Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 481
Filter
1.
Adv Sci (Weinh) ; : e2403262, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38973296

ABSTRACT

Despite docetaxel combined with cisplatin and 5-fluorouracil (TPF) being the established treatment for advanced nasopharyngeal carcinoma (NPC), there are patients who do not respond positively to this form of therapy. However, the mechanisms underlying this lack of benefit remain unclear. DCAF7 is identified as a chemoresistance gene attenuating the response to TPF therapy in NPC patients. DCAF7 promotes the cisplatin resistance and metastasis of NPC cells in vitro and in vivo. Mechanistically, DCAF7 serves as a scaffold protein that facilitates the interaction between USP10 and G3BP1, leading to the elimination of K48-linked ubiquitin moieties from Lys76 of G3BP1. This process helps prevent the degradation of G3BP1 via the ubiquitin‒proteasome pathway and promotes the formation of stress granule (SG)-like structures. Moreover, knockdown of G3BP1 successfully reversed the formation of SG-like structures and the oncogenic effects of DCAF7. Significantly, NPC patients with increased levels of DCAF7 showed a high risk of metastasis, and elevated DCAF7 levels are linked to an unfavorable prognosis. The study reveals DCAF7 as a crucial gene for cisplatin resistance and offers further understanding of how chemoresistance develops in NPC. The DCAF7-USP10-G3BP1 axis contains potential targets and biomarkers for NPC treatment.

2.
Zhongguo Zhong Yao Za Zhi ; 49(12): 3365-3372, 2024 Jun.
Article in Chinese | MEDLINE | ID: mdl-39041100

ABSTRACT

This study aims to investigate the effect of ergosterol peroxide(EP) on the apoptosis of human hepatocellular carcinoma and its mechanism of action. The cell viability of HepG2 and SK-Hep-1 cells with 0(blank control), 2.5, 5, 10, 20, 40, and 80 µmol·L~(-1) of EP after 24, 48, and 72 h of action was detected by using CCK-8 assay, and the half inhibitory concentrations(IC_(50)) at 24, 48, and 72 h were calculated. Formal experiments were performed to detect the effect of EP on intracellular reactive oxygen species(ROS) using DCFH-DA staining, the effect of EP on intracellular mitochondrial membrane potential using JC-1 staining, the number of apoptotic cells using Annexin V-FITC/PI double-staining after HepG2 cells were co-cultured with 0(blank control), 10, 20, 40 µmol·L~(-1) EP for 48 h. The effects of EP at different concentrations on apoptotic morphology were detected using AO/EB staining. The effects of different concentrations of EP on the protein expression of mitochondrial apoptosis pathway-related proteins B cell lymphoma 2(Bcl-2), cytochrome C(Cyt-C), Bcl-2-related X protein(Bax), caspase-3, cleaved caspase-3, caspase-9, and cleaved caspase-9 were examined by using Western blot. The results showed that different concentrations of EP could inhibit the proliferation of hepatocellular carcinoma with concentration-and time-dependent trends. Compared with the blank control group, the ROS level in the EP-treated group increased significantly(P<0.05). The mitochondrial membrane potential decreased significantly(P<0.05). The total apoptosis rate increased significantly(P<0.05). The expression of Bcl-2 protein was significantly down-regulated, and the expression of Cyt-C, Bax, cleaved caspase-9, and cleaved caspase-3 were significantly up-regulated(P<0.05). In summary, EP may inhibit the proliferation of hepatocellular carcinoma by modulating the mitochondria-mediated apoptosis pathway and induce apoptosis.


Subject(s)
Apoptosis , Carcinoma, Hepatocellular , Ergosterol , Liver Neoplasms , Membrane Potential, Mitochondrial , Mitochondria , Reactive Oxygen Species , Humans , Apoptosis/drug effects , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/metabolism , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/pathology , Liver Neoplasms/drug therapy , Liver Neoplasms/metabolism , Liver Neoplasms/pathology , Liver Neoplasms/genetics , Mitochondria/drug effects , Mitochondria/metabolism , Reactive Oxygen Species/metabolism , Ergosterol/pharmacology , Ergosterol/analogs & derivatives , Membrane Potential, Mitochondrial/drug effects , Hep G2 Cells , Cytochromes c/metabolism , Caspase 3/metabolism , Caspase 3/genetics , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Caspase 9/metabolism , Caspase 9/genetics , Proto-Oncogene Proteins c-bcl-2/metabolism , Proto-Oncogene Proteins c-bcl-2/genetics
3.
Zhongguo Zhong Yao Za Zhi ; 49(13): 3627-3635, 2024 Jul.
Article in Chinese | MEDLINE | ID: mdl-39041135

ABSTRACT

This study investigated the effects of ergosterol peroxide(EP) on the proliferation and apoptosis of MCF-7 breast cancer cells, explored its possible mechanisms of action, and verified the effects and mechanisms by in vitro experiments. Network pharmaco-logy was used to screen the target proteins of EP and construct target networks and protein-protein interaction(PPI) networks to predict the potential target proteins and related pathways involved in EP anti-breast cancer effects. The MTT assay was performed to measure the inhibitory effect of EP on MCF-7 cell proliferation, and the colony formation assay was used to assess the cell cloning ability. Flow cytometry and laser confocal microscopy were employed to evaluate cell apoptosis, mitochondrial membrane potential and reactive oxygen species(ROS) levels. Western blot analysis was conducted to examine the expression levels of B-cell lymphoma 2(Bcl-2), Bcl-2-associated X protein(Bax), cytochrome C(Cyt C), caspase-7, cleaved caspase-7, phosphatidylinositol 3-kinase(PI3K), and se-rine/threonine kinase B(AKT) in MCF-7 cells treated with EP. The results of network pharmacology prediction yielded 173 common targets between EP and breast cancer; the results of Kyoto Encyclopedia of Genes and Genomes(KEGG) enrichment analysis showed that EP treatment for breast cancer mainly affected the signaling pathways such as cancer pathway, PI3K-AKT signaling pathway, cellular senescence signaling pathway, and viral carcinogenesis pathway; and the MTT assay results showed that the viability of MCF-7 cells in the EP group was significantly lower than that in the control group, exhibiting a time-and concentration-dependent trend, and EP can inhibit colony formation of MCF-7 breast cancer cells. Treatment with 10, 20, and 40 µmol·L~(-1) EP for 24 h resulted in a significant increase in the total apoptosis rate of MCF-7 cells, a significant decrease in mitochondrial membrane potential, and a significant increase in ROS levels. In addition, treatment with EP led to an upregulation of Cyt C, Bax, and cleaved caspase-7 protein expression, and a downregulation of p-PI3K, p-AKT, and Bcl-2 protein expression in MCF-7 cells. Studies have shown that EP inhibits MCF-7 breast cancer cell proliferation and reduces colony formation by a mechanism that may be related to the PI3K-AKT pathway mediating the mitochondrial apoptotic pathway.


Subject(s)
Apoptosis , Breast Neoplasms , Cell Proliferation , Ergosterol , Network Pharmacology , Humans , MCF-7 Cells , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Apoptosis/drug effects , Cell Proliferation/drug effects , Ergosterol/analogs & derivatives , Ergosterol/pharmacology , Female , Reactive Oxygen Species/metabolism , Signal Transduction/drug effects , Membrane Potential, Mitochondrial/drug effects , Proto-Oncogene Proteins c-akt/metabolism , Proto-Oncogene Proteins c-akt/genetics , Cytochromes c/metabolism , Proto-Oncogene Proteins c-bcl-2/metabolism , Proto-Oncogene Proteins c-bcl-2/genetics
4.
Adv Healthc Mater ; : e2304285, 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-38994661

ABSTRACT

Retinal ischemia‒reperfusion (IR) is a major contributor to vision impairment and irreversible vision loss due to retinal ganglion cell (RGC) injury or loss. Contemporary therapeutic approaches predominantly focus on the amelioration of symptoms rather than addressing the fundamental etiological factors. Oxidative stress is a notable feature and an important mediator of IR damage. Lycium barbarum polysaccharide (LBP), the main active ingredient of Lycium barbarum, has various pharmacological effects, including antioxidation, immunoregulation, and neuroprotective effects. In this study, the ROS-consumable moiety phenylboronic acid pinacol ester (PBA) is introduced to LBP molecules, which can self-assemble into nanoparticles in aqueous solution. This nanoparticle (termed PLBP) can reduce the cellular ROS levels and enhance the antioxidant capability of RGCs by activating the NRF2 pathway, thus protecting RGCs from ferroptosis and preserving visual function in response to IR injury. PLBP also reduces neuroinflammation by inhibiting the ability of microglia to phagocytose, migrate, secrete inflammatory cytokines, and activate the NF-κB pathway. In conclusion, this approach can be used as an inspiration for the future development of neuroprotective drugs.

5.
Angew Chem Int Ed Engl ; : e202407477, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38847074

ABSTRACT

Layered oxides with ultrahigh nickel content are considered promising high energy cathode materials. However, their cycle stability is constrained by a series of heterogeneous structural transformations during the complex solid-state lithiation process. By in-depth investigation into the solid-state lithiation process of LiNi0.92Co0.04Mn0.04O2, it is found that the protruded parts on the surface of precursor particles tend to be surrounded by locally excessive LiOH, which promotes the formation of a rigid and dense R 3 - m ${{\rm { R}}\mathrel{\mathop{{\rm { 3}}}\limits^{{\rm -}}}{\rm { m}}}$ shell during the early stage of lithiation process. The shell will hinder the diffusion of lithium and topotactic lithiation within the particles, culminating in spatially heterogeneous intermediates that can impair the electrochemical properties of the cathode material. The spheroidization of the precursor can enhance uniformity in structural evolution during solid-phase lithiation. Ultrahigh nickel cathodes derived from spherical precursors demonstrate high initial discharge specific capacity (234.2 mAh g-1, in the range of 2.7-4.3 V) and capacity retention (89.3 % after 200 cycles), significantly superior to the non-spherical samples. This study not only sheds light on the intricate relationship between precursor shape and structural transformation but also introduces a novel strategy for enhancing cathode performance through precursor spheroidization.

6.
Angew Chem Int Ed Engl ; : e202407920, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38877853

ABSTRACT

Axially chiral biaryl δ-amino acids possess significantly different conformational properties and chiral environment from centrally chiral amino acids, therefore, have drawn considerable attention in the fields of synthetic and medicinal chemistry. Herein, a novel chiral phenanthroline-potassium catalyst has been developed by constructing a well-organized axially chiral ligand composed of one 1,10-phenanthroline unit and two axially chiral 1,1'-bi-2-naphthol (BINOL) units. In the presence of this catalyst, good to excellent yields and enantioselectivities (up to 99% yield, 98:2 er) have been achieved in the ring-opening alcoholytic dynamic kinetic resolution of a variety of biaryl lactams, thereby providing an efficient protocol for catalytic asymmetric synthesis of unnatural axially chiral biaryl δ-amino acid derivatives.

7.
Drug Resist Updat ; 76: 101111, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38908233

ABSTRACT

Gemcitabine (GEM) based induction chemotherapy is a standard treatment for locoregionally advanced nasopharyngeal carcinoma (NPC). However, approximately 15 % of patients are still resistant to GEM-containing chemotherapy, which leads to treatment failure. Nevertheless, the underlying mechanisms of GEM resistance remain poorly understood. Herein, based on a microarray analysis, we identified 221 dysregulated lncRNAs, of which, DYNLRB2-AS1 was one of the most upregulated lncRNAs in GEM-resistance NPC cell lines. DYNLRB2-AS1 was shown to function as contain an oncogenic lncRNA that promoted NPC GEM resistance, cell proliferation, but inhibited cell apoptosis. Mechanistically, DYNLRB2-AS1 could directly bind to the DHX9 protein and prevent its interaction with the E3 ubiquitin ligase PRPF19, and thus blocking PRPF19-mediated DHX9 degradation, which ultimately facilitated the repair of DNA damage in the presence of GEM. Clinically, higher DYNLRB2-AS1 expression indicated an unfavourable overall survival of NPC patients who received induction chemotherapy. Overall, this study identified the oncogenic lncRNA DYNLRB2-AS1 as an independent prognostic biomarker for patients with locally advanced NPC and as a potential therapeutic target for overcoming GEM chemoresistance in NPC.

8.
Lab Invest ; 104(8): 102090, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38830579

ABSTRACT

Gastric cancer (GC) is one of the most common clinical malignant tumors worldwide, with high morbidity and mortality. Presently, the overall response rate to immunotherapy is low, and current methods for predicting the prognosis of GC are not optimal. Therefore, novel biomarkers with accuracy, efficiency, stability, performance ratio, and wide clinical application are needed. Based on public data sets, the chemotherapy cohort and immunotherapy cohort from Sun Yat-sen University Cancer Center, a series of bioinformatics analyses, such as differential expression analysis, survival analysis, drug sensitivity prediction, enrichment analysis, tumor immune dysfunction and exclusion analysis, single-sample gene set enrichment analysis, stemness index calculation, and immune cell infiltration analysis, were performed for screening and preliminary exploration. Immunohistochemical staining and in vitro experiments were performed for further verification. Overexpression of COX7A1 promoted the resistance of GC cells to Oxaliplatin. COX7A1 may induce immune escape by regulating the number of fibroblasts and their cellular communication with immune cells. In summary, measuring the expression levels of COX7A1 in the clinic may be useful in predicting the prognosis of GC patients, the degree of chemotherapy resistance, and the efficacy of immunotherapy.

9.
Nurs Open ; 11(6): e2221, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38923309

ABSTRACT

AIMS: To establish a comprehensive understanding of the roles of midwives and the challenges they encounter in the prevention, diagnosis and management of postpartum haemorrhage (PPH) following normal vaginal delivery. DESIGN: We conducted a scoping review following the Preferred Reporting Items for Systematic Reviews and Meta-Analysis for Scoping Reviews (PRISMA-ScR) recommendations. METHODS: We considered studies related to the roles of midwives and the challenges they encounter in the prevention, diagnosis and management of PPH during vaginal delivery. We excluded guidelines, consensuses, abstracts of meetings and non-English language studies. Databases, including the Cochrane Library, PubMed, Web of Science, Ovid, Medline, Embase, JBI EBP and BIOSIS Previews, were searched on January 1, 2023, with no time limitations. RESULTS: We included 28 publications. Midwives play important roles in the prevention, diagnosis and management of postpartum haemorrhage during vaginal delivery. In the prevention of PPH, midwives' roles include identifying and managing high-risk factors, managing labour and implementing skin-to-skin contact. In the diagnosis of PPH, midwives' roles include early recognition and blood loss estimation. In the management of PPH, midwives are involved in mobilizing other professional team members, emergency management, investigating causes, enhancing uterine contractions, the repair of perineal tears, arranging transfers and preparation for surgical intervention. However, midwives face substantial challenges, including insufficient knowledge and skills, poor teamwork skills, insufficient resources and the need to deal with their negative emotions. Midwives must improve their knowledge, skills and teamwork abilities. Health care system managers and the government should give full support to midwives. Future research should focus on developing clinical practice guidelines for midwives for preventing, diagnosing and managing postpartum haemorrhage.


Subject(s)
Delivery, Obstetric , Postpartum Hemorrhage , Humans , Postpartum Hemorrhage/nursing , Postpartum Hemorrhage/prevention & control , Postpartum Hemorrhage/therapy , Female , Delivery, Obstetric/adverse effects , Delivery, Obstetric/nursing , Pregnancy , Midwifery , Nurse Midwives
10.
Nat Commun ; 15(1): 5300, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38906860

ABSTRACT

Chemoresistance is a main reason for treatment failure in patients with nasopharyngeal carcinoma, but the exact regulatory mechanism underlying chemoresistance in nasopharyngeal carcinoma remains to be elucidated. Here, we identify PJA1 as a key E3 ubiquitin ligase involved in nasopharyngeal carcinoma chemoresistance that is highly expressed in nasopharyngeal carcinoma patients with nonresponse to docetaxel-cisplatin-5-fluorouracil induction chemotherapy. We find that PJA1 facilitates docetaxel resistance by inhibiting GSDME-mediated pyroptosis in nasopharyngeal carcinoma cells. Mechanistically, PJA1 promotes the degradation of the mitochondrial protein PGAM5 by increasing its K48-linked ubiquitination at K88, which further facilitates DRP1 phosphorylation at S637 and reduced mitochondrial reactive oxygen species production, resulting in suppression of GSDME-mediated pyroptosis and the antitumour immune response. PGAM5 knockdown fully restores the docetaxel sensitization effect of PJA1 knockdown. Moreover, pharmacological targeting of PJA1 with the small molecule inhibitor RTA402 enhances the docetaxel sensitivity of nasopharyngeal carcinoma in vitro and in vivo. Clinically, high PJA1 expression indicates inferior survival and poor clinical efficacy of TPF IC in nasopharyngeal carcinoma patients. Our study emphasizes the essential role of E3 ligases in regulating chemoresistance and provides therapeutic strategies for nasopharyngeal carcinoma based on targeting the ubiquitin-proteasome system.


Subject(s)
Docetaxel , Drug Resistance, Neoplasm , Nasopharyngeal Carcinoma , Nasopharyngeal Neoplasms , Pyroptosis , Ubiquitin-Protein Ligases , Ubiquitination , Animals , Female , Humans , Male , Mice , Middle Aged , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Cell Line, Tumor , Cisplatin/pharmacology , Cisplatin/therapeutic use , Docetaxel/pharmacology , Docetaxel/therapeutic use , Drug Resistance, Neoplasm/genetics , Drug Resistance, Neoplasm/drug effects , Dynamins/metabolism , Dynamins/genetics , Fluorouracil/pharmacology , Fluorouracil/therapeutic use , Gasdermins , Gene Expression Regulation, Neoplastic/drug effects , Mice, Inbred BALB C , Mice, Nude , Mitochondria/metabolism , Mitochondria/drug effects , Mitochondrial Proteins/metabolism , Mitochondrial Proteins/genetics , Nasopharyngeal Carcinoma/drug therapy , Nasopharyngeal Carcinoma/genetics , Nasopharyngeal Carcinoma/metabolism , Nasopharyngeal Carcinoma/pathology , Nasopharyngeal Neoplasms/drug therapy , Nasopharyngeal Neoplasms/genetics , Nasopharyngeal Neoplasms/metabolism , Nasopharyngeal Neoplasms/pathology , Phosphoprotein Phosphatases/metabolism , Phosphoprotein Phosphatases/genetics , Phosphorylation/drug effects , Pyroptosis/drug effects , Pyroptosis/genetics , Reactive Oxygen Species/metabolism , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/genetics , Ubiquitination/drug effects , Xenograft Model Antitumor Assays
12.
Stem Cell Rev Rep ; 2024 May 30.
Article in English | MEDLINE | ID: mdl-38814409

ABSTRACT

The placenta plays a crucial role in maintaining normal pregnancy. The failure of spiral artery remodeling (SAR) is a key factor leading to placental ischemia and poor perfusion which is strongly associated with obstetric diseases, including preeclampsia (PE) and fetal growth restriction (FGR). Existing interventions for PE and FGR are limited and termination of pregnancy is inevitable when the maternal or fetus condition deteriorates. Considering the safety of the mother and fetus, treatments that may penetrate the placental barrier and harm the fetus are not accepted. Developing targeted treatment strategies for these conditions is urgent and necessary. With the proven efficacy of targeted therapy in treating conditions such as endometrial cancer and trophoblastic tumors, research on placental dysfunction continues to deepen. This article reviews the studies on placenta-targeted treatment and drug delivery strategies, summarizes the characteristics proposes corresponding improvement measures in targeted treatment, provides solutions for existing problems, and makes suggestions for future studies.

13.
Mol Med ; 30(1): 57, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38698308

ABSTRACT

BACKGROUND: Ossification of the posterior longitudinal ligament (OPLL), an emerging heterotopic ossification disease, causes spinal cord compression, resulting in motor and sensory dysfunction. The etiology of OPLL remains unclear but may involve integrin αVß3 regulating the process of osteogenesis and angiogenesis. In this study, we focused on the role of integrin αVß3 in OPLL and explored the underlying mechanism by which the c(RGDyk) peptide acts as a potent and selective integrin αVß3 inhibitor to inhibit osteogenesis and angiogenesis in OPLL. METHODS: OPLL or control ligament samples were collected in surgery. For OPLL samples, RNA-sequencing results revealed activation of the integrin family, particularly integrin αVß3. Integrin αVß3 expression was detected by qPCR, Western blotting, and immunohistochemical analysis. Fluorescence microscopy was used to observe the targeted inhibition of integrin αVß3 by the c(RGDyk) peptide on ligaments fibroblasts (LFs) derived from patients with OPLL and endothelial cells (ECs). The effect of c(RGDyk) peptide on the ossification of pathogenic LFs was detected using qPCR, Western blotting. Alkaline phosphatase staining or alizarin red staining were used to test the osteogenic capability. The effect of the c(RGDyk) peptide on angiogenesis was determined by EC migration and tube formation assays. The effects of the c(RGDyk) peptide on heterotopic bone formation were evaluated by micro-CT, histological, immunohistochemical, and immunofluorescence analysis in vivo. RESULTS: The results indicated that after being treated with c(RGDyk), the osteogenic differentiation of LFs was significantly decreased. Moreover, the c(RGDyk) peptide inhibited the migration of ECs and thus prevented the nutritional support required for osteogenesis. Furthermore, the c(RGDyk) peptide inhibited ectopic bone formation in mice. Mechanistic analysis revealed that c(RGDyk) peptide could inhibit osteogenesis and angiogenesis in OPLL by targeting integrin αVß3 and regulating the FAK/ERK pathway. CONCLUSIONS: Therefore, the integrin αVß3 appears to be an emerging therapeutic target for OPLL, and the c(RGDyk) peptide has dual inhibitory effects that may be valuable for the new therapeutic strategy of OPLL.


Subject(s)
Integrin alphaVbeta3 , Ossification of Posterior Longitudinal Ligament , Osteogenesis , Integrin alphaVbeta3/metabolism , Integrin alphaVbeta3/antagonists & inhibitors , Humans , Osteogenesis/drug effects , Animals , Mice , Ossification of Posterior Longitudinal Ligament/metabolism , Ossification of Posterior Longitudinal Ligament/drug therapy , Male , Female , Middle Aged , Neovascularization, Pathologic/drug therapy , Neovascularization, Pathologic/metabolism , Fibroblasts/metabolism , Fibroblasts/drug effects , Neovascularization, Physiologic/drug effects , Cell Movement/drug effects , Disease Models, Animal , Oligopeptides/pharmacology , Oligopeptides/chemistry , Angiogenesis
14.
Biochem Biophys Res Commun ; 719: 150117, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-38761635

ABSTRACT

The clinical treatment of human acute myeloid leukemia (AML) is rapidly progressing from chemotherapy to targeted therapies led by the BCL-2 inhibitor venetoclax (VEN). Despite its unprecedented success, VEN still encounters clinical resistance. Thus, uncovering the biological vulnerability of VEN-resistant AML disease and identifying effective therapies to treat them are urgently needed. We have previously demonstrated that iron oxide nanozymes (IONE) are capable of overcoming chemoresistance in AML. The current study reports a new activity of IONE in overcoming VEN resistance. Specifically, we revealed an aberrant redox balance with excessive intracellular reactive oxygen species (ROS) in VEN-resistant monocytic AML. Treatment with IONE potently induced ROS-dependent cell death in monocytic AML in both cell lines and primary AML models. In primary AML with developmental heterogeneity containing primitive and monocytic subpopulations, IONE selectively eradicated the VEN-resistant ROS-high monocytic subpopulation, successfully resolving the challenge of developmental heterogeneity faced by VEN. Overall, our study revealed an aberrant redox balance as a therapeutic target for monocytic AML and identified a candidate IONE that could selectively and potently eradicate VEN-resistant monocytic disease.


Subject(s)
Antineoplastic Agents , Bridged Bicyclo Compounds, Heterocyclic , Drug Resistance, Neoplasm , Reactive Oxygen Species , Sulfonamides , Humans , Sulfonamides/pharmacology , Bridged Bicyclo Compounds, Heterocyclic/pharmacology , Bridged Bicyclo Compounds, Heterocyclic/therapeutic use , Drug Resistance, Neoplasm/drug effects , Reactive Oxygen Species/metabolism , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Cell Line, Tumor , Leukemia, Monocytic, Acute/drug therapy , Leukemia, Monocytic, Acute/metabolism , Leukemia, Monocytic, Acute/pathology , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/metabolism , Leukemia, Myeloid, Acute/pathology , Ferric Compounds/pharmacology
15.
Fish Shellfish Immunol ; 150: 109611, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38734119

ABSTRACT

During virus-host co-evolution, viruses have developed multiple strategies to dampen IFN response and prevent its antiviral activity in host cells. To date, the interactions between host IFN response and the immune evasion strategies exploited by fish iridoviruses still remain largely uncertain. Here, a potential immune evasion protein candidate of Singapore grouper iridovirus (SGIV), VP82 (encoded by SGIV ORF82) was screened and its roles during viral replication were investigated in detail. Firstly, VP82 overexpression dramatically decreased IFN or ISRE promoter activity and the transcription levels of IFN stimulated genes (ISGs) stimulated by grouper cyclic GMP-AMP synthase (EccGAS)/stimulator of interferon genes (EcSTING), TANK-binding kinase 1 (EcTBK1), IFN regulatory factor 3 (EcIRF3)and EcIRF7. Secondly, Co-IP assays indicated that VP82 interacted with EcIRF3 and EcIRF7, but not EcSTING and EcTBK1, which was consistent with the co-localization between VP82 and EcIRF3 or EcIRF7. Furthermore, VP82 promoted the degradation of EcIRF3 and EcIRF7 in a dose-dependent manner via the autophagy pathway. Finally, VP82 overexpression accelerated SGIV replication, evidenced by the increased transcriptions of viral core genes and viral production. Moreover, the antiviral action of EcIRF3 or EcIRF7 was significantly depressed in VP82 overexpressed cells. Together, VP82 was speculated to exert crucial roles for SGIV replication by inhibiting the IFN response via the degradation of IRF3 and IRF7. Our findings provided new insights into understanding the immune evasion strategies utilized by fish iridovirus through IFN regulation.


Subject(s)
DNA Virus Infections , Fish Diseases , Fish Proteins , Interferon Regulatory Factor-3 , Interferon Regulatory Factor-7 , Ranavirus , Viral Proteins , Animals , Interferon Regulatory Factor-3/genetics , Interferon Regulatory Factor-3/immunology , Interferon Regulatory Factor-3/metabolism , Interferon Regulatory Factor-7/genetics , Interferon Regulatory Factor-7/metabolism , Interferon Regulatory Factor-7/immunology , Fish Proteins/genetics , Fish Proteins/immunology , Fish Proteins/metabolism , Fish Diseases/immunology , Fish Diseases/virology , DNA Virus Infections/immunology , DNA Virus Infections/veterinary , Ranavirus/physiology , Viral Proteins/genetics , Viral Proteins/metabolism , Immunity, Innate/genetics , Interferons/genetics , Interferons/immunology , Interferons/metabolism , Immune Evasion , Bass/immunology , Bass/genetics , Virus Replication , Zebrafish Proteins , Interferon Regulatory Factors
16.
Front Oncol ; 14: 1373760, 2024.
Article in English | MEDLINE | ID: mdl-38646436

ABSTRACT

Colorectal cancer, with the liver being the most common site of distant metastasis, followed by the lungs and bones. Although reports of metastasis to the testis exist, paratesticular metastasis is extremely rare. A 37-year-old male presented with scrotal swelling. Ultrasound revealed hydrocele of the tunica vaginalis. The patient underwent routine surgical treatment, and postoperative pathology of the tunica vaginalis indicated adenocarcinoma of gastrointestinal origin. Colonoscopic biopsy confirmed adenocarcinoma of the sigmoid colon. After six months of systemic therapy, tumor reduction surgery was performed in conjunction with tunica vaginalis excision. Postoperative pathology suggested histological similarity in both sites, with immunohistochemistry results supporting the diagnosis of sigmoid colon adenocarcinoma metastasizing to the tunica vaginalis. We conducted a literature review, summarizing and discussing clinical presentations, metastatic pathways, and diagnostic approaches.

17.
Chem Biol Interact ; 395: 111013, 2024 May 25.
Article in English | MEDLINE | ID: mdl-38663798

ABSTRACT

Ulcerative colitis is a chronic disease with colonic mucosa injury. Nitazoxanide is an antiprotozoal drug in clinic. Nitazoxanide and its metabolite tizoxanide have been demonstrated to activate AMPK and inhibit inflammation, therefore, the aim of the present study is to investigate the effect of nitazoxanide on dextran sulfate sodium (DSS)-induced colitis and the underlying mechanism. Oral administration of nitazoxanide ameliorated the symptoms of mice with DSS-induced colitis, as evidenced by improving the increased disease activity index (DAI), the decreased body weight, and the shortened colon length. Oral administration of nitazoxanide ameliorated DSS-induced intestinal barrier dysfunction and reduced IL-6 and IL-17 expression in colon tissues. Mechanistically, nitazoxanide and its metabolite tizoxanide treatment activated AMPK and inhibited JAK2/STAT3 signals. Nitazoxanide and tizoxanide treatment increased caudal type homeobox 2 (CDX2) expression, increased alkaline phosphatase (ALP) activity and promoted tight junctions in Caco-2 cells. Nitazoxanide and tizoxanide treatment restored the decreased zonula occludens-1(ZO-1) and occludin protein levels induced by LPS or IL-6 in Caco-2 cells. On the other hand, nitazoxanide and tizoxanide regulated macrophage bias toward M2 polarization, as evidenced by the increased arginase-1expression in bone marrow-derived macrophages (BMDM). Nitazoxanide and tizoxanide reduced the increased IL-6, iNOS and CCL2 pro-inflammatory gene expressions and inhibited JAK2/STAT3 activation in BMDM induced by LPS. In conclusion, nitazoxanide protects against DSS-induced ulcerative colitis in mice through improving intestinal barrier and inhibiting inflammation and the underlying mechanism involves AMPK activation and JAK2/STAT3 inhibition.


Subject(s)
Colitis, Ulcerative , Dextran Sulfate , Intestinal Mucosa , Nitro Compounds , STAT3 Transcription Factor , Thiazoles , Animals , Thiazoles/pharmacology , Thiazoles/therapeutic use , Colitis, Ulcerative/chemically induced , Colitis, Ulcerative/drug therapy , Colitis, Ulcerative/pathology , Colitis, Ulcerative/metabolism , Nitro Compounds/pharmacology , Mice , Humans , Caco-2 Cells , Intestinal Mucosa/drug effects , Intestinal Mucosa/metabolism , Intestinal Mucosa/pathology , Dextran Sulfate/toxicity , STAT3 Transcription Factor/metabolism , Male , Janus Kinase 2/metabolism , AMP-Activated Protein Kinases/metabolism , Inflammation/drug therapy , Colon/drug effects , Colon/pathology , Colon/metabolism , Mice, Inbred C57BL , Signal Transduction/drug effects , Nitric Oxide Synthase Type II/metabolism , Interleukin-6/metabolism , Disease Models, Animal
18.
IEEE Trans Image Process ; 33: 2491-2501, 2024.
Article in English | MEDLINE | ID: mdl-38517713

ABSTRACT

Low-rank tensor representation with the tensor nuclear norm has been rising in popularity in multi-view subspace clustering (MVSC), in which the tensor nuclear norm is commonly implemented using discrete Fourier transform (DFT). Unfortunately, existing DFT-oriented MVSC methods may provide unsatisfactory results since (1) DFT exploits complex arithmetic in the Fourier domain, usually resulting in high tubal tensor rank, and (2) local structural information is rarely considered. To solve these problems, in this paper, we propose a novel double discrete cosine transform (DCT)-oriented multi-view subspace clustering (D2CTMSC) method, in which the first DCT aims to derive the tensor nuclear norm without complex arithmetic while the second DCT aims to explore the local structure of the self-representation tensor, such that the essential low-rankness and sparsity embedding in multi-view features can be thoroughly exploited. Moreover, we design an effective alternating iteration strategy to solve the proposed model. Experimental results on four types of multi-view datasets (News stories, Face images, Scene images, and Generic objects) demonstrate the superiority of the D2CTMSC method compared with DFT-based methods and other state-of-the-art clustering methods.

19.
Carbohydr Polym ; 334: 122034, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38553233

ABSTRACT

Cryogels that are constructed with cellulose nanofibrils (CNF) are important as green materials for a wide range of applications. However, their utilization is limited by inherent hydrophilicity and insufficient mechanical properties. Herein, a processable CNF/nanochitin (NCh)-stabilized Pickering emulsion that contains polylactide (PLA) in the oil phase is developed to directly produce ternary composite cryogels via freeze-drying. The complexation of CNF with NCh promotes CNF adsorption at the surface of PLA droplets, resulting in formation of uniform Pickering PLA droplets. The CNF/NCh complex-stabilized PLA droplets are easy to be translated to the internal structure of the cryogels, exhibiting lightweight nature and possessing highly porous structure. The interconnected network and lamellar structure formed by the CNF/NCh complexes, associating with inclusion of PLA particles, improve the cryogel structure integrity upon post-processing and endow hydrophilic cryogel with water resistance. This study offers a straightforward and eco-friendly Pickering emulsion template on fabrication of the CNF-based composite cryogel with controllable microstructure and mechanical performance, broadening construction of nanocellulose-based composites.

20.
Bioorg Chem ; 146: 107293, 2024 May.
Article in English | MEDLINE | ID: mdl-38507998

ABSTRACT

In this work, we synthesized a series of indole derivatives to cope with the current increasing fungal infections caused by drug-resistant Candida albicans. All compounds were evaluated for antifungal activities against Candida albicans in vitro, and the structure-activity relationships (SARs) were analyzed. The results indicated that indole derivatives used either alone or in combination with fluconazole showed good activities against fluconazole-resistant Candida albicans. Further mechanisms studies demonstrated that compound 1 could inhibit yeast-to-hypha transition and biofilm formation of Candida albicans, increase the activity of the efflux pump, the damage of mitochondrial function, and the decrease of intracellular ATP content. In vivo studies, further proved the anti-Candida albicans activity of compound 1 by histological observation. Therefore, compound 1 could be considered as a novel antifungal agent.


Subject(s)
Candida albicans , Fluconazole , Fluconazole/pharmacology , Biofilms , Antifungal Agents , Structure-Activity Relationship , Indoles/pharmacology , Microbial Sensitivity Tests
SELECTION OF CITATIONS
SEARCH DETAIL