Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 556
Filter
1.
J Environ Sci (China) ; 148: 515-528, 2025 Feb.
Article in English | MEDLINE | ID: mdl-39095185

ABSTRACT

The reduction of nitrobenzene to aniline is very important for both pollution control and chemical synthesis. Nevertheless, difficulties still remain in developing a catalytic system having high efficiency and selectivity for the production of aniline. Herein, it was found that PdO nanoparticles highly dispersed on TiO2 support (PdO/TiO2) functioned as a highly efficient catalyst for the reduction of nitrobenzene in the presence of NaBH4. Under favorable conditions, 95% of the added nitrobenzene (1 mmol/L) was reduced within 1 min with an ultra-low apparent activation energy of 10.8 kJ/mol by using 0.5%PdO/TiO2 as catalysts and 2 mmol/L of NaBH4 as reductants, and the selectivity to aniline even reached up to 98%. The active hydrogen species were perceived as dominant species during the hydrogenation of nitrobenzene by the results of isotope labeling experiments and ESR spectroscopic. A mechanism was proposed as follows: PdO activates the nitro groups and leads to in-situ generation of Pd, and the generated Pd acts as the reduction sites to produce active hydrogen species. In this catalytic system, nitrobenzene prefers to be adsorbed on the PdO nanoparticles of the PdO/TiO2 composite. Subsequently, the addition of NaBH4 results in in-situ generation of a Pd/PdO/TiO2 composite from the PdO/TiO2 composite, and the Pd nanoclusters would activate NaBH4 to generate active hydrogen species to attack the adsorbed nitro groups. This work will open up a new approach for the catalytic transfer hydrogenation of nitrobenzene to aniline in green chemistry.


Subject(s)
Aniline Compounds , Nitrobenzenes , Palladium , Titanium , Nitrobenzenes/chemistry , Aniline Compounds/chemistry , Titanium/chemistry , Hydrogenation , Catalysis , Palladium/chemistry , Models, Chemical
2.
J Clin Invest ; 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-39352757

ABSTRACT

The high rate of recurrence after radiation therapy in triple-negative breast cancer (TNBC) indicates that novel approaches and targets are needed to enhance radiosensitivity. Here, we report that neuropilin-2 (NRP2), a receptor for vascular endothelial growth factor (VEGF) that is enriched on sub-populations of TNBC cells with stem cell properties, is an effective therapeutic target for sensitizing TNBC to radiotherapy. Specifically, VEGF/NRP2 signaling induces nitric oxide synthase 2 (NOS2) transcription by a mechanism dependent on Gli1. NRP2-expressing tumor cells serve as a hub to produce nitric oxide (NO), an autocrine and paracrine signaling metabolite, which promotes cysteine-nitrosylation of Kelch-like ECH-asssociated protein 1 (KEAP1) and, consequently, nuclear factor erythroid 2-related factor 2 (NFE2L2)-mediated transcription of antioxidant response genes. Inhibiting VEGF binding to NRP2, using a humanized monoclonal antibody (mAb), results in NFE2L2 degradation via KEAP1 rendering cell lines and organoids vulnerable to irradiation. Importantly, treatment of patient-derived xenografts with the NRP2 mAb and radiation resulted in significant tumor necrosis and regression compared to radiation alone. Together, these findings reveal a targetable mechanism of radioresistance and they support the use of NRP2 mAb as an effective radiosensitizer in TNBC.

3.
Mol Neurobiol ; 2024 Sep 19.
Article in English | MEDLINE | ID: mdl-39298103

ABSTRACT

Hypoxic-ischemic brain damage (HIBD) is the main risk factor for preterm infants' brain injury. Exosomes originating from bone marrow mesenchymal stem cells (BMSCs) have a protective effect against hypoxic-ischemic conditions. However, it remains to be elucidated whether exosome carrying miR-653-3p released by BMSC exerts specific functions in HIBD. Based on the analyses of high-throughput miRNA sequencing and RT-qPCR data, the low expression of miR-653-3p was identified in HIBD rats and oxygen-glucose deprivation (OGD)-induced BMSCs and HMC3 cells. In vitro functional experiments indicated that exosomal miR-653-3p derived from BMSC alleviated OGD-induced HMC3 cell damage. Mechanistically, miR-653-3p targeted TRIM21, regulating p62 ubiquitination to modulate the activity of Keap1/Nrf2 pathway. Furthermore, Nrf2 transcriptionally activated CYLD to inhibit the NF-κB pathway in HIBD. Rescue experiments verified that miR-653-3p could mitigate OGD-induced HMC3 cellular injury through CYLD. Finally, in vivo animal experiments validated the alleviation of HIBD in model rats treated with BMSC-derived miR-653-3p. Our study demonstrated that exosomal miR-653-3p from BMSC alleviates HIBD by inactivating the NF-κB pathway through the TRIM21/p62/Nrf2/CYLD axis.

