Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 87
Filter
Add more filters








Publication year range
1.
Pest Manag Sci ; 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38847471

ABSTRACT

BACKGROUND: Body-color polymorphisms in insects are often explained by environmental selective advantages. Differential fitness related to body coloration has been demonstrated in Myzus persicae (Sulzer): performance of the red morph is in general better than that of the green morph on tobacco plants. However, the molecular mechanism involved is largely unclear. RESULTS: Here we showed that the red morph of M. persicae had higher expression of a carotenoid desaturase CarD763 in the whole body, salivary gland and saliva relative to the green morph. Also, 18% individuals displayed faded red body color 5 days post dsCarD763 treatment. Furthermore, knockdown of CarD763 in the red morph significantly prolonged the time needed to locate phloem and shortened the duration of phloem feeding. Honeydew production and survival rate decreased as well. In contrast, overexpression of CarD763 in tobacco leaves facilitated aphid feeding, enhanced honeydew production and improved the survival rate of aphids. Compared with those fed by dsGFP aphids, plants infested by dsCarD763-treated aphids had higher ROS accumulation, lower lycopene content and photosynthetic rate, and maximum photon quantum yield. The reverse was true when plants overexpressed CarD763. CONCLUSION: These findings demonstrated that CarD763, a red morph-specific salivary protein, could enhance aphid feeding and early colonization by promoting plant photosynthesis. © 2024 Society of Chemical Industry.

2.
Insect Sci ; 31(1): 119-133, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37287390

ABSTRACT

RNA interference (RNAi) is a powerful tool that post-transcriptionally silences target genes in eukaryotic cells. However, silencing efficacy varies greatly among different insect species. Recently, we met with little success when attempting to knock down genes in the mirid bug Apolygus lucorum via dsRNA injection. The disappearance of double-stranded RNA (dsRNA) could be a potential factor that restricts RNAi efficiency. Here, we found that dsRNA can be degraded in midgut fluids, and a dsRNase of A. lucorum (AldsRNase) was identified and characterized. Sequence alignment indicated that its 6 key amino acid residues and the Mg2+ -binding site were similar to those of other insects' dsRNases. The signal peptide and endonuclease non-specific domain shared high sequence identity with the brown-winged green stinkbug Plautia stali dsRNase. AldsRNase showed high salivary gland and midgut expression and was continuously expressed through the whole life cycle, with peaks at the 4th instar ecdysis in the whole body. The purified AldsRNase protein obtained by heterologously expressed can rapidly degrade dsRNA. When comparing the substrate specificity of AldsRNase, 3 specific substrates (dsRNA, small interfering RNA, and dsDNA) were all degraded, and the most efficient degradation is dsRNA. Subsequently, immunofluorescence revealed that AldsRNase was expressed in the cytoplasm of midgut cells. Through cloning and functional study of AldsRNase, the enzyme activity and substrate specificity of the recombinant protein, as well as the subcellular localization of nuclease, the reason for the disappearance of dsRNA was explained, which was useful in improving RNAi efficiency in A. lucorum and related species.


Subject(s)
Heteroptera , RNA, Double-Stranded , Animals , RNA, Double-Stranded/genetics , Sequence Alignment , RNA Interference , Insecta/genetics , Cloning, Molecular , Heteroptera/genetics
3.
Pest Manag Sci ; 80(2): 885-895, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37814473

ABSTRACT

BACKGROUND: Insect glutathione S-transferases (GSTs), a multifunctional protein family, play a crucial role in detoxification of plant defensive compounds. However, they have been rarely investigated in Sitodiplosis mosellana, a destructive pest of wheat worldwide. In this study, we characterized for the first time a delta (SmGSTd1) and two epsilon GST genes (SmGSTe1 and SmGSTe2) and analyzed their expression patterns and functions associated with adaptation to host plant defense in this species. RESULTS: Expression of these SmGST genes greatly increased in S. mosellana larvae feeding on resistant wheat varieties Kenong1006, Shanmai139 and Jinmai47 which contain higher tannin and ferulic acid, the major defensive compounds of wheat against this pest, compared with those feeding on susceptible varieties Xinong822, Xinong88 and Xiaoyan22. Their expression was also tissue-specific, most predominant in larval midgut. Recombinant SmGSTs expressed in Escherichia coli could catalyze the conjugation of 1-chloro-2,4-dinitrobenzene, with activity peak at pH around 7.0 and temperature between 30 and 40 °C. Notably, they could metabolize tannin and ferulic acid, with the strongest metabolic ability by SmGSTe2 against two compounds, followed by SmGSTd1 on tannin, and SmGSTe1 on ferulic acid. CONCLUSION: The results suggest that these SmGSTs are important in metabolizing wheat defensive chemicals during feeding, which may be related to host plant adaptation of S. mosellana. Our study has provided information for future investigation and development of strategies such as host-induced gene silencing of insect-detoxifying genes for managing pest adaptation. © 2023 Society of Chemical Industry.


Subject(s)
Chironomidae , Coumaric Acids , Tannins , Animals , Nematocera , Larva/genetics , Transferases , Glutathione , Glutathione Transferase/genetics
4.
Pestic Biochem Physiol ; 194: 105481, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37532313

ABSTRACT

RNA interference (RNAi) is recognized as a new and environmentally friendly pest control strategy due to its high specificity. However, the RNAi efficiency is relatively low in many sucking insect pests, such as Apolygus lucorum. Therefore, there is an urgent need to develop new and effective ways of dsRNA delivery. Bacterially expressed or T7 synthesized dsRNA targeting a G Protein-Coupled Receptor Kinase 2 gene was mixed with chitosan in a 1:2 ratio by mass. The size of the chitosan/dsRNA nanoparticles was 69 ± 12 nm, and the TEM and AFM images showed typical spherical or ellipsoidal structures. The chitosan nanoparticles protected the dsRNA from nuclease activity, and pH and temperature-dependent degradation, and the fluorescently-tagged nanoparticles were found to be stable on the surface of green bean plants (48 h) (Phaseolus vulgaris) and were absorbed by midgut epithelial cells and transported to hemolymph. Once fed to the A. lucorum nymph, chitosan/dsRNA could effectively inhibit the expression of the G protein-coupled receptor kinase 2 gene (70%), and led to significantly increase mortality (50%), reduced weight (26.54%) and a prolonged developmental period (8.04%). The feeding-based and chitosan-mediated dsRNA delivery method could be a new strategy for A. lucorum management, providing an effective tool for gene silencing of piercing-sucking insects.


Subject(s)
Chitosan , Heteroptera , Animals , Chitosan/pharmacology , Chitosan/chemistry , Heteroptera/genetics , RNA Interference , Gene Silencing , Insecta/genetics , RNA, Double-Stranded/genetics , Receptors, G-Protein-Coupled/genetics
5.
Elife ; 122023 Mar 21.
Article in English | MEDLINE | ID: mdl-36943031

ABSTRACT

Wing dimorphism in insects is an evolutionarily adaptive trait to maximize insect fitness under various environments, by which the population could be balanced between dispersing and reproduction. Most studies concern the regulatory mechanisms underlying the stimulation of wing morph in aphids, but relatively little research addresses the molecular basis of wing loss. Here, we found that, while developing normally in winged-destined pea aphids, the wing disc in wingless-destined aphids degenerated 30-hr postbirth and that this degeneration was due to autophagy rather than apoptosis. Activation of autophagy in first instar nymphs reduced the proportion of winged aphids, and suppression of autophagy increased the proportion. REPTOR2, associated with TOR signaling pathway, was identified by RNA-seq as a differentially expressed gene between the two morphs with higher expression in the thorax of wingless-destined aphids. Further genetic analysis indicated that REPTOR2 could be a novel gene derived from a gene duplication event that occurred exclusively in pea aphids on autosome A1 but translocated to the sex chromosome. Knockdown of REPTOR2 reduced autophagy in the wing disc and increased the proportion of winged aphids. In agreement with REPTOR's canonical negative regulatory role of TOR on autophagy, winged-destined aphids had higher TOR expression in the wing disc. Suppression of TOR activated autophagy of the wing disc and decreased the proportion of winged aphids, and vice versa. Co-suppression of TOR and REPTOR2 showed that dsREPTOR2 could mask the positive effect of dsTOR on autophagy, suggesting that REPTOR2 acted as a key regulator downstream of TOR in the signaling pathway. These results revealed that the TOR signaling pathway suppressed autophagic degradation of the wing disc in pea aphids by negatively regulating the expression of REPTOR2.


Subject(s)
Aphids , Animals , Aphids/genetics , Pisum sativum , Phenotype , Reproduction , RNA Interference , Wings, Animal/physiology , Transcription Factors/metabolism
6.
Proc Natl Acad Sci U S A ; 120(14): e2222040120, 2023 04 04.
Article in English | MEDLINE | ID: mdl-36976769

ABSTRACT

Aphids are the most common insect vector transmitting hundreds of plant viruses. Aphid wing dimorphism (winged vs. wingless) not only showcases the phenotypic plasticity but also impacts virus transmission; however, the superiority of winged aphids in virus transmission over the wingless morph is not well understood. Here, we show that plant viruses were efficiently transmitted and highly infectious when associated with the winged morph of Myzus persicae and that a salivary protein contributed to this difference. The carbonic anhydrase II (CA-II) gene was identified by RNA-seq of salivary glands to have higher expression in the winged morph. Aphids secreted CA-II into the apoplastic region of plant cells, leading to elevated accumulation of H+. Apoplastic acidification further increased the activities of polygalacturonases, the cell wall homogalacturonan (HG)-modifying enzymes, promoting degradation of demethylesterified HGs. In response to apoplastic acidification, plants accelerated vesicle trafficking to enhance pectin transport and strengthen the cell wall, which also facilitated virus translocation from the endomembrane system to the apoplast. Secretion of a higher quantity of salivary CA-II by winged aphids promoted intercellular vesicle transport in the plant. The higher vesicle trafficking induced by winged aphids enhanced dispersal of virus particles from infected cells to neighboring cells, thus resulting in higher virus infection in plants relative to the wingless morph. These findings imply that the difference in the expression of salivary CA-II between winged and wingless morphs is correlated with the vector role of aphids during the posttransmission infection process, which influences the outcome of plant endurance of virus infection.


Subject(s)
Aphids , Plant Viruses , Virus Diseases , Viruses , Animals , Aphids/genetics , Carbonic Anhydrase II , Wings, Animal/metabolism , Virus Diseases/metabolism , Plant Diseases
7.
J Exp Bot ; 74(6): 1990-2004, 2023 03 28.
Article in English | MEDLINE | ID: mdl-36575924

ABSTRACT

Pentyl leafy volatiles (PLV) are C5 volatiles produced from polyunsaturated fatty acids by plant 13-lipoxygenases (13-LOX) in concert with other lipid metabolizing enzymes. Unlike related C6 volatiles (GLV, green leafy volatiles), little is known about the biosynthesis and physiological function of PLV in plants. Zea mays LOX6 (ZmLOX6) is an unusual plant LOX that lacks lipid oxygenation activity but acts as a hydroperoxide lyase hypothesized to be specifically involved in PLV synthesis. We overexpressed ZmLOX6 in Arabidopsis thaliana and established that it indeed produces PLVs. Overexpression of ZmLOX6 caused a mild chlorotic phenotype, and induced a similar phenotype in untransformed Col-0 plants grown in close proximity, suggesting that airborne signals, such as PLVs, are responsible for the phenotype. PLV production, dependency on the substrate from endogenous 13-LOX(s), and likely competition with endogenous 13-oxylipin pathway were consistent with the model that ZmLOX6 functions as a hydroperoxide lyase. The abundance of individual PLVs was differentially affected by ZmLOX6 overexpression, and the new profile indicated that ZmLOX6 had reaction products distinct from endogenous PLV-producing activities in the Arabidopsis host plants. ZmLOX6 overexpression also induced a new hormonal status, which is likely responsible for increased attraction and propagation of aphids, nonetheless improving host plant tolerance to aphid infestation.


