokinetics.


Subject(s)
Acute Kidney Injury , Cisplatin , Mice , Male , Rats , Animals , Cisplatin/toxicity , Glucuronides/adverse effects , Glucuronides/metabolism , p38 Mitogen-Activated Protein Kinases/metabolism , Mice, Inbred C57BL , Acute Kidney Injury/chemically induced , Acute Kidney Injury/drug therapy , Acute Kidney Injury/prevention & control , Kidney/metabolism , Apoptosis , Umbelliferones/pharmacology , Umbelliferones/therapeutic use
20.
Antioxid Redox Signal ; 39(7-9): 472-490, 2023 09.
Article in English | MEDLINE | ID: mdl-37002890

ABSTRACT

Significance: Redox dysregulation under pathological conditions results in excessive reactive oxygen species (ROS) accumulation, leading to oxidative stress and cellular oxidative damage. ROS function as a double-edged sword to modulate various types of cancer development and survival. Recent Advances: Emerging evidence has underlined that ROS impact the behavior of both cancer cells and tumor-associated stromal cells in the tumor microenvironment (TME), and these cells have developed complex systems to adapt to high ROS environments during cancer progression. Critical Issues: In this review, we integrated current progress regarding the impact of ROS on cancer cells and tumor-associated stromal cells in the TME and summarized how ROS production influences cancer cell behaviors. Then, we summarized the distinct effects of ROS during different stages of tumor metastasis. Finally, we discussed potential therapeutic strategies for modulating ROS for the treatment of cancer metastasis. Future Directions: Targeting the ROS regulation during cancer metastasis will provide important insights into the design of effective single or combinatorial cancer therapeutic strategies. Well-designed preclinical studies and clinical trials are urgently needed to understand the complex regulatory systems of ROS in the TME. Antioxid. Redox Signal. 39, 472-490.


Subject(s)
Neoplasms , Tumor Microenvironment , Humans , Reactive Oxygen Species , Oxidative Stress , Neoplasms/pathology , Oxidation-Reduction
SELECTION OF CITATIONS
SEARCH DETAIL