4.
bioRxiv ; 2024 Sep 19.
Article in English | MEDLINE | ID: mdl-39345542

ABSTRACT

Cell survival depends upon the ability to adapt to changing environments. Environmental stressors trigger an acute stress response program that rewires cell physiology, downregulates proliferation genes and pauses the cell cycle until the cell adapts. Here, we show that dynamic phosphorylation of the yeast cell cycle-regulatory transcription factor Hcm1 is required to maintain fitness in chronic stress. Hcm1 is activated by cyclin dependent kinase (CDK) and inactivated by the phosphatase calcineurin (CN) in response to stressors that signal through increases in cytosolic Ca2+. Expression of a constitutively active, phosphomimetic Hcm1 mutant reduces fitness in stress, suggesting Hcm1 inactivation is required. However, a comprehensive analysis of Hcm1 phosphomutants revealed that Hcm1 activity is also important to survive stress, demonstrating that Hcm1 activity must be toggled on and off to promote gene expression and fitness. These results suggest that dynamic control of cell cycle regulators is critical for survival in stressful environments.

5.
Phytopathology ; 2024 Sep 16.
Article in English | MEDLINE | ID: mdl-39283201

ABSTRACT

Pine wilt disease (PWD) is caused by pine wood nematode (PWN, Bursaphelenchus xylophilus) and significantly impacts pine forest ecosystems globally. This study focuses on Pinus massoniana, an important timber and oleoresin resource in China, and is highly susceptible to PWN. However, the defense mechanism of pine trees in response to PWN remains unclear. Addressing the complexities of PWD, influenced by diverse factors like bacteria, fungi, and environment, we established a reciprocal system between PWN and P. massoniana seedlings under aseptic conditions. Utilizing combined second and third-generation sequencing technologies, we identified 3,718 differentially expressed genes post-PWN infection. Transcript analysis highlighted the activation of defense mechanisms via stilbenes, salicylic acid and jasmonic acid pathways, terpene synthesis, and induction of pathogenesis-related proteins and resistance genes, predominantly at 72 hours post-infection. Notably, terpene synthesis pathways, particularly the mevalonate pathway, were crucial in defense, suggesting their significance in P. massoniana's response to PWN. This comprehensive transcriptome profiling offers insights into P. massoniana's intricate defense strategies against PWN under aseptic conditions laid a foundation for future functional analyses of key resistance genes.

6.
Toxics ; 12(9)2024 Aug 29.
Article in English | MEDLINE | ID: mdl-39330562

ABSTRACT

The risk of occupational exposure to organic solvents varies across industries due to factors such as processing materials, ventilation conditions, and exposure duration. Given the dynamic nature of organic solvent use and occupational exposures, continuous monitoring and analysis are essential for identifying high-risk hazards and developing targeted prevention strategies. Therefore, this study aims to analyze the use of organic solvents and volatile organic compounds (VOCs) in different industries in Bao'an District, Shenzhen, China, from 2018 to 2023, to understand their temporal variation and industry-specific differences and to identify high-risk occupational hazards. This study includes 1335 organic solvent samples, used by 414 different industry enterprises, and 1554 air samples. The result shows that the usage of organic solvents in various industries decreased with the outbreak of the pandemic and, conversely, increased as the situation improved. The most frequently detected volatile components in organic solvents were alkanes, followed by aromatic hydrocarbons. The ratios of the detection frequency of VOCs to the total number of detected categories increased year by year after 2020, indicating a tendency towards reduction and concentration of the types of organic solvents used in industrial production. Among the 8 high-risk VOCs, toluene (22.5%), n-hexane (22.0%), xylene (16.1%), and ethylbenzene (15.3%) have relatively high detection rates, suggesting that they need to be focused on in occupational health. Through air samples, the results show that trichloroethylene and xylene pose a high risk to human health (HQ > 1). We recommend that industry should strengthen monitoring of these two VOCs.

7.
ACS Cent Sci ; 10(8): 1640-1656, 2024 Aug 28.
Article in English | MEDLINE | ID: mdl-39220711

ABSTRACT

Glioblastoma (GBM) is the most aggressive and frequently occurring type of malignant brain tumor in adults. The initiation, progression, and recurrence of malignant tumors are known to be driven by a small subpopulation of cells known as tumor-initiating cells or cancer stem cells (CSCs). GBM CSCs play a pivotal role in orchestrating drug resistance and tumor relapse. As a prospective avenue for GBM intervention, the targeted suppression of GBM CSCs holds considerable promise. In this study, we found that rocaglates, compounds which are known to inhibit translation via targeting of the DEAD-box helicase eIF4A, exert a robust, dose-dependent cytotoxic impact on GBM CSCs with minimal killing of nonstem GBM cells. Subsequent optimization identified novel rocaglate derivatives (rocaglate acyl sulfamides or Roc ASFs) that selectively inhibit GBM CSCs with nanomolar EC50 values. Furthermore, comparative evaluation of a lead CSC-optimized Roc ASF across diverse mechanistic and target profiling assays revealed suppressed translation inhibition relative to that of other CSC-selective rocaglates, with enhanced targeting of the DEAD-box helicase DDX3X, a recently identified secondary target of rocaglates. Overall, these findings suggest a promising therapeutic strategy for targeting GBM CSCs.

8.
Plant Physiol Biochem ; 215: 109048, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39159534

ABSTRACT

Saline-alkali stress is one of the main abiotic stresses that limits plant growth. Salt stress has been widely studied, but alkaline salt degradation caused by NaHCO3 has rarely been investigated. In the present study, the alfalfa cultivar 'Zhongmu No. 1' was treated with 50 mM NaHCO3 (0, 4, 8, 12 and 24 h) to study the resulting enzyme activity and changes in mRNA, miRNA and metabolites in the roots. The results showed that the enzyme activity changed significantly after alkali stress treatment. The genomic analysis revealed 14,970 differentially expressed mRNAs (DEMs), 53 differentially expressed miRNAs (DEMis), and 463 differentially accumulated metabolites (DAMs). Combined analysis of DEMs and DEMis revealed that 21 DEMis negatively regulated 42 DEMs. In addition, when combined with Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis of DEMs and DAMs, we found that phenylpropanoid biosynthesis, flavonoid biosynthesis, starch and sucrose metabolism and plant hormone signal transduction played important roles in the alkali stress response. The results of this study further elucidated the regulatory mechanism underlying the plant response to alkali stress and provided valuable information for the breeding of new saline-alkaline tolerance plant varieties.


Subject(s)
Gene Expression Regulation, Plant , Medicago sativa , MicroRNAs , Stress, Physiological , Medicago sativa/genetics , Medicago sativa/metabolism , Medicago sativa/drug effects , Stress, Physiological/genetics , MicroRNAs/genetics , MicroRNAs/metabolism , Alkalies , Plant Roots/metabolism , Plant Roots/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Multiomics
9.
Int J Mol Sci ; 25(15)2024 Jul 29.
Article in English | MEDLINE | ID: mdl-39125826

ABSTRACT

Watermelon is one of the most important edible plants worldwide. Owing to its special cultivation conditions, watermelon is exposed to many biological and abiotic stresses during its development. Lectin receptor-like kinases (LecRLKs) are plant-specific membrane proteins that play important roles in sensing and responding to environmental stimuli. Although the LecRLK gene family has been identified in a variety of plants, a comprehensive analysis has not yet been undertaken in watermelon. In this study, 61 putative LecRLK genes were identified in watermelon, consisting of 36 G-type, 24 L-type, and 1 C-type LecRLK genes. They were distributed in clusters on chromosomes, and members from the same subfamily were mostly clustered together. The analysis of the phylogenetic tree and conserved motif indicated that there were obvious differences among three ClaLecRLK subfamilies, and there was also rich diversity in the C-terminal within subfamilies. A collinear analysis revealed that the evolution of the ClaLecRLK gene family in different Cucurbitaceae crops was asynchronous. Furthermore, the analysis of the ClaLecRLK protein structure showed that not all proteins contained signal peptides and a single transmembrane domain. A subcellular localization assay confirmed that the number and position of transmembrane domains did not affect ClaLecRLK protein localization in cells. Transcriptome data revealed distinct expression patterns of LecRLK genes of watermelon in various tissues, and their responses to different fungi infection were also significantly different. Finally, the potential binding sites of the ClaLecRLK genes targeted by miRNA were predicted. This study enhances the understanding of the characteristics and functions of the LecRLK gene family in watermelon and opens up the possibility of exploring the roles that LecRLK genes may play in the life cycle of Cucurbitaceae plants.


Subject(s)
Citrullus , Gene Expression Regulation, Plant , Phylogeny , Plant Proteins , Citrullus/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Gene Expression Profiling , Genome, Plant , Genome-Wide Association Study , Multigene Family , Chromosomes, Plant/genetics
10.
BMC Plant Biol ; 24(1): 800, 2024 Aug 24.
Article in English | MEDLINE | ID: mdl-39179986

ABSTRACT

BACKGROUND: The mitogen-activated protein kinase (MAPK) cascade is crucial cell signal transduction mechanism that plays an important role in plant growth and development, metabolism, and stress responses. The MAPK cascade includes three protein kinases, MAPK, MAPKK, and MAPKKK. The three protein kinases mediate signaling to downstream response molecules by sequential phosphorylation. The MAPK gene family has been identified and analyzed in many plants, however it has not been investigated in alfalfa. RESULTS: In this study, Medicago sativa MAPK genes (referred to as MsMAPKs) were identified in the tetraploid alfalfa genome. Eighty MsMAPKs were divided into four groups, with eight in group A, 21 in group B, 21 in group C and 30 in group D. Analysis of the basic structures of the MsMAPKs revealed presence of a conserved TXY motif. Groups A, B and C contained a TEY motif, while group D contained a TDY motif. RNA-seq analysis revealed tissue-specificity of two MsMAPKs and tissue-wide expression of 35 MsMAPKs. Further analysis identified MsMAPK members responsive to drought, salt, and cold stress conditions. Two MsMAPKs (MsMAPK70 and MsMAPK75) responds to salt and cold stresses; two MsMAPKs (MsMAPK60 and MsMAPK73) responds to cold and drought stresses; four MsMAPKs (MsMAPK1, MsMAPK33, MsMAPK64 and MsMAPK71) responds to salt and drought stresses; and two MsMAPKs (MsMAPK5 and MsMAPK7) responded to all three stresses. CONCLUSION: This study comprehensively identified and analysed the alfalfa MAPK gene family. Candidate genes related to abiotic stresses were screened by analysing the RNA-seq data. The results provide key information for further analysis of alfalfa MAPK gene functions and improvement of stress tolerance.


Subject(s)
Medicago sativa , Mitogen-Activated Protein Kinases , Stress, Physiological , Medicago sativa/genetics , Medicago sativa/enzymology , Medicago sativa/physiology , Mitogen-Activated Protein Kinases/genetics , Mitogen-Activated Protein Kinases/metabolism , Stress, Physiological/genetics , Multigene Family , Gene Expression Regulation, Plant , Genome, Plant , Plant Proteins/genetics , Plant Proteins/metabolism , Phylogeny , Droughts
11.
bioRxiv ; 2024 Jul 24.
Article in English | MEDLINE | ID: mdl-39091883

ABSTRACT

Patients with castration-resistant prostate cancer (CRPC) are generally unresponsive to tumor targeted and immunotherapies. Whether genetic alterations acquired during the evolution of CRPC impact immune and immunotherapy responses is largely unknown. Using our innovative electroporation-based mouse models, we generated distinct genetic subtypes of CRPC found in patients and uncovered unique immune microenvironments. Specifically, mouse and human prostate tumors with MYC amplification and p53 disruption had weak cytotoxic lymphocyte infiltration and an overall dismal prognosis. MYC and p53 cooperated to induce tumor intrinsic secretion of VEGF, which by signaling through VEGFR2 expressed on CD8+ T cells, could directly inhibit T cell activity. Targeting VEGF-VEGFR2 signaling in vivo led to CD8+ T cell-mediated tumor and metastasis growth suppression and significantly increased overall survival in MYC and p53 altered CPRC. VEGFR2 blockade also led to induction of PD-L1, and in combination with PD-L1 immune checkpoint blockade produced anti-tumor efficacy in multiple preclinical CRPC mouse models. Thus, our results identify a genetic mechanism of immune suppression through VEGF signaling in prostate cancer that can be targeted to reactivate immune and immunotherapy responses in an aggressive subtype of CRPC. Significance: Though immune checkpoint blockade (ICB) therapies can achieve curative responses in many treatment-refractory cancers, they have limited efficacy in CRPC. Here we identify a genetic mechanism by which VEGF contributes to T cell suppression, and demonstrate that VEGFR2 blockade can potentiate the effects of PD-L1 ICB to immunologically treat CRPC.

12.
BioTech (Basel) ; 13(3)2024 Aug 03.
Article in English | MEDLINE | ID: mdl-39189209

ABSTRACT

RNA sequencing (RNA-seq) has become a standard method for profiling gene expression, yet genomic DNA (gDNA) contamination carried over to the sequencing library poses a significant challenge to data integrity. Detecting and correcting this contamination is vital for accurate downstream analyses. Particularly, when RNA samples are scarce and invaluable, it becomes essential not only to identify but also to correct gDNA contamination to maximize the data's utility. However, existing tools capable of correcting gDNA contamination are limited and lack thorough evaluation. To fill the gap, we developed CleanUpRNAseq, which offers a comprehensive set of functionalities for identifying and correcting gDNA-contaminated RNA-seq data. Our package offers three correction methods for unstranded RNA-seq data and a dedicated approach for stranded data. Through rigorous validation on published RNA-seq datasets with known levels of gDNA contamination and real-world RNA-seq data, we demonstrate CleanUpRNAseq's efficacy in detecting and correcting detrimental levels of gDNA contamination across diverse library protocols. CleanUpRNAseq thus serves as a valuable tool for post-alignment quality assessment of RNA-seq data and should be integrated into routine workflows for RNA-seq data analysis. Its incorporation into OneStopRNAseq should significantly bolster the accuracy of gene expression quantification and differential expression analysis of RNA-seq data.

13.
Sci Transl Med ; 16(762): eadj9366, 2024 Aug 28.
Article in English | MEDLINE | ID: mdl-39196958

ABSTRACT

Pancreatic ductal adenocarcinoma (PDAC) has quickly risen to become the third leading cause of cancer-related death in the United States. This is in part because of its fibrotic tumor microenvironment (TME) that contributes to poor vascularization and immune infiltration and subsequent chemo- and immunotherapy failure. Here, we investigated an immunotherapy approach combining delivery of stimulator of interferon genes (STING) and Toll-like receptor 4 (TLR4) innate immune agonists by lipid-based nanoparticle (NP) coencapsulation with senescence-inducing RAS-targeted therapies, which can remodel the immune suppressive PDAC TME through the senescence-associated secretory phenotype. Treatment of transplanted and autochthonous PDAC mouse models with these regimens led to enhanced uptake of NPs by multiple cell types in the PDAC TME, induction of type I interferon and other proinflammatory signaling pathways, increased antigen presentation by tumor cells and antigen-presenting cells, and subsequent activation of both innate and adaptive immune responses. This two-pronged approach produced potent T cell-driven and type I interferon-mediated tumor regression and long-term survival in preclinical PDAC models dependent on both tumor and host STING activation. STING and TLR4-mediated type I interferon signaling was also associated with enhanced natural killer and CD8+ T cell immunity in human PDAC samples. Thus, combining localized immune agonist delivery with systemic tumor-targeted therapy can orchestrate a coordinated type I interferon-driven innate and adaptive immune response with durable antitumor efficacy against PDAC.


Subject(s)
Carcinoma, Pancreatic Ductal , Immunity, Innate , Nanoparticles , Pancreatic Neoplasms , Toll-Like Receptor 4 , Tumor Microenvironment , Animals , Immunity, Innate/drug effects , Pancreatic Neoplasms/pathology , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/immunology , Pancreatic Neoplasms/therapy , Humans , Nanoparticles/chemistry , Tumor Microenvironment/drug effects , Carcinoma, Pancreatic Ductal/immunology , Carcinoma, Pancreatic Ductal/pathology , Carcinoma, Pancreatic Ductal/drug therapy , Carcinoma, Pancreatic Ductal/therapy , Mice , Toll-Like Receptor 4/metabolism , Toll-Like Receptor 4/agonists , T-Lymphocytes/immunology , T-Lymphocytes/drug effects , Interferon Type I/metabolism , Cell Line, Tumor , Immunotherapy/methods , Cellular Senescence/drug effects , Membrane Proteins/metabolism , Mice, Inbred C57BL , Signal Transduction/drug effects
14.
Biochim Biophys Acta Mol Basis Dis ; 1870(7): 167438, 2024 10.
Article in English | MEDLINE | ID: mdl-39059591

ABSTRACT

Colorectal cancer (CRC) is one of the most common malignancies worldwide. Double-strand break (DSB) is the most severe type of DNA damage. However, few reviews have thoroughly examined the involvement of DSB in CRC. Latest researches demonstrated that DSB repair plays an important role in CRC. For example, DSB-related genes such as BRCA1, Ku-70 and DNA polymerase theta (POLQ) are associated with the occurrence of CRC, and POLQ even showed to affect the prognosis and resistance for radiotherapy in CRC. This review comprehensively summarizes the DSB role in CRC, explores the mechanisms and discusses the association with CRC treatment. Four pathways for DSB have been demonstrated. 1. Nonhomologous end joining (NHEJ) is the major pathway. Its core genes including Ku70 and Ku80 bind to broken ends and recruit repair factors to form a complex that mediates the connection of DNA breaks. 2. Homologous recombination (HR) is another important pathway. Its key genes including BRCA1 and BRCA2 are involved in finding, pairing, and joining broken ends, and ensure the restoration of breaks in a normal double-stranded DNA structure. 3. Single-strand annealing (SSA) pathway, and 4. POLθ-mediated end-joining (alt-EJ) is a backup pathway. This paper elucidates roles of the DSB repair pathways in CRC, which could contribute to the development of potential new treatment approaches and provide new opportunities for CRC treatment and more individualized treatment options based on therapeutic strategies targeting these DNA repair pathways.


Subject(s)
BRCA1 Protein , Colorectal Neoplasms , DNA Breaks, Double-Stranded , DNA End-Joining Repair , Humans , Colorectal Neoplasms/genetics , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/pathology , Colorectal Neoplasms/therapy , BRCA1 Protein/genetics , BRCA1 Protein/metabolism , DNA Polymerase theta , Ku Autoantigen/metabolism , Ku Autoantigen/genetics , DNA Repair , DNA-Directed DNA Polymerase/metabolism , DNA-Directed DNA Polymerase/genetics , BRCA2 Protein/genetics , BRCA2 Protein/metabolism , Animals
15.
Syst Biol Reprod Med ; 70(1): 218-227, 2024 Dec.
Article in English | MEDLINE | ID: mdl-39013025

ABSTRACT

Sperm-derived genetic material contributes half of the genome to the embryo, hence it's crucial to investigate which sperm parameter influences blastocyst formation in the intracytoplasmic sperm injection (ICSI) cycles with severe male infertility. The retrospective study analyzed 296 ICSI cycles with severe oligoasthenoteratozoospermia (OAT) and 99 ICSI cycles with preimplantation genetic testing for aneuploidy (PGT-A). Following the correlation analysis, data stratifications were performed in the OAT ICSI subgroup. The results showed that the matching blastocyst in the OAT ICSI cycles had inferior sperm parameters. DFI and sperm morphology had an influence on the blastocyst formation rate and the high-quality blastocysts formation rate on Day6, but no significant effect on the blastocyst development on Day 5. The high-quality blastocysts formation rate and ratio of high-quality blastocyst on Day 6 were demonstrably better in the subgroup of the teratozoospermic morphology when DFI was within the normal range. In the case of the normal sperm morphology, no statistically significant difference was found in blastocyst development, although there were numerical differences within different DFI subgroups. It was concluded that the blastocyst quality and development declined with the decreased sperm qualities.


Subject(s)
Blastocyst , Sperm Injections, Intracytoplasmic , Spermatozoa , Humans , Male , Retrospective Studies , Female , Adult , Infertility, Male/therapy , Infertility, Male/physiopathology , Pregnancy , Embryonic Development , Oligospermia/therapy , Oligospermia/physiopathology
16.
Mol Biol Cell ; 35(10): ar123, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-39083354

ABSTRACT

Adaptation to environmental stress requires coordination between stress-defense programs and cell cycle progression. The immediate response to many stressors has been well characterized, but how cells survive in challenging environments long term is unknown. Here, we investigate the role of the stress-activated phosphatase calcineurin (CN) in adaptation to chronic CaCl2 stress in Saccharomyces cerevisiae. We find that prolonged exposure to CaCl2 impairs mitochondrial function and demonstrate that cells respond to this stressor using two CN-dependent mechanisms-one that requires the downstream transcription factor Crz1 and another that is Crz1 independent. Our data indicate that CN maintains cellular fitness by promoting cell cycle progression and preventing CaCl2-induced cell death. When Crz1 is present, transient CN activation suppresses cell death and promotes adaptation despite high levels of mitochondrial loss. However, in the absence of Crz1, prolonged activation of CN prevents mitochondrial loss and further cell death by upregulating glutathione biosynthesis genes thereby mitigating damage from reactive oxygen species. These findings illustrate how cells maintain long-term fitness during chronic stress and suggest that CN promotes adaptation in challenging environments by multiple mechanisms.


Subject(s)
Adaptation, Physiological , Calcineurin , Mitochondria , Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae , Stress, Physiological , Transcription Factors , Calcineurin/metabolism , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae Proteins/genetics , Mitochondria/metabolism , Adaptation, Physiological/physiology , Transcription Factors/metabolism , Reactive Oxygen Species/metabolism , Calcium Chloride/pharmacology , Cell Cycle , Gene Expression Regulation, Fungal , DNA-Binding Proteins
17.
Int J Mol Sci ; 25(12)2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38928029

ABSTRACT

Metabolic engineering enables oilseed crops to be more competitive by having more attractive properties for oleochemical industrial applications. The aim of this study was to increase the erucic acid level and to produce wax ester (WE) in seed oil by genetic transformation to enhance the industrial applications of B. carinata. Six transgenic lines for high erucic acid and fifteen transgenic lines for wax esters were obtained. The integration of the target genes for high erucic acid (BnFAE1 and LdPLAAT) and for WEs (ScWS and ScFAR) in the genome of B. carinata cv. 'Derash' was confirmed by PCR analysis. The qRT-PCR results showed overexpression of BnFAE1 and LdPLAAT and downregulation of RNAi-BcFAD2 in the seeds of the transgenic lines. The fatty acid profile and WE content and profile in the seed oil of the transgenic lines and wild type grown in biotron were analyzed using gas chromatography and nanoelectrospray coupled with tandem mass spectrometry. A significant increase in erucic acid was observed in some transgenic lines ranging from 19% to 29% in relation to the wild type, with a level of erucic acid reaching up to 52.7%. Likewise, the transgenic lines harboring ScFAR and ScWS genes produced up to 25% WE content, and the most abundant WE species were 22:1/20:1 and 22:1/22:1. This study demonstrated that metabolic engineering is an effective biotechnological approach for developing B. carinata into an industrial crop.


Subject(s)
Brassica , Erucic Acids , Esters , Metabolic Engineering , Plants, Genetically Modified , Seeds , Waxes , Erucic Acids/metabolism , Metabolic Engineering/methods , Plants, Genetically Modified/genetics , Plants, Genetically Modified/metabolism , Waxes/metabolism , Esters/metabolism , Seeds/genetics , Seeds/metabolism , Brassica/genetics , Brassica/metabolism , Fatty Acids/metabolism , Plant Oils/metabolism , Gene Expression Regulation, Plant , Plant Proteins/genetics , Plant Proteins/metabolism
18.
J Integr Med ; 22(4): 503-514, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38849220

ABSTRACT

OBJECTIVE: Studies have demonstrated that cycloastragenol induces antitumor effects in prostate, colorectal and gastric cancers; however, its efficacy for inhibiting the proliferation of lung cancer cells is largely unexplored. This study explores the efficacy of cycloastragenol for inhibiting non-small cell lung cancer (NSCLC) and elucidates the underlying molecular mechanisms. METHODS: The effects of cycloastragenol on lung cancer cell proliferation were assessed using an adenosine triphosphate monitoring system based on firefly luciferase and clonogenic formation assays. Cycloastragenol-induced apoptosis in lung cancer cells was evaluated using dual staining flow cytometry with an annexin V-fluorescein isothiocyanate/propidium iodide kit. To elucidate the role of cycloastragenol in the induction of apoptosis, apoptosis-related proteins were examined using Western blots. Immunofluorescence and Western blotting were used to determine whether cycloastragenol could induce autophagy in lung cancer cells. Genetic techniques, including small interfering RNA technology, were used to investigate the underlying mechanisms. The effects against lung cancer and biosafety of cycloastragenol were evaluated using a mouse subcutaneous tumor model. RESULTS: Cycloastragenol triggered both autophagy and apoptosis. Specifically, cycloastragenol promoted apoptosis by facilitating the accumulation of phorbol-12-myristate-13-acetate-induced protein 1 (NOXA), a critical apoptosis-related protein. Moreover, cycloastragenol induced a protective autophagy response through modulation of the adenosine 5'-monophosphate-activated protein kinase (AMPK)/unc-51-like autophagy-activating kinase (ULK1)/mammalian target of rapamycin (mTOR) pathway. CONCLUSION: Our study sheds new light on the antitumor efficacy and mechanism of action of cycloastragenol in NSCLC. This insight provides a scientific basis for exploring combination therapies that use cycloastragenol and inhibiting the AMPK/ULK1/mTOR pathway as a promising approach to combating lung cancer. Please cite this article as follows: Zhu LH, Liang YP, Yang L, Zhu F, Jia LJ, Li HG. Cycloastragenolinduces apoptosis and protective autophagy through AMPK/ULK1/mTOR axis in human non-small celllung cancer cell lines. J Integr Med. 2024; 22(4): 504-515.


Subject(s)
AMP-Activated Protein Kinases , Apoptosis , Autophagy-Related Protein-1 Homolog , Autophagy , Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , TOR Serine-Threonine Kinases , Humans , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/metabolism , Carcinoma, Non-Small-Cell Lung/pathology , Carcinoma, Non-Small-Cell Lung/genetics , TOR Serine-Threonine Kinases/metabolism , Apoptosis/drug effects , Autophagy-Related Protein-1 Homolog/metabolism , Autophagy-Related Protein-1 Homolog/genetics , Lung Neoplasms/drug therapy , Lung Neoplasms/metabolism , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Animals , Autophagy/drug effects , Mice , AMP-Activated Protein Kinases/metabolism , AMP-Activated Protein Kinases/genetics , Cell Line, Tumor , Cell Proliferation/drug effects , Signal Transduction/drug effects , Mice, Nude , Mice, Inbred BALB C , Intracellular Signaling Peptides and Proteins/metabolism , Intracellular Signaling Peptides and Proteins/genetics
19.
Int J Gen Med ; 17: 1707-1712, 2024.
Article in English | MEDLINE | ID: mdl-38706751

ABSTRACT

Background: There have been several studies regarding the susceptibility of A20 gene SNPs (rs2230926 and rs5029937) in rheumatoid arthritis (RA). However, little is known about the association between polymorphisms in the A20 promoter and RA. The aim of this study was to investigate the characteristics of A20 promoter polymorphisms and the association between these polymorphisms and clinical significance in Chinese RA patients. Methods: PCR and sequencing were used to identify A20 gene polymorphisms in peripheral blood mononuclear cells (PBMCs) from 123 RA cases and 31 healthy individuals. Results: Only one SNP (rs5029924) in the A20 gene promoter was identified in RA patients and healthy individuals. 6 patients who carried heterozygous rs5029924 (3918C>T) together with heterozygous rs5029937 (11,571 G>T) and rs2230926 (12,486 T>G, Phe127Cys) suffered from joints deformity or refractory RA. Conclusion: We reported the A20 promoter polymorphism rs5029924 in RA patients for the first time. rs5029924 concomitant with rs2230926 and rs5029937 may be a prognostic predictor for joint deformity or refractory RA.

20.
BMC Public Health ; 24(1): 1310, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38745161

ABSTRACT

BACKGROUND: This study examined the knowledge, attitude, and practice (KAP) toward allergic rhinitis (AR) among parents. METHODS: This cross-sectional study enrolled parents of children with AR at Ningbo Hangzhou Bay Hospital between December 2022 and March 2023. A self-administered questionnaire was developed to collect the demographic characteristics, knowledge, attitudes, and practices toward AR. RESULTS: This study included 480 questionnaires, and 78.33% were mothers. The mean knowledge, attitude, and practice scores were 13.49 ± 6.62 (possible range: 0-24), 33.99 ± 3.40 (possible range: 8-40), and 21.52 ± 3.36 (possible range: 5-26), indicating poor knowledge, positive attitudes, and proactive practice. Multivariable logistic regression analysis showed living in urban areas in Ningbo outside Hangzhou Bay New Zone (OR = 4.33, 95%CI: 1.52-12.34, P = 0.006), living in rural areas in Ningbo (OR = 2.15, 95%CI: 1.00-4.59, P = 0.049), being self-employed (OR = 1.99, 95%CI: 1.00-3.95, P = 0.049), monthly income per capita ≥ 20,000 CNY (OR = 1.89, 95%CI: 1.02-3.47, P = 0.042), child with one biological sibling (OR = 0.48, 95%CI: 0.30-0.78, P = 0.003), and ≥ 6 times hospital visits for AR (OR = 2.32, 95%CI: 1.40-3.86, P = 0.001) were independently associated with adequate knowledge. The knowledge (OR = 1.09, 95%CI: 1.05-1.13, P < 0.001) and ≥ 6 times hospital visits for AR (OR = 1.84, 95%CI: 1.06-3.22, P = 0.032) were independently associated with a positive attitude. The knowledge (OR = 1.08, 95%CI: 1.04-1.13, P = 0.001), attitude (OR = 1.41, 95%CI: 1.28-1.55, P < 0.001), monthly income per capita ≥ 20,000 CNY (OR = 3.59, 95%CI: 1.49-8.65, P = 0.004), no previous hospital visit for AR (OR = 0.35, 95%CI: 0.16-0.78, P = 0.003), and ≥ 6 times hospital visits for AR (OR = 0.40, 95%CI: 0.20-0.81, P = 0.011) were independently associated with the practice scores. CONCLUSIONS: The parents of children with AR had poor knowledge but positive attitudes and proactive practice toward AR. This study has identified a need for specific and reliable information initiatives to be introduced as a means of reducing parental concern and ensuring evidence-based strategies for managing children with AR.


Subject(s)
Health Knowledge, Attitudes, Practice , Parents , Rhinitis, Allergic , Humans , China , Female , Male , Cross-Sectional Studies , Adult , Parents/psychology , Surveys and Questionnaires , Middle Aged , Child , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL