Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.201
Filter
1.
BMC Gastroenterol ; 24(1): 223, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38992591

ABSTRACT

Ulcerative colitis (UC) is a persistent inflammatory condition that specifically targets the colon and rectum. Existing therapies fail to adequately address the clinical requirements of people suffering from this ailment. Despite the acknowledged potential of nanomedicines in the field of anti-inflammatory treatment, their widespread use in clinical settings is impeded by their expensive nature and the uncertainty surrounding their safety profiles. This study illustrates that two naturally occurring phytochemicals, Costunolide (COS) and Glycyrrhizic acid (GA), form carrier-free, multifunctional spherical nanoparticles (NPs) through noncovalent interactions, such as π-π stacking and hydrogen bonding. The COS-GA NPs displayed a synergistic anti-inflammatory effect, providing much more evidently improved therapeutic benefits for dextran sodium sulfate (DSS)-induced UC mice due to more effective reduction in inflammation and oxidative stress than did equal dosages of COS or GA used alone. In addition, COS-GA NPs have biocompatibility and biosafety properties unique to them. This study will serve as affirmation of the potential of COS-GA NPs as innovative natural anti-inflammatory and antioxidant activities and also such agents as drug discovery in UC, leading possibly to better outcomes in people living with this disabling condition.


Subject(s)
Anti-Inflammatory Agents , Colitis, Ulcerative , Dextran Sulfate , Glycyrrhizic Acid , Nanoparticles , Colitis, Ulcerative/drug therapy , Animals , Glycyrrhizic Acid/therapeutic use , Glycyrrhizic Acid/pharmacology , Anti-Inflammatory Agents/therapeutic use , Mice , Oxidative Stress/drug effects , Antioxidants/pharmacology , Disease Models, Animal , Male , Drug Synergism , Sesquiterpenes
2.
Apoptosis ; 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38960944

ABSTRACT

BACKGROUND: Cetuximab is extensively used in the treatment of metastatic colorectal cancer (mCRC). However, resistance poses a significant challenge to successful therapy. Recently, paraptosis, a non-classical programmed cell death, has garnered increased attention for its potential application value in antitumor treatments. We aimed to identify the essential pathways and signaling molecules involved in paraptosis inhibition and select them as therapeutic targets in cetuximab resistance. Additionally, engineered exosome technology is used as a drug delivery system with both targeted and effector properties. RESULTS: By comparing the differential expression of paraptosis-related genes between drug-resistant colon cancer cells and sensitive cells, it was observed that the paraptosis level induced by cetuximab was significantly downregulated in drug-resistant cells. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis identified the focal adhesion kinase (FAK) signaling pathway as a key pathway involved in the suppression of paraptosis. The biological function of FAK in cetuximab-resistant cells was investigated through cell morphology observation, CCK-8 assay, colony formation assay, RT-qPCR, Western Blot, and loss-of-function experiments. The results showed that the FAK signaling pathway was significantly upregulated in cetuximab-resistant colon cancer cells, and siRNA interference targeting FAK could notably inhibit cell proliferation while upregulating the paraptosis level. Based on this, engineered colon cancer cells targeted and FAK siRNA loaded exosomes (CT-Exo-siFAK1) were constructed. In vitro experiments, CT-Exo-siFAK1 could effectively activate paraptosis and inhibit the proliferation of drug-resistant colon cancer cells. In vivo experiments also confirmed that CT-Exo-siFAK1 significantly suppressed tumor growth and metastasis while upregulating the paraptosis level. CONCLUSION: This study suggests that FAK signaling pathway-mediated inhibition of paraptosis levels is crucial in the sensitivity of cetuximab targeted therapy in colon cancer, and the use of engineered exosomes to deliver FAK siRNA may be an effective strategy to reverse cetuximab resistance.

3.
J Clin Nurs ; 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38987926

ABSTRACT

AIMS: To investigate the independent and combined effects of physical activity (PA) and depressive symptoms on the risk of frailty in community-dwelling older adults. BACKGROUND: Older adults face a high risk of frailty which is commonly used to predict adverse health outcomes in older patients. Engaging in PA and without depressive symptoms are crucial factors to prevent frailty. It is essential to investigate the independent and combined effects of these two variables on the risk of frailty. METHODS: We included 3392 community-dwelling older adults. The FRAIL Scale was used to assess older adults' frail status (robust, prefrail and frail). Multiple logistic regression was utilized to examine the independent and combined effects of PA and depressive symptoms on the risk of prefrailty and frailty. The combined effects were visualized by marginal plots. RESULTS: The prevalence of prefrailty and frailty in older adults were 42.16% and 10.58%. Compared with the group of "Light physical activity and With depressive symptoms", "Vigorous physical activity and Without depressive symptoms" had the lowest risk of prefrailty and frailty. CONCLUSIONS: Older adults who do not engage in PA or have depressive symptoms increased the risk of frailty, but older adults with depressive symptoms could lower the risk of frailty through PA. RELEVANCE TO CLINICAL PRACTICE: It is effective to reduce the risk of frailty by directing older adults to do moderate physical activity, although they have depressive symptoms. The focus should also be on older adults with depressive symptoms, who have at least more than twice and fourfold risk of prefrailty and frailty compared to those without. IMPACT: This study offers insights for future interventions aimed at preventing frailty in older adults. REPORTING METHOD: This study adhered to the STROBE checklist. PATIENT OR PUBLIC CONTRIBUTIONS: Older adults participated in this study and completed questionnaires.

4.
Heliyon ; 10(12): e32909, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38975079

ABSTRACT

Due to the high heterogeneity of ovarian cancer (OC), it occupies the main cause of cancer-related death among women. As the most aggressive and frequent subtype of OC, high-grade serous cancer (HGSC) represents around 70 % of all patients. With the booming progress of single-cell RNA sequencing (scRNA-seq), unique and subtle changes among different cell states have been identified including novel risk genes and pathways. Here, our present study aims to identify differentially correlated core genes between normal and tumor status through HGSC scRNA-seq data analysis. R package high-dimension Weighted Gene Co-expression Network Analysis (hdWGCNA) was implemented for building gene interaction networks based on HGSC scRNA-seq data. DiffCorr was integrated for identifying differentially correlated genes between tumor and their adjacent normal counterparts. Software Cytoscape was implemented for constructing and visualizing biological networks. Real-time qPCR (RT-qPCR) was utilized to confirm expression pattern of new genes. We introduced ScHGSC-IGDC (Identifying Genes with Differential Correlations of HGSC based on scRNA-seq analysis), an in silico framework for identifying core genes in the development of HGSC. We detected thirty-four modules in the network. Scores of new genes with opposite correlations with others such as NDUFS5, TMSB4X, SERPINE2 and ITPR2 were identified. Further survival and literature validation emphasized their great values in the HGSC management. Meanwhile, RT-qPCR verified expression pattern of NDUFS5, TMSB4X, SERPINE2 and ITPR2 in human OC cell lines and tissues. Our research offered novel perspectives on the gene modulatory mechanisms from single cell resolution, guiding network based algorithms in cancer etiology field.

5.
BMC Pediatr ; 24(1): 390, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38858617

ABSTRACT

BACKGROUND: Oculocutaneous albinism (OCA) is a group of autosomal recessive hereditary disorders that affect melanin biosynthesis, resulting in abnormalities in hair, skin, and eyes. Retinopathy of prematurity (ROP) is a proliferative retinopathy mainly observed in premature infants with low birth weight and early gestational age, but it can also affect full-term infants or children with normal weight, particularly in developing countries. The coexistence of ROP and OCA is rare. There is limited documentation regarding treatment approaches, with few studies reporting positive outcomes with laser treatment due to the absence of melanin pigment. This study discusses the treatment challenges in a female infant diagnosed with ROP and OCA, and underscores the importance of genetic analysis in guiding therapeutic decisions for this rare comorbid condition. CASE PRESENTATION: The study presents a case of ROP occurring concurrently with OCA. Genetic testing revealed two variants, c.727C > T (p.R243C) and c.1832 T > C (p.L611P), in the OCA2 gene, inherited from the patient's mother and father, respectively. The identified mutations were consistent with a diagnosis of OCA2, classified as a subtype of OCA. The patient initially received intravitreal anti-vascular endothelial growth factor (anti-VEGF) injection, followed by laser photocoagulation therapy for a recurrent event. A favorable outcome was observed during the 2-month follow-up period. CONCLUSIONS: The co-occurrence of ROP and OCA is a rare phenomenon, and this is the first recorded case in the Chinese population. The current case supports the use of laser as the primary treatment modality for ROP in OCA2 patients with partial pigmentation impairment. Furthermore, genetic analysis can aid in predicting the effectiveness of laser photocoagulation in this patient population.


Subject(s)
Albinism, Oculocutaneous , Retinopathy of Prematurity , Humans , Female , Albinism, Oculocutaneous/genetics , Albinism, Oculocutaneous/complications , Albinism, Oculocutaneous/therapy , Retinopathy of Prematurity/genetics , Retinopathy of Prematurity/therapy , Retinopathy of Prematurity/complications , Infant, Newborn , Membrane Transport Proteins/genetics , Mutation , Angiogenesis Inhibitors/therapeutic use , Laser Coagulation , Bevacizumab/therapeutic use
6.
Am J Cancer Res ; 14(5): 2037-2054, 2024.
Article in English | MEDLINE | ID: mdl-38859843

ABSTRACT

Glioblastoma is the most common cancer in the brain, resistant to conventional therapy and prone to recurrence. Therefore, it is crucial to explore novel therapeutics strategies for the treatment and prognosis of GBM. In this study, through analyzing online datasets, we elucidated the expression and prognostic value of POLR2J and its co-expressed genes in GBM patients. Functional experiments, including assays for cell apoptosis and cell migration, were used to explore the effects of POLR2J and vorinostat on the proliferation and migration of GBM cells. The highest overexpression of POLR2J, among all cancer types, was observed in GBM. Furthermore, high expression of POLR2J or its co-expressed genes predicted a poor outcome in GBM patients. DNA replication pathways were significantly enriched in the GBM clinical samples with high POLR2J expression, and POLR2J suppression inhibited proliferation and triggered cell cycle G1/S phase arrest in GBM cells. Moreover, POLR2J silencing activated the unfolded protein response (UPR) and significantly enhanced the anti-GBM activity of vorinostat by suppressing cell proliferation and inducing apoptosis. Additionally, POLR2J could interact with STAT3 to promote the metastatic potential of GBM cells. Our study identifies POLR2J as a novel oncogene in GBM progression and provides a promising strategy for the chemotherapeutic treatment of GBM.

7.
Front Genet ; 15: 1363197, 2024.
Article in English | MEDLINE | ID: mdl-38859937

ABSTRACT

Hepatocellular carcinoma (HCC) represents a substantial global health burden. Tumorinfiltrating B lymphocytes (TIL-Bs) contribute to tumor progression and significantly impact the efficacy of tumor therapy. However, the characteristics of TIL-Bs in HCC and their effect on HCC therapy remain elusive. Single-cell RNA sequencing (scRNAseq) was applied to investigate the heterogeneity, cellular differentiation and cell-cell communication of TIL-Bs in HCC. Further, the Cancer Genome Atlas-liver hepatocellular carcinoma (TCGA-LIHC) and liver cancer institutes (LCI) cohorts were applied to construct and validate the plasma cell marker-based prognostic risk model. The relationship between the prognostic risk model and the responsiveness of immunotherapy and chemotherapy in patients with HCC were estimated by OncoPredict and tumor immune dysfunction and exclusion (TIDE) algorithm. Finally, we established nomogram and calibration curves to evaluate the precision of the risk score in predicating survival probability. Our data identified five subtypes of TIL-Bs in HCC, each exhibiting varying levels of infiltration in tumor tissues. The interactions between TIL-Bs and other cell types contributed to shaping distinct tumor microenvironments (TME). Moreover, we found that TIL-Bs subtypes had disparate prognostic values in HCC patients. The prognostic risk model demonstrated exceptional predictive accuracy for overall survival and exhibited varying sensitivities to immunotherapy and chemotherapy among patients with HCC. Our data demonstrated that the risk score stood as an independent prognostic predictor and the nomogram results further affirmed its strong prognostic capability. This study reveals the heterogeneity of TIL-Bs and provides a prognostic risk model based on plasma cell markers in HCC, which could prove valuable in predicting prognosis and guiding the choice of suitable therapies for patients with HCC.

8.
Clin Pharmacol Ther ; 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38863261

ABSTRACT

Huntington's disease (HD) is a dominantly inherited neurodegenerative disorder characterized by a triad of motor, cognitive, and psychiatric problems. Caused by CAG repeat expansion in the huntingtin gene (HTT), the disease involves a complex network of pathogenic mechanisms, including synaptic dysfunction, impaired autophagy, neuroinflammation, oxidative damage, mitochondrial dysfunction, and extrasynaptic excitotoxicity. Although current therapies targeting the pathogenesis of HD primarily aim to reduce mHTT levels by targeting HTT DNA, RNA, or proteins, these treatments only ameliorate downstream pathogenic effects. While gene therapies, such as antisense oligonucleotides, small interfering RNAs and gene editing, have emerged in the field of HD treatment, their safety and efficacy are still under debate. Therefore, pharmacological therapy remains the most promising breakthrough, especially multi-target/functional drugs, which have diverse pharmacological effects. This review summarizes the latest progress in HD drug development based on clinicaltrials.gov search results (Search strategy: key word "Huntington's disease" in HD clinical investigational drugs registered as of December 31, 2023), and highlights the key role of multi-target/functional drugs in HD treatment strategies.

9.
Ying Yong Sheng Tai Xue Bao ; 35(4): 1112-1122, 2024 Apr 18.
Article in Chinese | MEDLINE | ID: mdl-38884246

ABSTRACT

River water quality is influenced by natural processes and human activities. Multi-scale landscape patterns can affect river water quality by altering the generation and transport processes of pollutants at different spatial scales. Taking Taizi River Basin in Northeast China as an example, we analyzed the relationship between landscape patterns and non-point source pollution in rivers based on water quality monitoring data and land use data by using correlation analysis and redundancy analysis methods. We aimed to determine the key spatial scales for the responses of landscape patterns to non-point source pollution and identify the key landscape indices influencing river non-point source pollution. The results showed that water quality of Taizi River Basin had seasonal differences, with better water quality during the flood season than non-flood season. Spatially, total nitrogen (TN) and total phosphorus (TP) were higher at the confluence points of tributaries and downstream areas. The impact of landscape patterns on non-point source pollution was stronger during the non-flood season than the flood season, while the influence on TN was stronger than on TP. At the spatial scale of within 500 m buffer zone during the flood season and at the sub-watershed scale during the non-flood season, landscape patterns showed the highest explanatory power for the variations of TN and TP. At the type level, built-up land, cropland, and bare land were positively correlated with TN and TP, while forest was negatively correlated with TN and TP, which were the key types influencing non-point source pollution. At the landscape level, patch density, percentage of like adjacencies, and contagion index were key indicators affecting watershed water quality. Lower patch density was associated with better connectivity and aggregation of "sink" landscapes, leading to better purification effects on TN, but more pronounced retention effects on TP. Conversely, higher landscape diversity and denser pattern of multiple types would cause the deterioration of water quality. Our results suggested that rational allocation of landscape types within the watershed and riparian buffer zones, appropriately enriching landscape diversity, and optimizing landscape aggregation and connectivity would be effective measures for improving water quality and achieving sustainable ecological management.


Subject(s)
Environmental Monitoring , Phosphorus , Rivers , Water Pollutants, Chemical , China , Rivers/chemistry , Environmental Monitoring/methods , Water Pollutants, Chemical/analysis , Phosphorus/analysis , Ecosystem , Nitrogen/analysis , Non-Point Source Pollution/analysis , Non-Point Source Pollution/prevention & control , Water Quality , Spatial Analysis
10.
Br J Anaesth ; 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38937217

ABSTRACT

BACKGROUND: Prior studies have reported inconsistent results regarding the association between driving pressure-guided ventilation and postoperative pulmonary complications (PPCs). We aimed to investigate whether driving pressure-guided ventilation is associated with a lower risk of PPCs. METHODS: We systematically searched electronic databases for RCTs comparing driving pressure-guided ventilation with conventional protective ventilation in adult surgical patients. The primary outcome was a composite of PPCs. Secondary outcomes were pneumonia, atelectasis, and acute respiratory distress syndrome (ARDS). Meta-analysis and subgroup analysis were conducted to calculate risk ratios (RRs) with 95% confidence intervals (CI). Trial sequential analysis (TSA) was used to assess the conclusiveness of evidence. RESULTS: Thirteen RCTs with 3401 subjects were included. Driving pressure-guided ventilation was associated with a lower risk of PPCs (RR 0.70, 95% CI 0.56-0.87, P=0.001), as indicated by TSA. Subgroup analysis (P for interaction=0.04) found that the association was observed in non-cardiothoracic surgery (nine RCTs, 1038 subjects, RR 0.61, 95% CI 0.48-0.77, P< 0.0001), with TSA suggesting sufficient evidence and conclusive result; however, it did not reach significance in cardiothoracic surgery (four RCTs, 2363 subjects, RR 0.86, 95% CI 0.67-1.10, P=0.23), with TSA indicating insufficient evidence and inconclusive result. Similarly, a lower risk of pneumonia was found in non-cardiothoracic surgery but not in cardiothoracic surgery (P for interaction=0.046). No significant differences were found in atelectasis and ARDS between the two ventilation strategies. CONCLUSIONS: Driving pressure-guided ventilation was associated with a lower risk of postoperative pulmonary complications in non-cardiothoracic surgery but not in cardiothoracic surgery. SYSTEMATIC REVIEW PROTOCOL: INPLASY 202410068.

11.
Cancer Biol Med ; 21(6)2024 May 31.
Article in English | MEDLINE | ID: mdl-38825813

ABSTRACT

In exploring persistent infections and malignancies, a distinctive subgroup of CD8+ T cells, progenitor exhausted CD8+ T (Tpex) cells, has been identified. These Tpex cells are notable for their remarkable self-renewal and rapid proliferation abilities. Recent strides in immunotherapy have demonstrated that Tpex cells expand and differentiate into responsive exhausted CD8+ T cells, thus underscoring their critical role in the immunotherapeutic retort. Clinical examinations have further clarified a robust positive correlation between the proportional abundance of Tpex cells and enhanced clinical prognosis. Tpex cells have found noteworthy applications in the formulation of inventive immunotherapeutic approaches against tumors. This review describes the functions of Tpex cells in the tumor milieu, particularly their potential utility in tumor immunotherapy. Precisely directing Tpex cells may be essential to achieving successful outcomes in immunotherapy against tumors.


Subject(s)
CD8-Positive T-Lymphocytes , Immunotherapy , Neoplasms , Humans , Neoplasms/therapy , Neoplasms/immunology , Immunotherapy/methods , CD8-Positive T-Lymphocytes/immunology , Animals , Tumor Microenvironment/immunology
13.
Front Pharmacol ; 15: 1362150, 2024.
Article in English | MEDLINE | ID: mdl-38903985

ABSTRACT

Introduction: Diabetes mellitus (DM) is a common endocrine disease resulting from interactions between genetic and environmental factors. Type II DM (T2DM) accounts for approximately 90% of all DM cases. Current medicines used in the treatment of DM have some adverse or undesirable effects on patients, necessitating the use of alternative medications. Methods: To overcome the low bioavailability of plant metabolites, all entities were first screened through pharmacokinetic, network pharmacology, and molecular docking predictions. Experiments were further conducted on a combination of antidiabetic phytoactive molecules (rosmarinic acid, RA; luteolin, Lut; resveratrol, RS), along with in vitro evaluation (α-amylase inhibition assay) and diabetic mice tests (oral glucose tolerance test, OGTT; oral starch tolerance test, OSTT) for maximal responses to validate starch digestion and glucose absorption while facilitating insulin sensitivity. Results: The results revealed that the combination of metabolites achieved all required criteria, including ADMET, drug likeness, and Lipinski rule. To determine the mechanisms underlying diabetic hyperglycemia and T2DM treatments, network pharmacology was used for regulatory network, PPI network, GO, and KEGG enrichment analyses. Furthermore, the combined metabolites showed adequate in silico predictions (α-amylase, α-glucosidase, and pancreatic lipase for improving starch digestion; SGLT-2, AMPK, glucokinase, aldose reductase, acetylcholinesterase, and acetylcholine M2 receptor for mediating glucose absorption; GLP-1R, DPP-IV, and PPAR-γ for regulating insulin sensitivity), in vitro α-amylase inhibition, and in vivo efficacy (OSTT versus acarbose; OGTT versus metformin and insulin) as nutraceuticals against T2DM. Discussion: The results demonstrate that the combination of RA, Lut, and RS could be exploited for multitarget therapy as prospective antihyperglycemic phytopharmaceuticals that hinder starch digestion and glucose absorption while facilitating insulin sensitivity.

14.
Nat Prod Res ; : 1-8, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38838282

ABSTRACT

One new flavonostilbene glycoside, polygonflavanol C (1), two new dimeric stilbene glycosides, multiflorumiside M and multiflorumiside N (2-3), one new diphenyl ethanol glycoside, (R)-2,3,5,4'-tetrahydroxy-diphenylethanol 2-O-ß-D-glucopyranoside (4), and one new deoxybenzoin glycoside, 2,4,3',5'-tetrahydroxy-6-methyl-deoxybenzoin 2-O-ß-D-glucopyranoside (5), together with six known ones (6-11), were isolated from the roots of Polygonum multiflorum. Their structures were elucidated by the comprehensive spectroscopic analyses. In addition, compounds 1 and 7 showed significantly in vitro anti-inflammatory activity.

15.
Comput Struct Biotechnol J ; 23: 2488-2496, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38939556

ABSTRACT

Gene expression is dynamic and varies at different stages of processes. The identification of gene profiles with temporal-specific expression patterns can provide valuable insights into ongoing biological processes, such as the cell cycle, cell development, circadian rhythms, or responses to external stimuli such as drug treatments or viral infections. However, currently, no database defines, identifies or archives gene profiles with temporal-specific expression patterns. Here, using a high-throughput regression analysis approach, eight linear and nonlinear parametric models were fitted to gene expression profiles from time-series experiments to identify eight types of gene profiles with temporal-specific expression patterns. We curated 2684 time-series transcriptome datasets and identified 2644,370 gene profiles exhibiting temporal-specific expression patterns. The results were stored in the database GeTeSEPdb (gene profiles with temporal-specific expression patterns database, http://www.inbirg.com/GeTeSEPdb/). Moreover, we implemented an online tool to identify gene profiles with temporal-specific expression patterns from user-submitted data. In summary, GeTeSEPdb is a comprehensive web service that can be used to identify and analyse gene profiles with temporal-specific expression patterns. This approach facilitates the exploration of transcriptional changes and temporal patterns of responses. We firmly believe that GeTeSEPdb will become a valuable resource for biologists and bioinformaticians.

16.
Food Funct ; 15(13): 7017-7031, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38860333

ABSTRACT

B vitamins and probiotics are commonly used dietary supplements with well-documented health benefits. However, their potential interactions remain poorly understood. This study aims to explore the effects and underlying mechanisms of the combined use of B vitamins and probiotics by liquid chromatography-triple quadrupole mass spectrometry analysis, pharmacokinetic modeling, and 16S rRNA gene sequencing. By intragastric administration of seven B vitamins and three Lactobacillus strains to healthy rats (n = 8 per group), we found that probiotics significantly promoted the absorption (by approximately 14.5% to 71.2%) of vitamins B1, B3, B5, and B12. By conducting in vitro experiments (n = 3 per group) and a pseudo-germ-free rat model-based pharmacokinetic study (n = 6 per group), we confirmed that probiotics primarily enhanced the B vitamin absorption through gut microbiota-mediated mechanisms, rather than by directly producing B vitamins. Furthermore, we evaluated the effects of B vitamins and probiotics on the colon and gut microbiota by treating the pseudo-germ-free rats with blank solution, B vitamins, probiotics, and B vitamins + probiotics (n = 5 per group), respectively. Histopathological examination showed that the combination of B vitamins and probiotics synergistically alleviated the rat colon damage. High-throughput genetic sequencing also revealed the synergistic effect of B vitamins and probiotics in modulating the gut microbiota, particularly increasing the abundance of Verrucomicrobia and Akkermansia. In summary, the combined administration of B vitamins and probiotics may have a higher efficacy than using them alone.


Subject(s)
Akkermansia , Gastrointestinal Microbiome , Probiotics , Rats, Sprague-Dawley , Vitamin B Complex , Animals , Probiotics/pharmacology , Rats , Gastrointestinal Microbiome/drug effects , Vitamin B Complex/pharmacology , Male , Colon/metabolism , Colon/microbiology , Dietary Supplements , Humans , RNA, Ribosomal, 16S/genetics
17.
Cancer Immunol Immunother ; 73(8): 138, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38833177

ABSTRACT

Despite the success of immune checkpoint inhibitors (ICIs) in treating solid tumors, lots of patients remain unresponsive to this therapy. Microwave ablation (MWA) stimulates systemic adaptive immunity against tumor cells by releasing tumor antigens. Additionally, IL-21 has demonstrated importance in stimulating T-cell effector function. The combination of these three therapies-MWA, IL-21, and anti-PD-1 monoclonal antibodies (mAbs)-has yet to be explored in the context of cancer treatment.In this study, we explored the impact of thermal ablation on IL-21R expression in tumor-infiltrating lymphocytes (TILs). Subsequently, we assessed alterations in the tumor microenvironment (TME) and peripheral lymphoid organs. Additionally, we conducted a thorough examination of tumor-infiltrating CD45+ immune cells across various treatment groups using single-cell RNA sequencing (scRNA-seq). Moreover, we determined the potential anti-tumor effects of the triple combination involving MWA, IL-21, and anti-PD-1 mAbs.Our findings revealed that MWA upregulated the expression of IL-21R on various immune cells in the untreated tumors. The combination of MWA with IL-21 exhibited a robust abscopal anti-tumor effect, enhancing the effector function of CD8+ T cells and facilitating dendritic cells' maturation and antigen presentation in the untreated tumor. Notably, the observed abscopal anti-tumor effect resulting from the combination is contingent upon T-cell recirculation, indicating the reliance of systemic adaptive immunity for this treatment regimen. Additionally, the combination of MWA, IL-21, and PD-1 mAbs demonstrated profound abscopal anti-tumor efficacy. Our findings provide support for further clinical investigation into a triple combination therapy involving MWA, IL-21, and ICIs for the treatment of metastatic cancer.


Subject(s)
Immune Checkpoint Inhibitors , Interleukins , Programmed Cell Death 1 Receptor , Tumor Microenvironment , Interleukins/metabolism , Animals , Mice , Immune Checkpoint Inhibitors/pharmacology , Immune Checkpoint Inhibitors/therapeutic use , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Programmed Cell Death 1 Receptor/immunology , Humans , Tumor Microenvironment/immunology , Combined Modality Therapy , Lymphocytes, Tumor-Infiltrating/immunology , Lymphocytes, Tumor-Infiltrating/metabolism , Female , Neoplasms/immunology , Neoplasms/therapy , Mice, Inbred C57BL , Cell Line, Tumor
18.
Int J Biol Macromol ; 273(Pt 1): 132836, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38834127

ABSTRACT

The polyurethane (PU) foams can be functionally tailored by modifying the formulation with different additives. One such additive is melamine (MA) formaldehyde resin for improving their flame-retardant properties. In this work, the glycerol-modified (GMF), sodium alginate (SGMF)- and lignosulfonate-modified melamine formaldehyde (LGMF) were prepared and used as flame retardants reacting with isocyanate to prepare the corresponding rigid polyurethane foams (GMF-PU, SGMF-PU and LGMF-PU). The thermomechanical properties and flame-retardant properties of the foams were characterized. The results showed that the specific compression strength of GMF-PU, SGMF-PU and LGMF-PU increased substantially compared to the foams from physical addition of MA, sodium alginate and lignosulfonate, all of which were greater than that of the foam without any flame retardant (PPU). Meanwhile, the cell wall of the foam pores became thicker and the closed pore ratio increased. The sodium alginate and lignosulfonate played a key role in enhancing foam thermal stability. The limiting oxygen index values and cone calorimetry results indicated the flame-retardant efficiency of GMF-PU, SGMF-PU and LGMF-PU was significantly enhanced relative to PPU. Meanwhile, the heat and smoke release results indicated sodium alginate and lignosulfonate could reduce the amount of smoke generation to different degrees during the combustion of the foam.


Subject(s)
Alginates , Flame Retardants , Lignin , Polyurethanes , Triazines , Triazines/chemistry , Polyurethanes/chemistry , Flame Retardants/analysis , Lignin/chemistry , Lignin/analogs & derivatives , Alginates/chemistry , Resins, Synthetic/chemistry , Glycerol/chemistry , Temperature , Formaldehyde/chemistry , Formaldehyde/analysis
20.
Int J Parasitol ; 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38936501

ABSTRACT

Establishing an intact intracellular parasitophorous vacuole (PV) that enables efficient nutrient uptake and protein trafficking is essential for the survival and proliferation of Toxoplasma gondii. Although the PV membrane (PVM)-localized dense granule protein 17 (GRA17) and GRA23 mediate the permeability of the PVM to small molecules, including nutrient uptake and excretion of metabolic by-products, the molecular mechanism by which T. gondii acquires nutrients remains unclear. In this study, we showed that the secreted protein GRA47 contributed to normal PV morphology, PVM permeability to small molecules, growth, and virulence in T. gondii. Co-immunoprecipitation analysis demonstrated potential interaction of GRA47 with GRA72, and the loss of GRA72 affected PV morphology, parasite growth and infectivity. To investigate the biological relationship among GRA47, GRA72, GRA17 and GRA23, attempts were made to construct strains with double gene deletion and overexpressing strains. Only Δgra23Δgra72 was successfully constructed. This strain exhibited a significant increase in the proportion of aberrant PVs compared with the Δgra23 strain. Overexpressing one of the three related GRAs partially rescued PVs with aberrant morphology in Δgra47, Δgra72 and Δgra17, while the expression of the Plasmodium falciparum PVM protein PfExp2, an ortholog of GRA17 and GRA23, fully rescued the PV morphological defect in all three Δgra strains. These results suggest that these GRA proteins may not be functionally redundant but rather work in different ways to regulate nutrient acquisition. These findings highlight the versatility of the nutrient uptake mechanisms in T. gondii, which may contribute to the parasite's remarkable ability to grow in different cellular niches in a very broad range of hosts.

SELECTION OF CITATIONS
SEARCH DETAIL