Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 218
Filter
1.
Sci Rep ; 14(1): 15411, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38965337

ABSTRACT

Dielectric Elastomer Minimum Energy Structures (DEMES) have the ability of actively adjusting their shape to accommodate complex scenarios, understanding the actuation mechanism of DEMES is essential for their effective design and control, which has rendered them a focus of research in the field of soft robotics. The actuation ability of DEMES is usually influenced by external conditions, among which the electromechanical properties of DE materials are highly sensitive to temperature changes, and the pre-stretch ratio of DE materials has a significant impact on the dynamic performance of DEMES. Therefore, it is necessary to study the effects of temperature and pre-stretch ratio on the nonlinear dynamic behavior of DEMES. In this paper, in response to the lack of research on the influence of DE pre-stretch ratio on the actuation characteristics of DEMES, this paper proposes a systematic modeling and analysis framework that comprehensively considers pre-stretch factors, temperature factors, and viscoelastic factors, and establishes the motion control equation of DEMES affected by the coupling effect of DE pre-stretch ratio and temperature. The proposed analytical framework is used to analyze the evolution of the electromechanical response of DEMES under voltage excitation under the coupling of DE pre-stretch ratio and temperature. The results indicate that the bending angle, inelastic deformation, resonant frequency, and dynamic stability of DEMES can be jointly adjusted by the DE pre-stretch ratio and ambient temperature. A low pre-stretch ratio of DE can lead to dynamic instability of DEMES, while appropriate temperature conditions and higher pre-stretch ratios can significantly improve the actuation ability of DEMES. This can provide theoretical guidance for the design and deformation control of DEMES.

2.
J Control Release ; 372: 846-861, 2024 Jul 06.
Article in English | MEDLINE | ID: mdl-38955252

ABSTRACT

Bone defect is one of the urgent problems to be solved in clinics, and it is very important to construct efficient scaffold materials to facilitate bone tissue regeneration. Hydrogels, characterized by their unique three-dimensional network structure, serve as excellent biological scaffold materials. Their internal pores are capable of loading osteogenic drugs to expedite bone formation. The rate and quality of new bone formation are intimately linked with immune regulation and vascular remodeling. The strategic sequential release of drugs to balance inflammation and regulate vascular remodeling is crucial for initiating the osteogenic process. Through the design of hydrogel microstructures, it is possible to achieve sequential drug release and the drug action time can be prolonged, thereby catering to the multi-systemic collaborative regulation needs of osteosynthesis. The drug release rate within the hydrogel is governed by swelling control systems, physical control systems, chemical control systems, and environmental control systems. Utilizing these control systems to design hydrogel materials capable of multi-drug delivery optimizes the construction of the bone microenvironment. Consequently, this facilitates the spatiotemporal controlled released of drugs, promoting bone tissue regeneration. This paper reviews the principles of the controlled release system of various sustained-release hydrogels and the advancements in research on hydrogel multi-drug delivery systems for bone tissue regeneration.