Subject(s)
Aphids , Arabidopsis , Animals , Arabidopsis/metabolism , Aphids/physiology , Zea mays/genetics , Plants , Plant Leaves/metabolism , Lipids
8.
Insect Mol Biol ; 32(2): 132-142, 2023 04.
Article in English | MEDLINE | ID: mdl-36371609

ABSTRACT

Juvenile hormone (JH) controls almost every aspect of an insect, especially metamorphosis. Since RNA interference works on transcripts and is often insufficient in Lepidoptera, how JH affects larval development in these insects is not well studied. Using the CRISPR/Cas9 technique, we knocked out Spodoptera exigua methoprene-tolerant 1 (SeMet1) gene of beet armyworm by modifying two sites in the coding region. However, SeMet1 knockout did not affect egg hatch rate or larval development at L1-L3 stages. In contrast to the consistent five larval instars of the control group, L4 SeMet1 mutants began to show signs of precocious metamorphosis, that is, small patches of pupal cuticle. Most L4 and all L5 SeMet1 mutants died for failing to shed their mosaic cuticles. RNA-seq indicated that most genes encoding pupal cuticle proteins and chitinase genes were altered in SeMet1 mutant L4 larvae. SeKr-h1, a key transcription factor in JH action was significantly down-regulated in L3-L5 larvae, while SeBR-C, a pupal indicator was only upregulated in L4-L5 larvae. These results suggested that S. exigua larvae may initially develop independently of JH, and involve SeMet1 in transducing JH signalling, leading to controlled larval metamorphosis at the late larval stage. We believe our findings will enhance better understanding of JH regulation of larval development.


Subject(s)
Beta vulgaris , Methoprene , Animals , Larva , Spodoptera/genetics , Beta vulgaris/genetics , Beta vulgaris/metabolism , CRISPR-Cas Systems , Metamorphosis, Biological , Juvenile Hormones/metabolism , Insecta/genetics , Pupa , Insect Proteins/metabolism , Gene Expression Regulation, Developmental
9.
J Agric Food Chem ; 70(34): 10466-10475, 2022 Aug 31.
Article in English | MEDLINE | ID: mdl-35994613

ABSTRACT

Sitodiplosis mosellana is a major wheat pest that oviposits on spikes, and resistant wheat varieties have been released. However, wheat spike volatiles mediating S. mosellana host selection or resistance are largely unknown. In this study, we found that the highly susceptible wheat varieties Xinong 822, Xinong 88, and Xiaoyan 22 were preferred for S. mosellana oviposition, and their spike volatiles were more attractive to females compared to the resistant varieties Kenong 1006, Shanmai 139, and Jinmai 47. Importantly, we found five odor components evoking obvious concentration-dependent electroantennogram (EAG) and behavioral response. Notably, 3-hexanol, cis-3-hexenylacetate, and hexyl acetate strongly attracted females, whereas ocimene, a dominant component of three resistant varieties, and α-farnesene, absent in Xinong 88, repelled females. Significant attraction was also observed in a synthetic blend mimicking Xinong 822 volatiles. These results suggest that these wheat volatiles are involved in host selection of S. mosellana and provide a basis for development of semichemical-based pest management.


Subject(s)
Diptera , Volatile Organic Compounds , Animals , Female , Oviposition , Triticum
10.
Nature ; 605(7909): 332-339, 2022 05.
Article in English | MEDLINE | ID: mdl-35508659

ABSTRACT

Stomata exert considerable effects on global carbon and water cycles by mediating gas exchange and water vapour1,2. Stomatal closure prevents water loss in response to dehydration and limits pathogen entry3,4. However, prolonged stomatal closure reduces photosynthesis and transpiration and creates aqueous apoplasts that promote colonization by pathogens. How plants dynamically regulate stomatal reopening in a changing climate is unclear. Here we show that the secreted peptides SMALL PHYTOCYTOKINES REGULATING DEFENSE AND WATER LOSS (SCREWs) and the cognate receptor kinase PLANT SCREW UNRESPONSIVE RECEPTOR (NUT) counter-regulate phytohormone abscisic acid (ABA)- and microbe-associated molecular pattern (MAMP)-induced stomatal closure. SCREWs sensed by NUT function as immunomodulatory phytocytokines and recruit SOMATIC EMBRYOGENESIS RECEPTOR-LIKE KINASE (SERK) co-receptors to relay immune signalling. SCREWs trigger the NUT-dependent phosphorylation of ABA INSENSITIVE 1 (ABI1) and ABI2, which leads to an increase in the activity of ABI phosphatases towards OPEN STOMATA 1 (OST1)-a key kinase that mediates ABA- and MAMP-induced stomatal closure5,6-and a reduction in the activity of S-type anion channels. After induction by dehydration and pathogen infection, SCREW-NUT signalling promotes apoplastic water loss and disrupts microorganism-rich aqueous habitats to limit pathogen colonization. The SCREW-NUT system is widely distributed across land plants, which suggests that it has an important role in preventing uncontrolled stomatal closure caused by abiotic and biotic stresses to optimize plant fitness.


Subject(s)
Abscisic Acid , Plant Growth Regulators , Plant Immunity , Plant Stomata , Plants , Water , Arabidopsis Proteins , Dehydration , Desiccation
11.
Insects ; 13(4)2022 Mar 30.
Article in English | MEDLINE | ID: mdl-35447781

ABSTRACT

Sitodiplosis mosellana, a notorious pest of wheat worldwide, copes with temperature extremes during harsh summers and winters by entering obligatory diapause as larvae. However, the metabolic adaptive mechanism underlying this process is largely unknown. In this study, we performed a comparative metabolomics analysis on S. mosellana larvae at four programmed developmental stages, i.e., pre-diapause, diapause, low temperature quiescence and post-diapause development. In total, we identified 54 differential metabolites based on pairwise comparisons of the four groups. Of these metabolites, 37 decreased in response to diapause, including 4 TCA cycle intermediates (malic acid, citric acid, fumaric acid, α-ketoglutaric acid), 2 saturated fatty acids (palmitic acid, stearic acid) and most amino acids. In contrast, nine metabolites, including trehalose, glycerol, mannitol, proline, alanine, oleic acid and linoleic acid were significantly higher in both the diapause and quiescent stages than the other two stages. In addition to two of them (trehalose, proline), glutamine was also significantly highest in the cold quiescence stage. These elevated metabolites could function as cryoprotectants and/or energy reserves. These findings suggest that the reduced TCA cycle activity and elevated biosynthesis of functional metabolites are most likely responsible for maintaining low metabolic activity and cold tolerance during diapause, which is crucial for the survival and post-diapause development of this pest.

12.
Front Physiol ; 13: 845087, 2022.
Article in English | MEDLINE | ID: mdl-35250643

ABSTRACT

Polyphagous Apolygus lucorum has become the dominant insect in Bacillus thuringiensis (Bt) cotton fields. Hormone 20-hydroxyecdysone (20E) regulates multiple insect development and physiology events. 20E responses are controlled by pathways triggered by phospholipase C (PLC)-associated proteins. However, 20E-modulated genes and related proteins that can be affected by PLC still remain unknown. Here, isobaric tag for relative and absolute quantitation (iTRAQ) and immunoblotting techniques were used to compare differentially expressed proteins (DEPs) in A. lucorum in response to the treatment of 20E and the PLC inhibitor U73122 as well as their combination. A total of 1,624 non-redundant proteins and 97, 248, 266 DEPs were identified in the 20E/control, U73122/control, and 20E + U73122/control groups, respectively. Only 8 DEPs, including pathogenesis-related protein 5-like, cuticle protein 19.8, trans-sialidase, larval cuticle protein A2B-like, cathepsin L1, hemolymph juvenile hormone-binding protein, ATP-dependent RNA helicase p62-like, and myosin-9 isoform X1, were detected in all three groups. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis showed that the DEPs were involved in diverse signaling pathways. The results were validated by immunoblotting, which highlighted the reliability of proteomics analysis. These findings provided novel insights into the function of PLC in 20E signaling pathway in A. lucorum.

13.
Pest Manag Sci ; 78(8): 3215-3225, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35338587

ABSTRACT

RNA interference (RNAi) selectively targets genes and silences their expression in vivo, causing developmental defects, mortality and altered behavior. Consequently, RNAi has emerged as a promising research area for insect pest management. However, it is not yet a viable alternative over conventional pesticides despite several theoretical advantages in safety and specificity. As a first step toward a more standardized approach, a machine learning algorithm was used to identify factors that predict trial efficacy. Current research on RNAi for pest management is highly variable and relatively unstandardized. The applied random forest model was able to reliably predict mortality ranges based on bioassay parameters with 72.6% accuracy. Response time and target gene were the most important variables in the model, followed by applied dose, double-stranded RNA (dsRNA) construct size and target species, further supported by generalized linear mixed effect modeling. Our results identified informative trends, supporting the idea that basic principles of toxicology apply to RNAi bioassays and provide initial guidelines standardizing future research similar to studies of traditional insecticides. We advocate for training that integrates genetic, organismal, and toxicological approaches to accelerate the development of RNAi as an effective tool for pest management. © 2022 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Subject(s)
Insect Proteins , Research Design , Animals , Insect Control/methods , Insect Proteins/genetics , Insecta/genetics , Insecta/metabolism , RNA Interference , RNA, Double-Stranded/genetics
14.
Front Physiol ; 13: 833652, 2022.
Article in English | MEDLINE | ID: mdl-35153841

ABSTRACT

RNA interference is a powerful tool that post-transcriptionally silences target genes. However, silencing efficacy varies greatly among different insect species. Recently, we attempted to knock down some housekeeping genes in the tawny crazy ant (Nylanderia fulva), a relatively new invasive species in the southern United States, but only achieved relatively low silencing efficiency when dsRNA was orally administered. Here, we detected divalent cation-dependent, dsRNA-degrading activity in the midgut fluid of worker ants in ex vivo assays. To determine whether dsRNA degradation could contribute to low effectiveness of oral RNAi in N. fulva, we cloned its sole dsRNase gene (NfdsRNase). The deduced amino acid sequence contained a signal peptide and an endonuclease domain. Sequence alignment indicated a high degree of similarity with well-characterized dsRNases, particularly the six key residues at active sites. We also identified dsRNase homologs from five other ant species and found a tight phylogenetic relationship among ant dsRNases. NfdsRNase is expressed predominantly in the abdomen of worker ants. Oral delivery of dsRNA of NfdsRNase significantly reduced the expression of NfdsRNase transcripts, and substantially suppressed dsRNA-degrading activity of worker ants' midgut fluids as well. Our data suggest that dsRNA stability in the alimentary tract is an important factor for gene silencing efficiency in N. fulva, and that blocking NfdsRNase in gut lumen could potentially improve RNAi, a novel pest management tactic in control of N. fulva and other ant species.

15.
Nat Commun ; 13(1): 846, 2022 02 11.
Article in English | MEDLINE | ID: mdl-35149691

ABSTRACT

Apoptosis and autophagy are two common forms of programmed cell death (PCD) used by host organisms to fight against virus infection. PCD in arthropod vectors can be manipulated by arboviruses, leading to arbovirus-vector coexistence, although the underlying mechanism is largely unknown. In this study, we find that coat protein (CP) of an insect-borne plant virus TYLCV directly interacts with a phosphatidylethanolamine-binding protein (PEBP) in its vector whitefly to downregulate MAPK signaling cascade. As a result, apoptosis is activated in the whitefly increasing viral load. Simultaneously, the PEBP4-CP interaction releases ATG8, a hallmark of autophagy initiation, which reduces arbovirus levels. Furthermore, apoptosis-promoted virus amplification is prevented by agonist-induced autophagy, whereas the autophagy-suppressed virus load is unaffected by manipulating apoptosis, suggesting that the viral load is predominantly determined by autophagy rather than by apoptosis. Our results demonstrate that a mild intracellular immune response including balanced apoptosis and autophagy might facilitate arbovirus preservation within its whitefly insect vector.


Subject(s)
Apoptosis/drug effects , Arbovirus Infections , Autophagy/drug effects , Hemiptera/virology , Phosphatidylethanolamine Binding Protein/metabolism , Phosphatidylethanolamine Binding Protein/pharmacology , Animals , Apoptosis Regulatory Proteins/pharmacology , Arboviruses , Homeostasis , Insect Vectors/virology , Plant Diseases/virology , Plant Viruses
16.
Insect Biochem Mol Biol ; 140: 103681, 2022 01.
Article in English | MEDLINE | ID: mdl-34800642

ABSTRACT

Oxygen (O2) plays an essential role in aerobic organisms including terrestrial insects. Under hypoxic stress, the cowpea bruchid (Callosobruchus maculatus) ceases feeding and growth. However, larvae, particularly 4th instar larvae exhibit very high tolerance to hypoxia and can recover normal growth once brought to normoxia. To better understand the molecular mechanism that enables insects to cope with low O2 stress, we performed RNA-seq to distinguish hypoxia-responsive genes in midguts and subsequently identified potential common cis-elements in promoters of hypoxia-induced and -repressed genes, respectively. Selected elements were subjected to gel-shift and transient transfection assays to confirm their cis-regulatory function. Of these putative common cis-elements, AREB6 appeared to regulate the expression of CmLPCAT and CmScylla, two hypoxia-induced genes. CmZFH, the putative AREB6-binding protein, was hypoxia-inducible. Transient expression of CmZFH in Drosophila S2 cells activated CmLPCAT and CmScylla, and their induction was likely through interaction of CmZFH with AREB6. Binding to AREB6 was further confirmed by bacterially expressed CmZFH recombinant protein. Deletion analyses indicated that the N-terminal zinc-finger cluster of CmZFH was the key AREB6-binding domain. Through in silico and experimental exploration, we discovered novel transcriptional regulatory components associated with gene expression dynamics under hypoxia that facilitated insect survival.


Subject(s)
Coleoptera , Hypoxia/genetics , Animals , Coleoptera/genetics , Coleoptera/physiology , Genes, Insect , Insecta , Larva/genetics , Larva/physiology , Oxygen/metabolism , Promoter Regions, Genetic , Protein Binding , Zinc Fingers/genetics
17.
Insects ; 12(12)2021 Nov 25.
Article in English | MEDLINE | ID: mdl-34940143

ABSTRACT

Phytochemical toxins are considered a defense measure for herbivore invasion. To adapt this defensive strategy, herbivores use glutathione S-transferases (GSTs) as an important detoxification enzyme to cope with toxic compounds, but the underlying molecular basis for GST genes in this process remains unclear. Here, we investigated the basis of how GST genes in brown planthopper (BPH, Nilaparvata lugens (Stål)) participated in the detoxification of gramine by RNA interference. For BPH, the LC25 and LC50 concentrations of gramine were 7.11 and 14.99 µg/mL at 72 h after feeding, respectively. The transcriptions of seven of eight GST genes in BPH were induced by a low concentration of gramine, and GST activity was activated. Although interferences of seven genes reduced BPH tolerance to gramine, only the expression of NlGST1-1, NlGSTD2, and NlGSTE1 was positively correlated with GST activities, and silencing of these three genes inhibited GST activities in BPH. Our findings reveal that two new key genes, NlGSTD2 and NlGSTE1, play an essential role in the detoxification of gramine such as NlGST1-1 does in BPH, which not only provides the molecular evidence for the coevolution theory, but also provides new insight into the development of an environmentally friendly strategy for herbivore population management.

18.
J Insect Physiol ; 135: 104324, 2021.
Article in English | MEDLINE | ID: mdl-34744003

ABSTRACT

Trehalose plays crucial roles in energy metabolism and stress tolerance in various organisms. The orange wheat blossom midge Sitodiplosis mosellana, a serious pest of wheat worldwide, undergoes long obligatory diapause as a larva to survive harsh temperature extremes in summer and winter. To gain an insight into trehalose function and metabolic mechanism in this process, we measured the content of trehalose and glucose, as well as enzymatic activities of trehalose-6-phosphate synthase (TPS), trehalose-6-phosphate phosphatase (TPP) and soluble trehalase (Treh1) at pre-diapause, diapause and post-diapause larvae of S. mosellana. Trehalose levels greatly increased upon entry into diapause, peaked in low-temperature quiescence phase, and significantly dropped after resumption of development, highly consistent with activity changes of trehalose-synthetic enzymes SmTPS and SmTPP. In marked contrast, the activity of trehalose-degrading SmTreh1 exhibited a completely reversed profile. This profile was in agreement with contents of its product i.e. glucose. Furthermore, deduced amino acid sequences of cloned SmTPS, SmTPPB, SmTPPC, SmTreh1-1 and SmTreh1-2 genes contained all conserved functional domains, motifs and active sites. Expression patterns of these genes were closely correlated with their enzyme activities. These results suggested that coordination of trehalose synthetic and degradation pathways is responsible for diapause-related trehalose accumulation, which may serve as an energy reserve for post-diapause development and a cryoprotectant against cold stress in winter.


Subject(s)
Chironomidae/enzymology , Diapause, Insect , Trehalose/metabolism , Animals , Chironomidae/genetics , Glucose , Larva
19.
New Phytol ; 232(2): 802-817, 2021 10.
Article in English | MEDLINE | ID: mdl-34260062

ABSTRACT

Vitellogenin (Vg) is a well-known nutritious protein involved in reproduction in nearly all oviparous animals, including insects. Recently, Vg has been detected in saliva proteomes of several piercing-sucking herbivorous arthropods, including the small brown planthopper (Laodelphax striatellus, SBPH). Its function, however, remains unexplored. We investigated the molecular mechanism underlying SBPH orally secreted Vg-mediated manipulation of plant-insect interaction by RNA interference, phytohormone and H2 O2 profiling, protein-protein interaction studies and herbivore bioassays. A C-terminal polypeptide of Vg (VgC) in SBPH, when secreted into rice plants, acted as a novel effector to attenuate host rice defenses, which in turn improved insect feeding performance. Silencing Vg reduced insect feeding and survival on rice. Vg-silenced SBPH nymphs consistently elicited higher H2 O2 production, a well-established defense mechanism in rice, whereas expression of VgC in planta significantly hindered hydrogen peroxide (H2 O2 ) accumulation and promoted insect performance. VgC interacted directly with the rice transcription factor OsWRKY71, a protein which is involved in induction of H2 O2 accumulation and plant resistance to SBPH. These findings indicate a novel effector function of Vg: when secreted into host rice plants, this protein effectively weakened H2 O2 -mediated plant defense through its association with a plant immunity regulator.


Subject(s)
Body Fluids , Hemiptera , Oryza , Animals , Oryza/genetics , RNA Interference , Vitellogenins
20.
Int J Mol Sci ; 22(11)2021 May 31.
Article in English | MEDLINE | ID: mdl-34073039

ABSTRACT

Bacterial symbionts associated with insects are often involved in host development and ecological adaptation. Serratia symbiotica, a common facultative endosymbiont harbored in pea aphids, improves host fitness and heat tolerance, but studies concerning the nutritional metabolism and impact on the aphid host associated with carrying Serratia are limited. In the current study, we showed that Serratia-infected aphids had a shorter nymphal developmental time and higher body weight than Serratia-free aphids when fed on detached leaves. Genes connecting to fatty acid biosynthesis and elongation were up-regulated in Serratia-infected aphids. Specifically, elevated expression of fatty acid synthase 1 (FASN1) and diacylglycerol-o-acyltransferase 2 (DGAT2) could result in accumulation of myristic acid, palmitic acid, linoleic acid, and arachidic acid in fat bodies. Impairing fatty acid synthesis in Serratia-infected pea aphids either by a pharmacological inhibitor or through silencing FASN1 and DGAT2 expression prolonged the nymphal growth period and decreased the aphid body weight. Conversely, supplementation of myristic acid (C14:0) to these aphids restored their normal development and weight gain. Our results indicated that Serratia promoted development and growth of its aphid host through enhancing fatty acid biosynthesis. Our discovery has shed more light on nutritional effects underlying the symbiosis between aphids and facultative endosymbionts.


Subject(s)
Aphids , Fatty Acids/metabolism , Host Microbial Interactions , Serratia/physiology , Symbiosis , Animals , Aphids/metabolism , Aphids/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL