Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters








Publication year range
1.
Adv Mater ; : e2403385, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38769003

ABSTRACT

Capacitive deionization (CDI) has emerged as a promising technology for freshwater recovery from low-salinity brackish water. It is still inapplicable in specific scenarios (e.g., households, islands, or offshore platforms) due to too low volumetric adsorption capacities. In this study, a high-density semi-metallic molybdenum disulfide (1T'-MoS2) electrode with compact architecture obtained by restacking of exfoliated nanosheets, which achieve high capacitance up to ≈277.5 F cm-3 under an ultrahigh scan rate of 1000 mV s-1 with a lower charge-transfer resistance and nearly tenfold higher electrochemical active surface area than the 2H-MoS2 electrode, is reported. Furthermore, 1T'-MoS2 electrode demonstrates exceptional volumetric desalination capacity of 65.1 mgNaCl cm-3 in CDI experiments. Ex situ X-ray diffraction (XRD) reveal that the cation storage mechanism with the dynamic expansion of 1T'-MoS2 interlayer to accommodate cations such as Na+, K+, Ca2+, and Mg2+, which in turn enhances the capacity. Theoretical analysis unveils that 1T' phase is thermodynamically preferable over 2H phase, the ion hydration and channel confinement also play critical role in enhancing ion adsorption. Overall, this work provides a new method to design compact 2D-layered nanolaminates with high-volumetric performance for CDI desalination.

2.
Food Chem ; 449: 139246, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38604035

ABSTRACT

The levels of metabolites in honey are influenced by floral origin, production region, and bee species. However, how environmental factors affect honey quality remains unclear. Based on untargeted metabolomics and using UPLC Q-Orbitrap MS, we analyzed 3596 metabolites in 51 honey samples from Yunnan and Shennongjia. Comparative analysis revealed that geniposidic acid, kynurenic acid and caffieine accumulated at significantly different levels between Shennongjia and Yunnan honey. Based on cluster structure analysis, 36 Yunnan honey samples were divided into two distinct groups by altitude. Notably, quercetin, hyperoside, taxifolin, rutin, tryptophan, astragalin and phenylalanine were higher levels in high-altitude honey (>1700 m), whereas abscisic acid was higher levels in low-altitude honey (≤1700 m). Among these, significantly elevated levels of hyperoside, taxfolin, astragalin, and tryptophan were observed in honey collected from high-altitude areas in Shennongjia. Our findings highlight the effect of altitude on honey health-promoting components, providing valuable insights into honey quality.


Subject(s)
Altitude , Honey , Honey/analysis , Animals , Bees/metabolism , China , Metabolomics , Chromatography, High Pressure Liquid
3.
Huan Jing Ke Xue ; 45(2): 1210-1221, 2024 Feb 08.
Article in Chinese | MEDLINE | ID: mdl-38471957

ABSTRACT

Micro/nano plastics (M/NPs) are widely dispersed in the soil, atmosphere, and water environment due to their small particle size, easy adsorption, and strong migration, and have been detected in all major water bodies in recent years. As a type of emerging pollutant, the physiological toxicity of M/NPs has a great impact on human health. The current bottleneck in this research field lies in the precise detection and efficient removal of M/NPs. Electrochemical technology, owing to its advantages of simple portability, sensitivity, and low cost in the detection of M/NPs, has the advantages of environmental friendliness, controllable reaction, and high efficiency in the removal of M/NPs, demonstrating enormous application potential. Based on the pollution status of M/NPs, the application of electrochemical technology to the detection and removal of M/NPs in the water environment was elaborated and summarized. The electrochemical sensing methods of M/NPs and the principles and characteristics of sensor recognition of M/NPs were analyzed. The removal efficiency and influencing factors of M/NPs in water by electro-flocculation, electro-adsorption, electro-oxidation, and electro-reduction technologies were also discussed. The results indicated that the detection of M/NPs particles using electrochemical sensing methods exhibited good characterization performance, and M/NPs could be efficiently removed through electrochemical techniques such as electrocoagulation, electro-adsorption, electro-oxidation, and electro-reduction. The influencing factors of electrochemical technology on the detection and removal of M/NPs were mainly related to sensor devices, electrode materials, material interface regulation, parameter conditions, and reactor systems. In the future, researchers should focus on the design of sensors, the development of electrode materials, and the optimization of reaction processes, which are expected to realize the application of M/NPs from laboratory detection and removal to actual water bodies.

4.
Sci Total Environ ; 922: 171002, 2024 Apr 20.
Article in English | MEDLINE | ID: mdl-38369141

ABSTRACT

Microplastics have been identified as an emerging pollutant that poses a risk to the aquatic environment, and it is a challenge to find a suitable removal process. Electrocatalytic oxidation (ECO) technology has shown promising performance in removing various persistent organic pollutants. In this study, we prepared a new anode for removing polystyrene microplastics (PS MPs) by ECO. Ti/La-Sb-SnO2 electrodes doped with the rare earth element La as the active layer were synthesized to enhance the electrocatalytic activity. The lifespan of the electrode was improved by doping Mn, Co, or Ru as an intermediate layer modification between the titanium (Ti) substrate and the La-Sb-SnO2 active layer, respectively. The experimental results indicated that the addition of three types of intermediate layers led to different degrees of decrease in the catalytic activity of the electrode and the degradation performance of PS MPs. The addition of the Co intermediate layer had a negligible effect on the catalytic activity and performance of the Ti/La-Sb-SnO2 anode for PS degradation. In addition, the electrode lifespan with Co intermediate layer was significantly prolonged, which was 4.54, 2.38, and 1.19 times higher than the electrode without intermediate layer and the electrode with Ru and Mn intermediate layer, respectively. Therefore, Co was determined to be the optimal choice as the intermediate layer, and the production technique for the Ti/La/Co-Sb-SnO2 anodes was carefully adjusted. The degradation efficiency of PS MPs was optimized at a heat treatment temperature of 400 °C and a Sn: Co material ratio of 5:1, with a removal rate of 28.0 %. The ECO treatment also resulted in more pronounced changes in the structure and functional groups of the MPs. Various alkyl cleavage and oxidation products were detected after the treatment, suggesting that the oxidant (hydroxyl radicals) strongly interacted with the MPs, leading to their degradation. Overall, this work provided a new insight into removing MPs in water through the use of modified electrodes.

6.
Nat Genet ; 55(11): 1964-1975, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37783780

ABSTRACT

The orange subfamily (Aurantioideae) contains several Citrus species cultivated worldwide, such as sweet orange and lemon. The origin of Citrus species has long been debated and less is known about the Aurantioideae. Here, we compiled the genome sequences of 314 accessions, de novo assembled the genomes of 12 species and constructed a graph-based pangenome for Aurantioideae. Our analysis indicates that the ancient Indian Plate is the ancestral area for Citrus-related genera and that South Central China is the primary center of origin of the Citrus genus. We found substantial variations in the sequence and expression of the PH4 gene in Citrus relative to Citrus-related genera. Gene editing and biochemical experiments demonstrate a central role for PH4 in the accumulation of citric acid in citrus fruits. This study provides insights into the origin and evolution of the orange subfamily and a regulatory mechanism underpinning the evolution of fruit taste.


Subject(s)
Citrus sinensis , Citrus , Citrus/genetics , Citrus/metabolism , Citrus sinensis/genetics , Citrus sinensis/metabolism , Citric Acid/metabolism , Fruit/genetics , China
7.
Plant Biotechnol J ; 21(8): 1577-1589, 2023 08.
Article in English | MEDLINE | ID: mdl-37115171

ABSTRACT

Pummelo (Citrus maxima or Citrus grandis) is a basic species and an important type for breeding in Citrus. Pummelo is used not only for fresh consumption but also for medicinal purposes. However, the molecular basis of medicinal traits is unclear. Here, compared with wild citrus species/Citrus-related genera, the content of 43 bioactive metabolites and their derivatives increased in the pummelo. Furthermore, we assembled the genome sequence of a variety for medicinal purposes with a long history, Citrus maxima 'Huazhouyou-tomentosa' (HZY-T), at the chromosome level with a genome size of 349.07 Mb. Comparative genomics showed that the expanded gene family in the pummelo genome was enriched in flavonoids-, terpenoid-, and phenylpropanoid biosynthesis. Using the metabolome and transcriptome of six developmental stages of HZY-T and Citrus maxima 'Huazhouyou-smooth' (HZY-S) fruit peel, we generated the regulatory networks of bioactive metabolites and their derivatives. We identified a novel MYB transcription factor, CmtMYB108, as an important regulator of flavone pathways. Both mutations and expression of CmtMYB108, which targets the genes PAL (phenylalanine ammonia-lyase) and FNS (flavone synthase), displayed differential expression between Citrus-related genera, wild citrus species and pummelo species. This study provides insights into the evolution-associated changes in bioactive metabolism during the origin process of pummelo.


Subject(s)
Citrus , Flavones , Multiomics , Plant Breeding , Citrus/genetics , Flavones/metabolism , Flavonoids/genetics , Flavonoids/metabolism
8.
Food Chem ; 398: 133909, 2023 Jan 01.
Article in English | MEDLINE | ID: mdl-35964568

ABSTRACT

Carotenoids are important secondary metabolites that may participate in response to extreme environments. Fruit color changes were observed in peaches growing at altitude on the Tibetan Plateau. Here, we qualitatively and quantitatively analyzed 43 kinds of carotenoids in 96 Tibetan peach and 12 cultivated peach fruit samples. Comparative analysis revealed that 25 kinds of carotenoids accumulated at significantly different levels between Tibetan peaches and cultivated peaches. Based on a population structure analysis, the carotenoid levels of Tibetan peaches were divided into two groups, which are mainly affected by the environmental factors light and temperature. The correlation analysis implied that the levels of 9 carotenoids were significantly correlated with altitude. qRT-PCR results showed that PSY, CCD4 and BCH were significantly differently expressed between the low and high altitude Tibetan peaches. In summary, this study showed that the abundant variation in carotenoids was highly associated with high-altitude adaptations in Tibetan peach fruit.


Subject(s)
Prunus persica , Altitude , Carotenoids/analysis , Fruit/chemistry , Prunus persica/genetics , Prunus persica/metabolism , Tibet
9.
Nat Prod Bioprospect ; 12(1): 4, 2022 Feb 14.
Article in English | MEDLINE | ID: mdl-35157175

ABSTRACT

The most recent outbreak of 2019 novel coronavirus, named as COVID-19, caused pneumonia epidemic in Wuhan with 2121 deaths cases as of February 20th 2020. Identification of effective antiviral agents to combat the novel coronavirus is urgently needed. Citrus fruit peel or wild citrus are rich in flavonoids, and clinically documented for roles in relief of cough and promotion of digestive health. Therefore, citrus fruits are assumed to possess antivirus activities or enhance the host immunity. A previous study found that hesperetin could act as a high potent inhibitor of SARS-CoV 3CLpro. We determined six flavonoid compounds' content in three citrus species by using LC-MS technique. The content of naringin and naringenin was at higher levels in pummelo. Hesperetin and hesperidin were highly accumulated in mandarin and sweet orange. The subsequent in vitro and in vivo experiments indicated that naringin could inhibit the expression of the proinflammatory cytokines (COX-2, iNOS, IL-1ß and IL-6) induced by LPS in Raw macrophage cell line, and may restrain cytokine through inhibiting HMGB1 expression in a mouse model. The results revealed that naringin may have a potential application for preventing cytokine storm. We simulated molecular docking to predict the binding affinity of those flavonoids to bind Angiotensin-converting enzyme 2 (ACE 2), which is a receptor of the coronavirus. Consideration of the potential anti-coronavirus and anti-inflammatory activity of flavonoids, the citrus fruit or its derived phytochemicals are promising in the use of prevention and treatment of SARS-CoV-2 infection.

10.
Metabolites ; 11(12)2021 Dec 17.
Article in English | MEDLINE | ID: mdl-34940638

ABSTRACT

The process of seed germination is crucial not only for the completion of the plant life cycle but also for agricultural production and food chemistry; however, the underlying metabolic regulation mechanism involved in this process is still far from being clearly revealed. In this study, one indica variety (Zhenshan 97, with rapid germination) and one japonica variety (Nipponbare, with slow germination) in rice were used for in-depth analysis of the metabolome at different germination stages (0, 3, 6, 9, 12, 24, 36, and 48 h after imbibition, HAI) and exploration of key metabolites/metabolic pathways. In total, 380 annotated metabolites were analyzed by using a high-performance liquid chromatography (HPLC)-based targeted method combined with a nontargeted metabolic profiling method. By using bioinformatics and statistical methods, the dynamic changes in metabolites during germination in the two varieties were compared. Through correlation analysis, coefficient of variation analysis and differential accumulation analysis, 74 candidate metabolites that may be closely related to seed germination were finally screened. Among these candidates, 29 members belong to the ornithine-asparagine-polyamine module and the shikimic acid-tyrosine-tryptamine-phenylalanine-flavonoid module. As the core member of the second module, shikimic acid's function in the promotion of seed germination was confirmed by exogenous treatment. These results told that nitrogen flow and antioxidation/defense responses are potentially crucial for germinating seeds and seedlings. It deepens our understanding of the metabolic regulation mechanism of seed germination and points out the direction for our future research.

11.
Curr Biol ; 31(17): 3848-3860.e8, 2021 09 13.
Article in English | MEDLINE | ID: mdl-34314676

ABSTRACT

The Great Himalayan Mountains and their foothills are believed to be the place of origin and development of many plant species. The genetic basis of adaptation to high plateaus is a fascinating topic that is poorly understood at the population level. We comprehensively collected and sequenced 377 accessions of Prunus germplasm along altitude gradients ranging from 2,067 to 4,492 m in the Himalayas. We de novo assembled three high-quality genomes of Tibetan Prunus species. A comparative analysis of Prunus genomes indicated a remarkable expansion of the SINE retrotransposons occurred in the genomes of Tibetan species. We observed genetic differentiation between Tibetan peaches from high and low altitudes and that genes associated with light stress signaling, especially UV stress signaling, were enriched in the differentiated regions. By profiling the metabolomes of Tibetan peach fruit, we determined 379 metabolites had significant genetic correlations with altitudes and that in particular phenylpropanoids were positively correlated with altitudes. We identified 62 Tibetan peach-specific SINEs that colocalized with metabolites differentially accumualted in Tibetan relative to cultivated peach. We demonstrated that two SINEs were inserted in a locus controlling the accumulation of 3-O-feruloyl quinic acid. SINE1 was specific to Tibetan peach. SINE2 was predominant in high altitudes and associated with the accumulation of 3-O-feruloyl quinic acid. These genomic and metabolic data for Prunus populations native to the Himalayan region indicate that the expansion of SINE retrotransposons helped Tibetan Prunus species adapt to the harsh environment of the Himalayan plateau by promoting the accumulation of beneficial metabolites.


Subject(s)
Prunus , Altitude , Fruit , Tibet , Trees
12.
Science ; 347(6229): 1459-62, 2015 Mar 27.
Article in English | MEDLINE | ID: mdl-25814580

ABSTRACT

The luminosities of type Ia supernovae (SNe), the thermonuclear explosions of white-dwarf stars, vary systematically with their intrinsic color and the rate at which they fade. From images taken with the Galaxy Evolution Explorer (GALEX), we identified SNe Ia that erupted in environments that have high ultraviolet surface brightness and star-formation surface density. When we apply a steep model extinction law, we calibrate these SNe using their broadband optical light curves to within ~0.065 to 0.075 magnitude, corresponding to <4% in distance. The tight scatter, probably arising from a small dispersion among progenitor ages, suggests that variation in only one progenitor property primarily accounts for the relationship between their light-curve widths, colors, and luminosities.

SELECTION OF CITATIONS
SEARCH DETAIL