3.
Poult Sci ; 103(8): 103949, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38917604

ABSTRACT

This study was conducted to investigate the protective effects of chlorogenic acid (CGA) on inflammatory responses and intestinal health of lipopolysaccharide (LPS)-challenged broilers. One hundred and forty-four 1-day-old male broiler chicks were divided into 3 groups with 6 replicates of 8 birds each. The groups were as follows: 1) Control group: birds fed a basal diet; 2) LPS group: LPS-challenged birds fed a basal diet; 3) CGA group: LPS-challenged birds fed a CGA-supplemented diet. The LPS was intraperitoneally administered at a dose of 1 mg/kg of body weight. CGA increased the weight gain and feed intake of LPS-challenged birds by 37.05% and 24.29%, respectively (P < 0.05). CGA also alleviated LPS-induced inflammation, as evidenced by lower levels of pro-inflammatory cytokines in the serum and jejunum (tumor necrosis factor-α, interferon-γ, interleukin-1ß, and interleukin-6), and the decreased myeloperoxidase activity in the jejunum (P < 0.05). These effects were accompanied by a decrease in the mRNA abundance of toll-like receptor 4 and myeloid differentiation factor 88 and an inhibition of nuclear factor kappa-B translocation in the jejunum (P < 0.05). CGA reduced circulating diamine oxidase activity and levels of D-lactate and endotoxin, and positively regulated the expression of jejunal claudin-3 and zonula occludens-1 in LPS-challenged broilers (P < 0.05). Compared to the LPS group, CGA reduced the apoptotic rate of epithelial cells and cytochrome c concentration in the jejunum, and normalized the expression of genes responsible for proliferation and apoptosis in jejunal epithelial cells, including cysteine aspartate-specific protease-9, B cell lymphoma-2, and proliferating cell nuclear antigen (P < 0.05). Furthermore, CGA normalized the altered phosphorylation of protein kinase B and glycogen synthase kinase-3ß, as well as the translocation of nuclear ß-catenin in the jejunum of LPS-challenged broilers (P < 0.05). These results suggested that CGA supplementation improved growth performance, alleviated inflammation, and helped maintain intestinal integrity and barrier function in LPS-challenged broilers, possibly through the regulation of the toll-like receptor 4/nuclear factor kappa-B and protein kinase B/Wnt/ß-catenin pathways.

4.
Sci Rep ; 14(1): 14212, 2024 06 20.
Article in English | MEDLINE | ID: mdl-38902448

ABSTRACT

Humans can easily perform various types of hugs in human contact and affection experience. With the prevalence of robots in social applications, they would be expected to possess the capability of hugs as humans do. However, it is still not an easy task for robots, considering the complex force and spatial constraints of robot hugs. In this work, we propose the HUG taxonomy, which distinguishes between different hugging patterns based on human demonstrations and prior knowledge. In this taxonomy, hugs are arranged according to (1) hugging tightness, (2) hugging style, and (3) bilateral coordination, resulting in 16 different hug types. We then further study the hug type preference of humans in different scenarios and roles. Furthermore, we propose a rule-based classification system to validate the potential of this taxonomy in human-robot hugs based on a humanoid robot with an E-skin of contact sensation. The HUG taxonomy could provide human hugging behavior information in advance, facilitating the action control of humanoid robots. We believe the results of our work can benefit future studies on human-robot hugging interactions.


Subject(s)
Robotics , Humans , Robotics/methods
5.
Biomed Pharmacother ; 175: 116645, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38729050

ABSTRACT

Peripheral nerve injuries (PNIs) frequently occur due to various factors, including mechanical trauma such as accidents or tool-related incidents, as well as complications arising from diseases like tumor resection. These injuries frequently result in persistent numbness, impaired motor and sensory functions, neuropathic pain, or even paralysis, which can impose a significant financial burden on patients due to outcomes that often fall short of expectations. The most frequently employed clinical treatment for PNIs involves either direct sutures of the severed ends or bridging the proximal and distal stumps using autologous nerve grafts. However, autologous nerve transplantation may result in sensory and motor functional loss at the donor site, as well as neuroma formation and scarring. Transplantation of Schwann cells/Schwann cell-like cells has emerged as a promising cellular therapy to reconstruct the microenvironment and facilitate peripheral nerve regeneration. In this review, we summarize the role of Schwann cells and recent advances in Schwann cell therapy in peripheral nerve regeneration. We summarize current techniques used in cell therapy, including cell injection, 3D-printed scaffolds for cell delivery, cell encapsulation techniques, as well as the cell types employed in experiments, experimental models, and research findings. At the end of the paper, we summarize the challenges and advantages of various cells (including ESCs, iPSCs, and BMSCs) in clinical cell therapy. Our goal is to provide the theoretical and experimental basis for future treatments targeting peripheral nerves, highlighting the potential of cell therapy and tissue engineering as invaluable resources for promoting nerve regeneration.


Subject(s)
Nerve Regeneration , Peripheral Nerve Injuries , Schwann Cells , Schwann Cells/physiology , Humans , Animals , Nerve Regeneration/physiology , Peripheral Nerve Injuries/therapy , Cell- and Tissue-Based Therapy/methods , Peripheral Nerves/physiology
6.
Virol J ; 21(1): 120, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38816738

ABSTRACT

BACKGROUND: The Porcine Epidemic Diarrhea Virus (PEDV) has caused significant economic losses in the global swine industry. As a potential drug for treating diarrhea, the antiviral properties of attapulgite deserve further study. METHODS: In this study, various methods such as RT-qPCR, Western blot, viral titer assay, Cytopathic Effect, immunofluorescence analysis and transmission electron microscopy were used to detect the antiviral activity of attapulgite and to assess its inhibitory effect on PEDV. RESULTS: When exposed to the same amount of virus, there was a significant decrease in the expression of the S protein, resulting in a viral titer reduction from 10-5.613 TCID50/mL to 10-2.90 TCID50/mL, which represents a decrease of approximately 102.6 folds. Results of cytopathic effect and indirect immunofluorescence also indicate a notable decrease in viral infectivity after attapulgite treatment. Additionally, it was observed that modified materials after acidification had weaker antiviral efficacy compared to powdered samples that underwent ultrasonic disintegration, which showed the strongest antiviral effects. CONCLUSION: As a result, Attapulgite powders can trap and adsorb viruses to inhibit PEDV in vitro, leading to loss of viral infectivity. This study provides new materials for the development of novel disinfectants and antiviral additives.


Subject(s)
Antiviral Agents , Porcine epidemic diarrhea virus , Silicon Compounds , Porcine epidemic diarrhea virus/drug effects , Porcine epidemic diarrhea virus/genetics , Porcine epidemic diarrhea virus/physiology , Animals , Antiviral Agents/pharmacology , Silicon Compounds/pharmacology , Silicon Compounds/chemistry , Chlorocebus aethiops , Magnesium Compounds/pharmacology , Swine , Vero Cells , Viral Load/drug effects , Cytopathogenic Effect, Viral/drug effects , Swine Diseases/virology , Coronavirus Infections/virology , Coronavirus Infections/veterinary , Microscopy, Electron, Transmission
7.
Front Bioeng Biotechnol ; 12: 1286035, 2024.
Article in English | MEDLINE | ID: mdl-38689760

ABSTRACT

Platelet-rich fibrin, a classical autologous-derived bioactive material, consists of a fibrin scaffold and its internal loading of growth factors, platelets, and leukocytes, with the gradual degradation of the fibrin scaffold and the slow release of physiological doses of growth factors. PRF promotes vascular regeneration, promotes the proliferation and migration of osteoblast-related cells such as mesenchymal cells, osteoblasts, and osteoclasts while having certain immunomodulatory and anti-bacterial effects. PRF has excellent osteogenic potential and has been widely used in the field of bone tissue engineering and dentistry. However, there are still some limitations of PRF, and the improvement of its biological properties is one of the most important issues to be solved. Therefore, it is often combined with bone tissue engineering scaffolds to enhance its mechanical properties and delay its degradation. In this paper, we present a systematic review of the development of platelet-rich derivatives, the structure and biological properties of PRF, osteogenic mechanisms, applications, and optimization to broaden their clinical applications and provide guidance for their clinical translation.

8.
Adv Mater ; : e2405002, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38738270

ABSTRACT

Owing to the increased tissue iron accumulation in patients with diabetes, microorganisms may activate high expression of iron-involved metabolic pathways, leading to the exacerbation of bacterial infections and disruption of systemic glucose metabolism. Therefore, an on-demand transdermal dosing approach that utilizes iron homeostasis regulation to combat antimicrobial resistance is a promising strategy to address the challenges associated with low administration bioavailability and high antibiotic resistance in treating infected diabetic wounds. Here, it is aimed to propose an effective therapy based on hemoglobin bionics to induce disturbances in bacterial iron homeostasis. The preferred "iron cargo" is synthesized by protoporphyrin IX chelated with dopamine and gallium (PDGa), and is delivered via a glucose/pH-responsive microneedle bandage (PDGa@GMB). The PDGa@GMB downregulates the expression levels of the iron uptake regulator (Fur) and the peroxide response regulator (perR) in Staphylococcus aureus, leading to iron nutrient starvation and oxidative stress, ultimately suppressing iron-dependent bacterial activities. Consequently, PDGa@GMB demonstrates insusceptibility to genetic resistance while maintaining sustainable antimicrobial effects (>90%) against resistant strains of both S. aureus and E. coli, and accelerates tissue recovery (<20 d). Overall, PDGa@GMB not only counteracts antibiotic resistance but also holds tremendous potential in mediating microbial-host crosstalk, synergistically attenuating pathogen virulence and pathogenicity.

9.
Adv Healthc Mater ; : e2400545, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38706444

ABSTRACT

Early reconstruction of the vascular network is a prerequisite to the effective treatment of substantial bone defects. Traditional 3D printed tissue engineering scaffolds designed to repair large bone defects do not effectively regenerate the vascular network, and rely only on the porous structure within the scaffold for nutrient transfer and metabolic waste removal. This leads to delayed bone restoration and hence functional recovery. Therefore, strategies for generation scaffolds with the capacity to efficiently regenerate vascularization should be developed. This study loads roxarestat (RD), which can stabilize HIF-1α expression in a normoxic environment, onto the mesopore polydopamine nanoparticles (MPDA@RD) to enhance the reconstruction of vascular network in large bone defects. Subsequently, MPDA@RD is mixed with GelMA/HA hydrogel bioink to fabricate a multifunctional hydrogel scaffold (GHM@RD) through 3D printing. In vitro results show that the GHM@RD scaffolds achieve good angiogenic-osteogenic coupling by activating the PI3K/AKT/HSP90 pathway in BMSCs and the PI3K/AKT/HIF-1α pathway in HUVECs under mild thermotherapy. In vivo experiments reveal that RD and mild hyperthermia synergistically induce early vascularization and bone regeneration of critical bone defects. In conclusion, the designed GHM@RD drug delivery scaffold with mild hyperthermia holds great therapeutic value for future treatment of large bone defects.

10.
ACS Appl Mater Interfaces ; 16(20): 25757-25772, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38738757

ABSTRACT

The development of therapeutics with high antimicrobial activity and immunomodulatory effects is urgently needed for the treatment of infected wounds due to the increasing danger posed by recalcitrant-infected wounds. In this study, we developed light-controlled antibacterial, photothermal, and immunomodulatory biomimetic N/hPDA@M nanoparticles (NPs). This nanoplatform was developed by loading flavonoid naringenin onto hollow mesoporous polydopamine NPs in a π-π-stacked configuration and encasing them with macrophage membranes. First, our N/hPDA@M NPs efficiently neutralized inflammatory factors present within the wound microenvironment by the integration of macrophage membranes. Afterward, the N/hPDA@M NPs effectively dismantled bacterial biofilms through a combination of the photothermal properties of PDA and the quorum sensing inhibitory effects of naringenin. It is worth noting that N/hPDA@M NPs near-infrared-enhanced release of naringenin exhibited specificity toward the NF-κB-signaling pathway, effectively mitigating the inflammatory response. This innovative design not only conferred remarkable antibacterial properties upon the N/hPDA@M NPs but also endowed them with the capacity to modulate inflammatory responses, curbing excessive inflammation and steering macrophage polarization toward the M2 phenotype. As a result, this multifaceted approach significantly contributes to expediting the healing process of infected skin wounds.


Subject(s)
Anti-Bacterial Agents , Biofilms , Indoles , NF-kappa B , Nanoparticles , Quorum Sensing , Wound Healing , Biofilms/drug effects , Nanoparticles/chemistry , Mice , NF-kappa B/metabolism , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Wound Healing/drug effects , Animals , Quorum Sensing/drug effects , Indoles/chemistry , Indoles/pharmacology , Signal Transduction/drug effects , Flavanones/chemistry , Flavanones/pharmacology , RAW 264.7 Cells , Staphylococcus aureus/drug effects , Staphylococcus aureus/physiology , Polymers/chemistry , Polymers/pharmacology , Macrophages/drug effects , Macrophages/metabolism , Wound Infection/drug therapy , Wound Infection/microbiology , Wound Infection/pathology , Immunomodulating Agents/chemistry , Immunomodulating Agents/pharmacology , Humans
11.
ACS Appl Mater Interfaces ; 16(19): 24351-24371, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38690969

ABSTRACT

Chronic nonhealing wounds are serious complications of diabetes with a high morbidity, and they can lead to disability or death. Conventional drug therapy is ineffective for diabetic wound healing because of the complex environment of diabetic wounds and the depth of drug penetration. Here, we developed a self-healing, dual-layer, drug-carrying microneedle (SDDMN) for diabetic wound healing. This SDDMN can realize transdermal drug delivery and broad-spectrum sterilization without drug resistance and meets the multiple needs of the diabetic wound healing process. Quaternary ammonium chitosan cografted with dihydrocaffeic acid (Da) and l-arginine and oxidized hyaluronic acid-dopamine are the main parts of the self-healing hydrogel patch. Methacrylated poly(vinyl alcohol) (methacrylated PVA) and phenylboronic acid (PBA) were used as the main part of the MN, and gallium porphyrin modified with 3-amino-1,2 propanediol (POGa) and insulin were encapsulated at its tip. Under hyperglycaemic conditions, the PBA moiety in the MN reversibly formed a glucose-boronic acid complex that promoted the rapid release of POGa and insulin. POGa is disguised as hemoglobin through a Trojan-horse strategy, which is then taken up by bacteria, allowing it to target bacteria and infected lesions. Based on the synergistic properties of these components, SDDMN-POGa patches exhibited an excellent biocompatibility, slow drug release, and antimicrobial properties. Thus, these patches provide a potential therapeutic approach for the treatment of diabetic wounds.


Subject(s)
Boronic Acids , Diabetes Mellitus, Experimental , Glucose , Wound Healing , Wound Healing/drug effects , Animals , Boronic Acids/chemistry , Glucose/metabolism , Diabetes Mellitus, Experimental/drug therapy , Needles , Insulin/administration & dosage , Mice , Chitosan/chemistry , Polyvinyl Alcohol/chemistry , Rats , Hyaluronic Acid/chemistry , Male , Caffeic Acids/chemistry , Caffeic Acids/pharmacology , Drug Delivery Systems , Rats, Sprague-Dawley , Humans , Hydrogels/chemistry
12.
Int J Nanomedicine ; 19: 3441-3459, 2024.
Article in English | MEDLINE | ID: mdl-38617798

ABSTRACT

Immune cells are pivotal in the dynamic interplay between hypoxia and inflammation. During hypoxic conditions, HIF-1α, a crucial transcription factor, facilitates the adaptation of immune cells to the hypoxic micro-environment. This adaptation includes regulating immune cell metabolism, significantly impacting inflammation development. Strategies for anti-inflammatory and hypoxic relief have been proposed, aiming to disrupt the hypoxia-inflammation nexus. Research extensively focuses on anti-inflammatory agents and materials that target immune cells. These primarily mitigate hypoxic inflammation by encouraging M2-macrophage polarization, restraining neutrophil proliferation and infiltration, and maintaining Treg/TH17 balance. Additionally, oxygen-releasing nano-materials play a significant role. By alleviating hypoxia and clearing reactive oxygen species (ROS), these nano-materials indirectly influence immune cell functions. This paper delves into the response of immune cells under hypoxic conditions and the resultant effects on inflammation. It provides a comprehensive overview of various therapies targeting specific immune cells for anti-inflammatory purposes and explores nano-materials that either carry or generate oxygen to alleviate anoxic micro-environments.


Subject(s)
Hypoxia , Inflammation , Humans , Inflammation/drug therapy , Oxygen , Macrophage Activation , Anti-Inflammatory Agents/pharmacology
13.
J Stomatol Oral Maxillofac Surg ; : 101902, 2024 Apr 28.
Article in English | MEDLINE | ID: mdl-38685354

ABSTRACT

OBJECTIVES: The purpose of this study is to determine the feasibility of polyetheretherketone-based dental implants, and analyze the stress and strain around different kinds of dental implants by finite element analysis. METHODS: The radiographic data was disposed to models in Mimics 19.0. 3D models of implants, crowns and jawbones were established and combined in SolidWorks 2018. Appling axial and oblique loads of 100 N, cloud pictures were exported in Ansys Workbench 18.0 to calculate and analyze the stress and strain in and around different implants. RESULTS: Oblique load tended to deliver more stress to bone tissue than axial load. The uniformity of stress distribution was the best for 30% short carbon fiber reinforced polyetheretherketone implants at axial and buccolingual directions. Stress shielding phenomenon occurred at the neck of 60% continuous carbon fiber reinforced polyetheretherketone and titanium implants. Stress concentration appeared in PEEK implants and the load of bone tissue would aggravate. CONCLUSIONS: 30% short carbon fiber reinforced polyetheretherketone implants demonstrate a more uniform stress distribution in bone-implant contact and surrounding bone than titanium. Stress shielding and stress concentration may be avoided in bone-implant interface and bone tissue. Bone disuse-atrophy may be inhibited in PEEK-based implants.

14.
ACS Appl Mater Interfaces ; 16(14): 17587-17597, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38547461

ABSTRACT

Inert atmosphere is normally necessary for fabrication of solid composite electrolytes (SCEs) as a crucial part of solid-state Li-metal batteries in order to avoid undesirable reactions induced by ambient moisture. Herein, we developed an air-processable technique to fabricate SCEs by employing LiCF3SO3 (LiOTf) as the Li salt, which was combined with Li6.4La3Zr1.4Ta0.6O12 (LLZTO) as the fast Li-conductor and polyvinylidene difluoroethylene/polyvinyl acetate (PVDF/PVAC) as the polymer matrix. With the assistance of trace H2O dissolved in electrolyte solution, the room-temperature Li+ conductivity of the obtained aSCE reached as high as 5.09 × 10-4 S cm-1, which was over 3 orders of magnitude higher than that of the one (iSCE, 1.93 × 10-7 S cm-1) cast by the electrolyte solution prepared in an inert atmosphere. The theoretical calculation results reveal that the oxygen atom of H2O exhibits a high propensity to interact with the Li atom in LiOTf (Li···O), thereby establishing a hydrogen bond with the oxygen atom (H···O) in N,N-dimethylformamide (solvent). Such interactions promoted the dissociation of LiOTf and led to the formation of uniform Li+ transportation channels. Simultaneously, the composition distribution was also altered, resulting in a smoother surface of aSCE and lowered crystallinity of PVDF. On this basis, the LiOTf/LLZTO/PVDF/PVAC solution at 60 °C was directly coated onto the surface of the LiFePO4 (LFP) cathode to fabricate the LFP-aSCE film after drying in an oven. The assembled LFP-aSCE/Li battery wetted by trace sulfolane exhibited an initial Coulombic efficiency of 94.7% and a capacity retention rate of up to 96% at 0.2 C (137 mAh g-1) after 180 cycles and a high capacity of 143.7 mAh g-1 at 0.5 C (150 cycles). Overall, this work could pave the way for the facile fabrication of solid electrolytes.

15.
J Clin Periodontol ; 51(6): 754-765, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38379293

ABSTRACT

AIM: To discover the populations of mesenchymal stem cells (MSCs) derived from different layers of human maxillary sinus membrane (hMSM) and evaluate their osteogenic capability. MATERIALS AND METHODS: hMSM was isolated into a monolayer using the combined method of physical separation and enzymatic digestion. The localization of MSCs in hMSM was performed by immunohistological staining and other techniques. Lamina propria layer-derived MSCs (LMSCs) and periosteum layer-derived MSCs (PMSCs) from hMSM were expanded using the explant cell culture method and identified by multilineage differentiation assays, colony formation assay, flow cytometry and so on. The biological characteristics of LMSCs and PMSCs were compared using RNA sequencing, reverse transcription and quantitative polymerase chain reaction, immunofluorescence staining, transwell assay, western blotting and so forth. RESULTS: LMSCs and PMSCs from hMSMs were both CD73-, CD90- and CD105-positive, and CD34-, CD45- and HLA-DR-negative. LMSCs and PMSCs were identified as CD171+/CD90+ and CD171-/CD90+, respectively. LMSCs displayed stronger proliferation capability than PMSCs, and PMSCs presented stronger osteogenic differentiation capability than LMSCs. Moreover, PMSCs could recruit and promote osteogenic differentiation of LMSCs. CONCLUSIONS: This study identified and isolated two different types of MSCs from hMSMs. Both MSCs served as good potential candidates for bone regeneration.


Subject(s)
Cell Differentiation , Maxillary Sinus , Mesenchymal Stem Cells , Osteogenesis , Humans , Mesenchymal Stem Cells/cytology , Osteogenesis/physiology , Maxillary Sinus/cytology , Flow Cytometry , Cell Proliferation , Cells, Cultured , Cell Separation/methods , Male , Adult , Female , Periosteum/cytology
16.
Article in English | MEDLINE | ID: mdl-38408008

ABSTRACT

Falls represent a significant cause of injury among the elderly population. Extensive research has been devoted to the utilization of wearable IMU sensors in conjunction with machine learning techniques for fall detection. To address the challenge of acquiring costly training data, this paper presents a novel method that generates a substantial volume of synthetic IMU data with minimal actual fall experiments. First, unmarked 3D motion capture technology is employed to reconstruct human movements. Subsequently, utilizing the biomechanical simulation platform Opensim and forward kinematic methods, an ample amount of training data from various body segments can be custom generated. Synthetic IMU data was then used to train a machine learning model, achieving testing accuracies of 91.99% and 86.62% on two distinct datasets of actual fall-related IMU data. Building upon the simulation framework, this paper further optimized the single IMU attachment position and multiple IMU combinations on fall detection. The proposed method simplifies fall detection data acquisition experiments, provides novel venue for generating low cost synthetic data in scenario where acquiring data for machine learning is challenging and paves the way for customizing machine learning configurations.


Subject(s)
Wearable Electronic Devices , Aged , Humans , Machine Learning , Movement , Biomechanical Phenomena
17.
Front Med (Lausanne) ; 11: 1335043, 2024.
Article in English | MEDLINE | ID: mdl-38288274

ABSTRACT

Background: Immediate implant placement (IIP), which preserves gingival height and papilla shape while simultaneously accelerating the implant treatment period, has become a popular method due to its commendable clinical outcomes. Nonetheless, deploying immediate implants demands specific preconditions concerning the remaining alveolar bone. This poses a challenge to the accuracy of implant surgery. Case presentation: In this report, we present the case of a 60-year-old woman with a left upper anterior tooth crown dislodged for over a month. Cone beam computed tomography (CBCT) revealed the absence of a labial bone wall on tooth 22, a remaining 1 mm bone wall on the labial side of the root apex, and a 17.2 mm*8.9 mm*4.7 mm shadow in the periapical region of the root apices of teeth 21 and 22, with the narrowest width on the sagittal plane being approximately 5 mm. After the surgeon removed the cyst, they completed the subsequent implantation surgery using an autonomous robot in a challenging aesthetic area. This method circumvented the potential exposure of the screw thread on the labial implant surface, assured initial implant stability. Conclusion: Five months after the operation, the dental crown was restored. The implant remained stable, with yielding notable clinical results. To the best of our knowledge, this clinical case is the first to report the feasibility and precision of immediate implantation in anterior teeth site with periapical cyst removal, performed by an autonomous robotic surgical system. Autonomous robots exhibit exceptional accuracy by accurately controlling axial and angular errors. It can improve the accuracy of implant surgery, which may become a key technology for changing implant surgery. However, further clinical trials are still needed to provide a basis for the rapid development of robotic surgery field.

18.
Front Bioeng Biotechnol ; 11: 1297357, 2023.
Article in English | MEDLINE | ID: mdl-38076421

ABSTRACT

Components in blood play an important role in wound healing and subsequent tissue regeneration processes. The fibrin matrix and various bioactive molecules work together to participate in this complex yet vital biological process. As a means of personalized medicine, autologous platelet concentrates have become an integral part of various tissue regeneration strategies. Here, we focus on how autologous platelet concentrates play a role in each stage of tissue healing, as well as how they work in conjunction with different types of biomaterials to participate in this process. In particular, we highlight the use of various biomaterials to protect, deliver and enhance these libraries of biomolecules, thereby overcoming the inherent disadvantages of autologous platelet concentrates and enabling them to function better in tissue regeneration.

19.
ACS Appl Mater Interfaces ; 15(46): 53283-53296, 2023 Nov 22.
Article in English | MEDLINE | ID: mdl-37948751

ABSTRACT

Probiotic therapy in infected wound healing is hindered by its low viability and colonization efficiency during treatments. Developing dressings that maintain metabolic activity and prevent the potential leakage of probiotics is imperative. Herein, a culture-delivery live probiotics hydrogel dressing is designed and synthesized, formed by gelatin modified with norbornene (GelNB) and sulfhydryl (GelSH), distributing Lactobacillus reuteri (L. reuteri)-laden alginate microspheres (AlgMPs). GelNB-GelSH hydrogel (GelNBSH) incorporating AlgMPs embedding L. reuteri (GelNBSH-L) possesses bioprintability and efficient polymerization that can maintain the activity of L. reuteri in situ, promote its proliferation, and limit its leakage. Thereby, GelNBSH-L achieved a sustainable antimicrobial effect against both S. aureus and E. coli (>90%). Above all, the results show that GelNBSH-L could ensure propitious viability and efficient antibacterial properties of probiotics, effectively inhibit the further development of bacterial infectious wounds and shorten the repair cycle, aiding in ameliorating future clinical probiotic biotherapy.


Subject(s)
Limosilactobacillus reuteri , Probiotics , Staphylococcus aureus , Escherichia coli , Bandages , Anti-Bacterial Agents/pharmacology , Hydrogels/pharmacology , Wound Healing , Probiotics/pharmacology , Probiotics/therapeutic use
20.
Int J Nanomedicine ; 18: 6563-6584, 2023.
Article in English | MEDLINE | ID: mdl-38026531

ABSTRACT

Antibiotics are the most commonly used means to treat bacterial infection at present, but the unreasonable use of antibiotics induces the generation of drug-resistant bacteria, which causes great problems for their clinical application. In recent years, researchers have found that nanomaterials with high specific surface area, special structure, photocatalytic activity and other properties show great potential in bacterial infection control. Among them, black phosphorus (BP), a two-dimensional (2D) nanomaterial, has been widely reported in the treatment of tumor and bone defect due to its excellent biocompatibility and degradability. However, the current theory about the antibacterial properties of BP is still insufficient, and the relevant mechanism of action needs to be further studied. In this paper, we introduced the structure and properties of BP, elaborated the mechanism of BP in bacterial infection, and systematically reviewed the application of BP composite materials in the field of antibacterial. At the same time, we also discussed the challenges faced by the current research and application of BP, which laid a solid theoretical foundation for the further study of BP in the future.


Subject(s)
Bacterial Infections , Nanostructures , Humans , Phosphorus/chemistry , Nanostructures/chemistry , Bacterial Infections/drug therapy , Bacteria , Anti-Bacterial Agents/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL