Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.532
Filter
1.
J Ethnopharmacol ; 336: 118724, 2025 Jan 10.
Article in English | MEDLINE | ID: mdl-39181283

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Wenshen Xiaozheng Tang (WXT), a traditional Chinese medicine (TCM) decoction, is effective for treating endometriosis. However, the effect of WXT on endometrium-derived mesenchymal stem cells (eMSCs) which play a key role in the fibrogenesis of endometriosis requires further elucidation. AIMS OF THE STUDY: The aim of this study was to clarify the potential mechanism of WXT in improving fibrosis in endometriosis by investigating the regulation of WXT on differentiation and paracrine of eMSCs. MATERIALS AND METHODS: The nude mice with endometriosis were randomly divided into model group, WXT group and mifepristone group. After 21 days of treatment, the lesion volume was calculated. Fibrosis in the lesions was evaluated by Masson staining and expression of fibrotic proteins. The differentiation of eMSCs in vivo was explored using a fate-tracking experiment. To further clarify the regulation of WXT on eMSCs, primary eMSCs from the ectopic lesions of endometriosis patients were isolated and characterized. The effect of WXT on the proliferation and differentiation of ectopic eMSCs was examined. To evaluate the role of WXT on the paracrine activity of ectopic eMSCs, the conditioned medium (CM) from ectopic eMSCs pretreated with WXT was collected and applied to treat ectopic endometrial stromal cells (ESCs), after which the expression of fibrotic proteins in ectopic ESCs was assessed. In addition, transcriptome sequencing was used to investigate the regulatory mechanism of WXT on ectopic eMSCs, and western blot and ELISA were employed to determine the key mediator. RESULTS: WXT impeded the growth of ectopic lesions in nude mice with endometriosis and reduced collagen deposition and the expression of fibrotic proteins fibronectin, collagen I, α-SMA and CTGF in the endometriotic lesions. The fate-tracking experiment showed that WXT prevented human eMSCs from differentiating into myofibroblasts in the nude mice. We successfully isolated eMSCs from the lesions of patients with endometriosis and demonstrated that WXT suppressed proliferation and myofibroblast differentiation of ectopic eMSCs. Moreover, the expression of α-SMA, collagen I, fibronectin and CTGF in ectopic ESCs was significantly down-regulated by the CM of ectopic MSCs pretreated with WXT. Combining the results of RNA sequencing, western blot and ELISA, we found that WXT not only reduced thrombospondin 4 expression in ectopic eMSCs, but also decreased thrombospondin 4 secretion from ectopic eMSCs. Thrombospondin 4 concentration-dependently upregulated the expression of collagen I, fibronectin, α-SMA and CTGF in ectopic ESCs, indicating that thrombospondin 4 was a key mediator of WXT in inhibiting the fibrotic process in endometriosis. CONCLUSION: WXT improved fibrosis in endometriosis by regulating differentiation and paracrine signaling of eMSCs. Thrombospondin 4, whose release from ectopic eMSCs is inhibited by WXT, may be a potential target for the treatment of endometriosis.


Subject(s)
Cell Differentiation , Drugs, Chinese Herbal , Endometriosis , Endometrium , Fibrosis , Mesenchymal Stem Cells , Mice, Nude , Paracrine Communication , Endometriosis/drug therapy , Endometriosis/pathology , Endometriosis/metabolism , Female , Animals , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/therapeutic use , Mesenchymal Stem Cells/drug effects , Mesenchymal Stem Cells/metabolism , Paracrine Communication/drug effects , Humans , Cell Differentiation/drug effects , Endometrium/drug effects , Endometrium/metabolism , Endometrium/pathology , Mice , Cells, Cultured , Adult , Disease Models, Animal
2.
Front Neurosci ; 18: 1393740, 2024.
Article in English | MEDLINE | ID: mdl-39234184

ABSTRACT

Objected: To evaluate the association between osteoarthritis (OA) and Parkinson's disease (PD) in adults in the United States. Methods: Using 2011-2020 NHANES data, a cross-sectional study of 11,117 adults over the age of 40 was conducted. Univariate logistic regression and multivariate logistic regression were used to analyze the relationship between arthritis and PD. In addition, stratified analysis was used to examine whether the relationship between arthritis and PD was interactive with age, gender, race, education, BMI. Results: In this study, a total of 11,117 participants were included, and we found that osteoarthritis was positively correlated with the development of PD compared with non-arthritis patients [1.95 (1.44 ~ 2.62)] (p < 0.001). After adjusting the covariates, the results are still stable. Conclusion: PD patients were positively correlated with OA. Among people with OA, there was a 95% increased risk of PD compared to people without arthritis. Therefore, when treating OA, attention should be paid to the increased risk of PD. In the meantime, further studies are needed to explore the link between OA and PD patients.

3.
Proc Natl Acad Sci U S A ; 121(38): e2412031121, 2024 Sep 17.
Article in English | MEDLINE | ID: mdl-39254999

ABSTRACT

Higher-order topological phases in non-Hermitian photonics revolutionize the understanding of wave propagation and modulation, which lead to hierarchical states in open systems. However, intrinsic insulating properties endorsed by the lattice symmetry of photonic crystals fundamentally confine the robust transport only at explicit system boundaries, letting alone the flexible reconfiguration in hierarchical states at arbitrary positions. Here, we report a dynamic topological platform for creating the reconfigurable hierarchical bound states in heat transport systems and observe the robust and nonlocalized higher-order states in both the real- and imaginary-valued bands. Our experiments showcase that the hierarchical features of zero-dimension corner and nontrivial edge modes occur at tailored positions within the system bulk states instead of the explicit system boundaries. Our findings uncover the mechanism of non-localized hierarchical non-trivial topological states and offer distinct paradigms for diffusive transport field management.

4.
Lung Cancer (Auckl) ; 15: 135-142, 2024.
Article in English | MEDLINE | ID: mdl-39224877

ABSTRACT

Background: Pulmonary spindle cell carcinoma (PSCC), a highly malignant tumor, often exhibits cell pleomorphism, a histopathological characteristic. Owing to its extremely low incidence, atypical imaging and clinical presentations, and insufficient awareness among clinicians, PSCC is often misdiagnosed, which results in delays in treatment. Herein, we reported a rare case of PSCC that was initially misdiagnosed as granulomatous inflammation. Case Presentation: A 66-year-old male visited a local hospital with symptoms such as cough and hemoptysis. A computed tomography (CT) scan of the chest revealed a mass in his right lung, and no mediastinal lymphadenopathy was observed. Bronchoscopy showed no major abnormalities, and the results of fine needle aspiration biopsy showed granulomatous inflammation. Even though the patient received anti-infection treatment, his symptoms did not improve markedly. After two months, a follow-up CT scan of the lung showed a noticeably enlarged mass accompanied by multiple instances of mediastinal lymphadenopathy in the upper lobe of the right lung. Consequently, he underwent a second CT-guided lung biopsy at our hospital. The pathology report indicated PSCC. Due to financial constraints, genetic testing was not performed. Given his poor overall physical condition, the patient was unable to undergo systemic chemotherapy and instead received palliative radiotherapy. The prescribed radiotherapy dose for the right upper lobe lung cancer and multiple metastatic lymph nodes was 60 Gy, administered in 30 fractions. Unfortunately, he failed to adhere to scheduled follow-ups and succumbed to the disease 6 months later, as confirmed during a telephone follow-up. Conclusion: PSCC is a rare but highly malignant lung cancer. Multiple pathological biopsies are necessary to accurately and promptly diagnose the disease, which is crucial for early treatment intervention as well as improving patient prognosis.

5.
Adv Mater ; : e2407239, 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-39233547

ABSTRACT

Nitrogen (N2) conversion to ammonia (NH3) in a mild condition is a big chemical challenge. The whole-cell diazotrophs based biological NH3 synthesis is one of the most promising strategies. Herein, the first attempt of photoelectrochemical-microbial (PEC-MB) biohybrid is contributed for artificial N2 fixation, where Azotobacter vinelandii (A. vinelandii) is interfaced directly with polydopamine encapsulated nickel oxide (NiO) nanosheets (NiO@PDA). By virtue of excellent bio-adhesive activity, high conductivity, and good biocompatibility of PDA layer, abundant A. vinelandii are effectively adsorbed on NiO@PDA to form NiO@PDA/A. vinelandii biohybrid, and the rationally designed biohybrid achieved a record-high NH3 production yield of 1.85 µmol h-1/108 cells (4.14 µmol h-1 cm-2). In addition, this biohybrid can operate both under illumination with a PEC model or in dark with an electrocatalytic (EC) model to implement long-term and successional NH3 synthesis. The enhancement mechanism of NH3 synthesis in NiO@PDA/A. vinelandii biohybrid can be ascribed to the increase of nicotinamide adenine dinucleotide-hydrogen (NADH) and adenosine 5-triphosphate (ATP) concentrations and over expression of nitrogen-fixing genes of nifH, nifD and nifK in nitrogenase. This innovative PEC-MB biohybrid strategy sheds light on the fundamental mechanism and establishes proof of concept of biotic-abiotic photosynthetic systems for sustainable chemical production.

6.
Chem Biol Interact ; 403: 111221, 2024 Sep 03.
Article in English | MEDLINE | ID: mdl-39233264

ABSTRACT

Exosomes play a crucial role in regulating extracellular communication between normal and cancer cells within the tumor microenvironment, thereby affecting tumor progression through their cargo molecules. However, the specific impact of exosomal circular RNAs (circRNAs) on the development of cadmium-induced carcinogenesis remains unclear. To address this, we investigated whether exosomes derived from normal human bronchial epithelial BEAS-2B (N-B2B) cells could transmit circRNA to cadmium-transformed BEAS-2B (Cd-B2B) cells and the potential effects on Cd-B2B cells. Our findings demonstrated a significant downregulation of circ_0004664 in Cd-B2B cells compared to N-B2B cells (P < 0.01). Overexpression of circ_0004664 in Cd-B2B cells led to a significant inhibition of cell migration and invasion (P < 0.01 or P < 0.05). Furthermore, N-B2B cells could transfer circ_0004664 into recipient Cd-B2B cells via exosomes, subsequently inhibiting cell migration and invasion (P < 0.05 or P < 0.01). Mechanistic investigations revealed that exosomal circ_0004664 functioned as a competitive endogenous RNA for miR-942-5p, resulting in an upregulation of PTEN (P < 0.05). Our study highlights the involvement of exosomal circ_0004664 in cell-cell communication during cadmium carcinogenesis, providing a novel insight into the role of exosomal circRNA in this process.

7.
J Mol Biol ; : 168784, 2024 Sep 06.
Article in English | MEDLINE | ID: mdl-39245318

ABSTRACT

Globally, the continuous spread and evolution of SARS-CoV-2, along with its variants, profoundly impact human well-being, health, security, and the growth of socio-economic. In the field of development of drugs against COVID-19, the main protease (Mpro) is a critical target as it plays a core role in the lifecycle of SARS-CoV-2. Bofutrelvir acts as a potent inhibitor of SARS-CoV-2 Mpro, demonstrating high efficacy and broad-spectrum antiviral activity. Compared to therapies that require pharmacokinetic boosters, such as ritonavir, the monotherapy approach of Bofutrelvir reduces the risk of potential drug interactions, making it suitable for a wider patient population. However, further studies on the potency and mechanism of inhibition of Bofutrelvir against the Mpro of COVID-19 and its variants, together with other coronaviruses, are needed to prepare for the possibility of a possible re-emerging threat from an analogous virus in the future. Here, we reveal the effective inhibition of Bofutrelvir against the Mpro of SARS-CoV-2, SARS-CoV, and HCoV-229E through FRET and crystallographic analysis. Furthermore, the inhibitory mechanisms of Bofutrelvir against two SARS-CoV-2 Mpro mutants (G15S and K90R) were also elucidated through FRET and crystallographic studies. Through detailed analysis and comparison of these crystal structures, we identified crucial structural determinants of inhibition and elucidated the binding mode of Bofutrelvir to Mpros from different coronaviruses. These findings are hopeful to accelerate the development of safer and more potent inhibitors against the Mpro of coronavirus, and to provide important references for the prevention and treatment of similar viruses that may emerge in the future.

8.
Rep Prog Phys ; 87(9)2024 Aug 23.
Article in English | MEDLINE | ID: mdl-39121866

ABSTRACT

Topological Anderson phases (TAPs) offer intriguing transitions from ordered to disordered systems in photonics and acoustics. However, achieving these transitions often involves cumbersome structural modifications to introduce disorders in parameters, leading to limitations in flexible tuning of topological properties and real-space control of TAPs. Here, we exploit disordered convective perturbations in a fixed heat transport system. Continuously tunable disorder-topology interactions are enabled in thermal dissipation through irregular convective lattices. In the presence of a weak convective disorder, the trivial diffusive system undergos TAP transition, characterized by the emergence of topologically protected corner modes. Further increasing the strength of convective perturbations, a second phase transition occurs converting from TAP to Anderson phase. Our work elucidates the pivotal role of disorders in topological heat transport and provides a novel recipe for manipulating thermal behaviors in diverse topological platforms.

9.
Int J Mol Sci ; 25(15)2024 Aug 03.
Article in English | MEDLINE | ID: mdl-39126047

ABSTRACT

Plants communicate underground by secreting multiple amino acids (AAs) through their roots, triggering defense mechanisms against cadmium (Cd) stress. However, the specific roles of the individual AAs in Cd translocation and detoxification remain unclear. This study investigated how exogenous AAs influence Cd movement from the roots to the shoots in Cd-resistant and Cd-sensitive Chinese cabbage cultivars (Jingcui 60 and 16-7 cultivars). The results showed that methionine (Met) and cysteine (Cys) reduced Cd concentrations in the shoots of Jingcui 60 by approximately 44% and 52%, and in 16-7 by approximately 43% and 32%, respectively, compared to plants treated with Cd alone. However, threonine (Thr) and aspartic acid (Asp) did not show similar effects. Subcellular Cd distribution analysis revealed that AA supplementation increased Cd uptake in the roots, with Jingcui 60 preferentially storing more Cd in the cell wall, whereas the 16-7 cultivar exhibited higher Cd concentrations in the organelles. Moreover, Met and Cys promoted the formation of Cd-phosphate in the roots of Jingcui 60 and Cd-oxalate in the 16-7 cultivar, respectively. Further analysis showed that exogenous Cys inhibited Cd transport to the xylem by downregulating the expression of HMA2 in the roots of both cultivars, and HMA4 in the 16-7 cultivar. These findings provide insights into the influence of exogenous AAs on Cd partitioning and detoxification in Chinese cabbage plants.


Subject(s)
Amino Acids , Brassica , Cadmium , Plant Roots , Cadmium/toxicity , Cadmium/metabolism , Brassica/metabolism , Brassica/drug effects , Amino Acids/metabolism , Plant Roots/metabolism , Plant Roots/drug effects , Biological Transport , Plant Shoots/metabolism , Plant Shoots/drug effects , Gene Expression Regulation, Plant/drug effects , Plant Proteins/metabolism , Plant Proteins/genetics
10.
Medicine (Baltimore) ; 103(35): e39369, 2024 Aug 30.
Article in English | MEDLINE | ID: mdl-39213232

ABSTRACT

BACKGROUND: This study aims to evaluate the therapeutic efficacy of combined treatment with pulsed electromagnetic fields (PEMFs) and platelet-rich plasma (PRP) injection in improving pain and functional mobility among patients with early-stage knee osteoarthritis (KOA). We hypothesize that this combined therapy can yield superior treatment outcomes. METHODS: Based on the different treatment regimens, we divided 48 patients diagnosed with Kellgren-Lawrence grades I-III KOA into 3 groups: the PRP group, the PEMFs group, and the PRP + PEMFs group. Each subtype of KOA patients was randomly assigned to different treatment groups. In the PRP group, patients received intra-articular injections of leukocyte-rich platelet-rich plasma once a month for 3 consecutive months. In the PEMFs group, patients receive low-frequency PEMFs irradiation therapy with a frequency of 30 Hz and intensity of 1.5 mT, once daily, 5 times a week, for a consecutive treatment period of 12 weeks. In the PRP + PEMFs group, patients receive both of the aforementioned treatment protocol. The treatment effects on patients are evaluated at baseline and at weeks 4, 8, and 12 post-treatment. Assessment parameters include visual analog scale for pain, Western Ontario and McMaster Universities Osteoarthritis Index, Lequesne Index score, and knee joint range of motion. RESULTS: From the 4th to the 12th week of treatment, the visual analog scale scores, Western Ontario and McMaster Universities Osteoarthritis Index scores, and Lequesne index scores of patients in all 3 groups gradually decreased, while knee joint mobility gradually increased (P < .05). At weeks 4, 8, and 12 after treatment, the PRP combined with PEMFs group showed significantly better scores compared to the PRP group and the PEMFs group, with statistically significant differences (P < .05). A total of 7 patients experienced adverse reactions such as knee joint swelling, low-grade fever, and worsening knee joint pain after treatment, all of which disappeared within 1 week after treatment. The incidence of complications did not differ significantly among the 3 groups (P = .67). CONCLUSION: PRP, PEMFs, and the combination of PRP and PEMFs therapy all effectively alleviate knee joint pain and improve joint function. However, compared to single treatment modalities, the combined therapy of PRP and PEMFs demonstrates more pronounced efficacy.


Subject(s)
Magnetic Field Therapy , Osteoarthritis, Knee , Platelet-Rich Plasma , Humans , Osteoarthritis, Knee/therapy , Male , Female , Middle Aged , Combined Modality Therapy , Magnetic Field Therapy/methods , Aged , Treatment Outcome , Pain Measurement , Injections, Intra-Articular
11.
Front Pharmacol ; 15: 1444733, 2024.
Article in English | MEDLINE | ID: mdl-39170704

ABSTRACT

Background and Objective: Chronic atrophic gastritis (CAG) is a complex chronic disease caused by multiple factors that frequently occurs disease in the clinic. The worldwide prevalence of CAG is high. Interestingly, clinical CAG patients often present with a variety of symptom phenotypes, which makes it more difficult for clinicians to treat. Therefore, there is an urgent need to improve our understanding of the complexity of the clinical CAG population, obtain more accurate disease subtypes, and explore the relationship between clinical symptoms and medication. Therefore, based on the integrated platform of complex networks and clinical research, we classified the collected patients with CAG according to their different clinical characteristics and conducted correlation analysis on the classification results to identify more accurate disease subtypes to aid in personalized clinical treatment. Method: Traditional Chinese medicine (TCM) offers an empirical understanding of the clinical subtypes of complicated disorders since TCM therapy is tailored to the patient's symptom profile. We gathered 6,253 TCM clinical electronic medical records (EMRs) from CAG patients and manually annotated, extracted, and preprocessed the data. A shared symptom-patient similarity network (PSN) was created. CAG patient subgroups were established, and their clinical features were determined through enrichment analysis employing community identification methods. Different clinical features of relevant subgroups were correlated based on effectiveness to identify symptom-botanical botanical drugs correspondence. Moreover, network pharmacology was employed to identify possible biological relationships between screened symptoms and medications and to identify various clinical and molecular aspects of the key subtypes using Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis. Results: 5,132 patients were included in the study: 2,699 males (52.60%) and 2,433 females (47.41%). The population was divided into 176 modules. We selected the first 3 modules (M29, M3, and M0) to illustrate the characteristic phenotypes and genotypes of CAG disease subtypes. The M29 subgroup was characterized by gastric fullness disease and internal syndrome of turbidity and poison. The M3 subgroup was characterized by epigastric pain and disharmony between the liver and stomach. The M0 subgroup was characterized by epigastric pain and dampness-heat syndrome. In symptom analysis, The top symptoms for symptom improvement in all three subgroups were stomach pain, bloating, insomnia, poor appetite, and heartburn. However, the three groups were different. The M29 subgroup was more likely to have stomach distention, anorexia, and palpitations. Citrus medica, Solanum nigrum, Jiangcan, Shan ci mushrooms, and Dillon were the most popular botanical drugs. The M3 subgroup has a higher incidence of yellow urine, a bitter tongue, and stomachaches. Smilax glabra, Cyperus rotundus, Angelica sinensis, Conioselinum anthriscoides, and Paeonia lactiflora were the botanical drugs used. Vomiting, nausea, stomach pain, and appetite loss are common in the M0 subgroup. The primary medications are Scutellaria baicalensis, Smilax glabra, Picrorhiza kurroa, Lilium lancifolium, and Artemisia scoparia. Through GO and KEGG pathway analysis, We found that in the M29 subgroup, Citrus medica, Solanum nigrum, Jiangcan, Shan ci mushrooms, and Dillon may exert their therapeutic effects on the symptoms of gastric distension, anorexia, and palpitations by modulating apoptosis and NF-κB signaling pathways. In the M3 subgroup, Smilax glabra, Cyperus rotundus, Angelica sinensis, Conioselinum anthriscoides, and Paeonia lactiflora may be treated by NF-κB and JAK-STAT signaling pathway for the treatment of stomach pain, bitter mouth, and yellow urine. In the M0 subgroup, Scutellaria baicalensis, Smilax glabra, Picrorhiza kurroa, Lilium lancifolium, and Artemisia scoparia may exert their therapeutic effects on poor appetite, stomach pain, vomiting, and nausea through the PI3K-Akt signaling pathway. Conclusion: Based on PSN identification and community detection analysis, CAG population division can provide useful recommendations for clinical CAG treatment. This method is useful for CAG illness classification and genotyping investigations and can be used for other complicated chronic diseases.

12.
Asian J Androl ; 2024 Aug 02.
Article in English | MEDLINE | ID: mdl-39091129

ABSTRACT

The genome tagging project (GTP) plays a pivotal role in addressing a critical gap in the understanding of protein functions. Within this framework, we successfully generated a human influenza hemagglutinin-tagged sperm-specific protein 411 (HA-tagged Ssp411) mouse model. This model is instrumental in probing the expression and function of Ssp411. Our research revealed that Ssp411 is expressed in the round spermatids, elongating spermatids, elongated spermatids, and epididymal spermatozoa. The comprehensive examination of the distribution of Ssp411 in these germ cells offers new perspectives on its involvement in spermiogenesis. Nevertheless, rigorous further inquiry is imperative to elucidate the precise mechanistic underpinnings of these functions. Ssp411 is not detectable in metaphase II (MII) oocytes, zygotes, or 2-cell stage embryos, highlighting its intricate role in early embryonic development. These findings not only advance our understanding of the role of Ssp411 in reproductive physiology but also significantly contribute to the overarching goals of the GTP, fostering groundbreaking advancements in the fields of spermiogenesis and reproductive biology.

13.
Smart Med ; 3(1): e20230034, 2024 Feb.
Article in English | MEDLINE | ID: mdl-39188511

ABSTRACT

Immune engineering, a burgeoning field within regenerative medicine, involves a spectrum of strategies to optimize the intricate interplay between tissue regenerative biomaterials and the host tissue. These strategies are applied across different types of biomaterials and various disease models, which encompasses finely modulating the immune response at the levels of immune cells and factors, aiming to mitigate adverse effects like fibrosis and persistent inflammation that may arise at the injury site and consequently promote tissue regeneration. With the continuous progress in electrospinning technology, the immunoregulatory capabilities of electrospun fibers have gained substantial attention over the years. Electrospun fibers, with their extracellular matrix-like characteristics, high surface-area-to-volume ratio, and reliable pharmaceutical compound capacity, have emerged as key players among tissue engineering materials. This review specifically focuses on the role of electrospun fiber-based immune engineering, emphasizing their unique design strategies. Notably, electrospinning actively engages in immune engineering by modulating immune responses through four essential strategies: (i) surface modification, (ii) drug loading, (iii) physicochemical parameters, and (iv) biological grafting. This review presents a comprehensive overview of the intricate mechanisms of the immune system in injured tissues while unveiling the key strategies adopted by electrospun fibers to orchestrate immune regulation. Furthermore, the review explores the current developmental trends and limitations concerning the immunoregulatory function of electrospun fibers, aiming to drive the advancements in electrospun fiber-based immune engineering to its full potential.

14.
Environ Pollut ; 361: 124724, 2024 Aug 12.
Article in English | MEDLINE | ID: mdl-39142430

ABSTRACT

Cadmium (Cd) is a toxic contaminant widely spread in natural and industrial environments. Adolescent exposure to Cd increases risk for obesity-related morbidity in young adults including type 2 diabetes and metabolic dysfunction-associated steatotic liver disease (MASLD). Despite this recognition, the direct impact of adolescent Cd exposure on the progression of MASLD later in life, and the mechanisms underlying these effects, remain unclear. Here, adolescent rats received control diet or diets containing 2 mg Cd2+/kg feed for 4 weeks, and then HFD containing 15% lard or control diet in young adult rats was selected for 6 weeks to clarify this issue. Data firstly showed that HFD-fed rats in young adulthood due to adolescent Cd exposure exhibited more severe MASLD, evidenced by increased liver damage, disordered serum and hepatic lipid levels, and activated NLRP3 inflammasome. Hepatic transcriptome analysis revealed the potential effects of mitochondrial dysfunction in aggravated MASLD due to Cd exposure. Verification data further confirmed that mitochondrial structure and function were targeted and disrupted during this process, shown by broken mitochondrial ridges, decreased mitochondrial membrane potential, imbalanced mitochondrial dynamic, insufficient ATP concentration, and enhanced mitochondrial ROS generation. However, mitophagy is inactively involved in clearance of damaged mitochondria induced by early Cd in HFD condition due to inhibited mitophagy receptor FUNDC1. In contrast, FUNDC1-dependent mitophagy activation prevents lipotoxicity aggravated by early Cd via suppressing mitochondrial ROS generation. Collectively, our data show that insufficient FUNDC1-dependent mitophagy can drive the transition from HFD-induced MASLD to MASH, and accordingly, these findings will provide a better understanding of potential mechanism of diet-induced metabolic diseases in the context of early environmental Cd exposure.

15.
Ecotoxicol Environ Saf ; 283: 116803, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-39094460

ABSTRACT

Arsenic is a widespread carcinogen and an important etiological factor for lung cancer. Dysregulated miRNAs have been implicated in arsenic carcinogenesis and the mechanisms of arsenic-induced dysregulated miRNAs have not been fully elucidated. N6-methyladenosine (m6A) modification is known to modulate pri-miRNA processing. However, whether m6A-mediated pri-miRNA processing is involved in arsenic carcinogenesis is poorly understood. Here, we found that m6A modification was significantly increased in arsenite-transformed human bronchial epithelial BEAS-2B cells (0.5 µM arsenite, 16 weeks). Meanwhile, METTL3 was significantly upregulated at week 12 and 16 during cell transformation. The proliferation, migration, invasion, and anchorage-independent growth of arsenite-transformed cells were inhibited by the reduction of m6A levels through METTL3 knockdown. Further experiments suggest that the oncogene miR-106b-5p is a potentially essential m6A target mediating arsenic-induced lung cancer. miR-106b-5p was observed to be upregulated after exposure to arsenite for 12 and 16 weeks, and the reduction of m6A levels caused by METTL3 knockdown inhibited miR-106b-5p maturation in arsenite-transformed cells. What's more, miR-106b-5p overexpression successfully rescued METTL3 knockdown-induced inhibition of the neoplastic phenotypes of transformed cells. Additionally, Basonuclin 2 (BNC2) was uncovered as a potential target of miR-106b-5p and downregulated by METTL3 via enhancing miR-106b-5p maturation. Additionally, the METTL3 inhibitor STM2457 suppressed neoplastic phenotypes of arsenite-transformed BEAS-2B cells by blocking pri-miR-106b methylation. These results demonstrate that m6A modification promotes the neoplastic phenotypes of arsenite-transformed BEAS-2B cells through METTL3/miR-106b-5p/BNC2 pathway, providing a new prospective for understanding arsenic carcinogenesis.


Subject(s)
Adenosine , Bronchi , Epithelial Cells , Methyltransferases , MicroRNAs , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , Adenosine/analogs & derivatives , Epithelial Cells/drug effects , Epithelial Cells/pathology , Methyltransferases/genetics , Methyltransferases/metabolism , Bronchi/drug effects , Bronchi/pathology , Cell Transformation, Neoplastic/chemically induced , Cell Transformation, Neoplastic/genetics , Cell Transformation, Neoplastic/drug effects , Arsenic/toxicity , Arsenites/toxicity , Cell Proliferation/drug effects , Lung Neoplasms/chemically induced , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Cell Line , Phenotype
16.
J Cell Mol Med ; 28(16): e70022, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39205384

ABSTRACT

Under the long-term pressure overload stimulation, the heart experiences embryonic gene activation, leading to myocardial hypertrophy and ventricular remodelling, which can ultimately result in the development of heart failure. Identifying effective therapeutic targets is crucial for the prevention and treatment of myocardial hypertrophy. Histone lysine lactylation (HKla) is a novel post-translational modification that connects cellular metabolism with epigenetic regulation. However, the specific role of HKla in pathological cardiac hypertrophy remains unclear. Our study aims to investigate whether HKla modification plays a pathogenic role in the development of cardiac hypertrophy. The results demonstrate significant expression of HKla in cardiomyocytes derived from an animal model of cardiac hypertrophy induced by transverse aortic constriction surgery, and in neonatal mouse cardiomyocytes stimulated by Ang II. Furthermore, research indicates that HKla is influenced by glucose metabolism and lactate generation, exhibiting significant phenotypic variability in response to various environmental stimuli. In vitro experiments reveal that exogenous lactate and glucose can upregulate the expression of HKla and promote cardiac hypertrophy. Conversely, inhibition of lactate production using glycolysis inhibitor (2-DG), LDH inhibitor (oxamate) and LDHA inhibitor (GNE-140) reduces HKla levels and inhibits the development of cardiac hypertrophy. Collectively, these findings establish a pivotal role for H3K18la in pathological cardiac hypertrophy, offering a novel target for the treatment of this condition.


Subject(s)
Cardiomegaly , Histones , Lactic Acid , Myocytes, Cardiac , Animals , Cardiomegaly/metabolism , Cardiomegaly/pathology , Histones/metabolism , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Myocytes, Cardiac/drug effects , Mice , Lactic Acid/metabolism , Protein Processing, Post-Translational , Disease Models, Animal , Glucose/metabolism , Male , Lysine/metabolism , Mice, Inbred C57BL , Glycolysis
17.
Cardiology ; : 1-9, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39089228

ABSTRACT

INTRODUCTION: Muscular ventricular septal defect occluders (MVSDOs) have been attempted as an option in low-weight patients with patent ductus arteriosus (PDA). However, few studies have assessed the safety of transcatheter patent ductus arteriosus closure (TCPC) using MVSDO. Therefore, we compared the outcomes in low-weight patients who used MVSDO and mushroom-shaped occluder (MSO). METHODS: Medical records of children under 10 kg (n = 417) who underwent TCPC from 2015 to 2021 at a Chinese health center were reviewed. They were divided into MSO (n = 372) and MVSDO (n = 45) groups. A 1:1 propensity score matching (PSM) was done considering gender, height, weight, body surface area (BSA), PDA diameter, and BSA-corrected PDA diameter. RESULTS: All 45 children in the MVSDO group (mean weight: 5.92 ± 1.32 kg) achieved successful immediate occlusion. One case in the MVSDO group experienced device migration within 24 h requiring unplanned surgery. MVSDO significantly ameliorated pulmonary artery hypertension. After PSM, each group comprised 41 children. The MVSDO group had a smaller effect on platelet counts (MVSDO vs. MSO = 259.85 ± 114.82 vs. 356.12 ± 134.37, p < 0.001), a reduced incidence of thrombocytopenia (MVSDO vs. MSO = 2/41 vs. 7/41, p = 0.001), and a higher rate of residual shunting (MVSDO vs. MSO = 16/41 vs. 5/41, p = 0.005), compared with the MSO group. Thrombocytopenia resolved during hospitalization and micro-shunts disappeared by 6 months. No pulmonary artery or descending aortic secondary stenosis was observed in 1-year follow-up. CONCLUSIONS: MVSDO used in low-weight children is feasible, with high success and satisfactory postoperative and short-term follow-up outcomes, including lower thrombocytopenia incidence, compared to MSO. Further long-term studies with larger samples are recommended.

18.
Sci Total Environ ; 951: 175784, 2024 Nov 15.
Article in English | MEDLINE | ID: mdl-39187084

ABSTRACT

Plant recovery plays a vital role in reclaiming bioresources from constructed wetland wastewater treatment systems. A comprehensive understanding of the environmental impacts and economic benefits associated with various wetland plant resourcing methods is critical for advancing both plant resource recovery and the application of wetlands in wastewater treatment. In this study, life cycle assessment was employed to evaluate the environmental impacts and costs of seven wetland plant recovery methods. In addition, the potential benefits of extending plant resource recovery within system boundaries were explored to enhance the overall advantages of constructed wetlands for wastewater treatment. The use of wetland plants for biofertilizer production had the lowest environmental impact (-8.52E-03), whereas the use of wetland plants for biochar production was the most cost-effective approach (-0.80€/kg). The introduction of a plant resource recovery component could significantly reduce the environmental impacts of constructed wetland wastewater treatment systems. The environmental impacts and costs of constructed wetland wastewater treatment systems that incorporate plant resource recovery into the system boundary are better than activated sludge methods and highly efficient algal ponds, except for the global warming potential (GWP). The use of plants for biofertilizer production could cut the environmental impacts of constructed wetland wastewater treatment systems by up to 85 % and the costs by 65 %, making it the most suitable method of plant use. Additionally, prioritizing the reduction of greenhouse gas emissions from constructed wetlands should be a primary optimization goal. The findings of this study provide valuable support for the implementation of wetland plant resourcing in constructed wetland wastewater treatment systems.


Subject(s)
Waste Disposal, Fluid , Wetlands , Waste Disposal, Fluid/methods , Wastewater , Plants , Environment , Conservation of Natural Resources/methods
19.
Biochem Biophys Res Commun ; 730: 150339, 2024 Oct 20.
Article in English | MEDLINE | ID: mdl-39032359

ABSTRACT

The tumor microenvironment (TME) assumes a pivotal role in the treatment of oncological diseases, given its intricate interplay of diverse cellular components and extracellular matrices. This dynamic ecosystem poses a serious challenge to traditional research methods in many ways, such as high research costs, inefficient translation, poor reproducibility, and low modeling success rates. These challenges require the search for more suitable research methods to accurately model the TME, and the emergence of 3D bioprinting technology is transformative and an important complement to these traditional methods to precisely control the distribution of cells, biomolecules, and matrix scaffolds within the TME. Leveraging digital design, the technology enables personalized studies with high precision, providing essential experimental flexibility. Serving as a critical bridge between in vitro and in vivo studies, 3D bioprinting facilitates the realistic 3D culturing of cancer cells. This comprehensive article delves into cutting-edge developments in 3D bioprinting, encompassing diverse methodologies, biomaterial choices, and various 3D tumor models. Exploration of current challenges, including limited biomaterial options, printing accuracy constraints, low reproducibility, and ethical considerations, contributes to a nuanced understanding. Despite these challenges, the technology holds immense potential for simulating tumor tissues, propelling personalized medicine, and constructing high-resolution organ models, marking a transformative trajectory in oncological research.


Subject(s)
Bioprinting , Printing, Three-Dimensional , Tumor Microenvironment , Humans , Bioprinting/methods , Neoplasms/pathology , Animals , Tissue Engineering/methods , Biocompatible Materials/chemistry , Tissue Scaffolds/chemistry
20.
Br J Cancer ; 131(4): 655-667, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38951697

ABSTRACT

BACKGROUND: DNMT3A is a crucial epigenetic regulation enzyme. However, due to its heterogeneous nature and frequent mutation in various cancers, the role of DNMT3A remains controversial. Here, we determine the role of DNMT3A in non-small cell lung cancer (NSCLC) to identify potential treatment strategies. METHODS: To investigate the role of loss-of-function mutations of DNMT3A in NSCLC, CRISPR/Cas9 was used to induce DNMT3A-inactivating mutations. Epigenetic inhibitor library was screened to find the synthetic lethal partner of DNMT3A. Both pharmacological inhibitors and gene manipulation were used to evaluate the synthetic lethal efficacy of DNMT3A/KDM1A in vitro and in vivo. Lastly, MS-PCR, ChIP-qPCR, dual luciferase reporter gene assay and clinical sample analysis were applied to elucidate the regulation mechanism of synthetic lethal interaction. RESULTS: We identified DNMT3A is a tumour suppressor gene in NSCLC and KDM1A as a synthetic lethal partner of DNMT3A deletion. Both chemical KDM1A inhibitors and gene manipulation can selectively reduce the viability of DNMT3A-KO cells through inducing cell apoptosis in vitro and in vivo. We clarified that the synthetic lethality is not only limited to the death mode, but also involved into tumour metastasis. Mechanistically, DNMT3A deficiency induces KDM1A upregulation through reducing the methylation status of the KDM1A promoter and analysis of clinical samples indicated that DNMT3A expression was negatively correlated with KDM1A level. CONCLUSION: Our results provide new insight into the role of DNMT3A in NSCLC and elucidate the mechanism of synthetic lethal interaction between KDM1A and DNMT3A, which might represent a promising approach for treating patients with DNMT3A-deficient tumours.


Subject(s)
Carcinoma, Non-Small-Cell Lung , DNA (Cytosine-5-)-Methyltransferases , DNA Methyltransferase 3A , Lung Neoplasms , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/pathology , Humans , Lung Neoplasms/genetics , Lung Neoplasms/drug therapy , Lung Neoplasms/pathology , Animals , Mice , DNA (Cytosine-5-)-Methyltransferases/genetics , DNA (Cytosine-5-)-Methyltransferases/antagonists & inhibitors , Histone Demethylases/genetics , Histone Demethylases/metabolism , Histone Demethylases/antagonists & inhibitors , Cell Line, Tumor , Apoptosis , Xenograft Model Antitumor Assays , Gene Expression Regulation, Neoplastic , Female
SELECTION OF CITATIONS
SEARCH DETAIL