Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 258
Filter
1.
J Ethnopharmacol ; 334: 118532, 2024 Jul 06.
Article in English | MEDLINE | ID: mdl-38972527

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Astragaloside IV (AS), a key active ingredient obtained from Chinese herb Astragalus mongholicus Bunge, exerts potent neuroprotective and anti-inflammatory effects for treating neurodegenerative diseases. However, mechanisms of AS on improvement of ischemic brain tissue repair remain unclear. AIM OF THE STUDY: This research aims at using magnetic resonance imaging (MRI) to noninvasively determine whether AS facilitates brain tissue repair, and investigating whether AS exerts brain remodeling through adenosine monophosphate-activated protein kinase (AMPK) metabolic signaling regulating key glycolytic enzymes and energy transporters, thereby impacting microglia polarization. MATERIALS AND METHODS: Ischemic stroke model in male Sprague-Dawley rats were induced through permanent occlusion of the middle cerebral artery (MCAO). Infarct volume, the alterations of brain microstructure and nerve fibers reorganization were examined by multi-parametric MRI. The pathological damages of myelinated axons and microglia polarization surrounding infarct tissue were detected using pathological techniques. Furthermore, M1/M2 microglia polarization associated protein, glycolytic rate-limiting enzymes, energy transporters and AMPK/mammalian target of rapamycin (mTOR)/hypoxia inducible factor-1α (HIF-1α) signal were examined both in ischemic stroke rats and BV2 microglia treated with lipopolysaccharide (LPS) + interferon-γ (IFN-γ) by western blotting. RESULTS: MRI revealed that AS obviously decreased infarct volume, relieved brain microstructure damage and improved nerve fibers reorganization in ischemic stroke rats. Histological tests supported MRI findings. Notably, AS promoted microglia M2 and reduced M1 polarization, induced the AMPK activation accompanied with decreased levels of phosphorylated mTOR and HIF-1α. Moreover, AS suppressed the expression of glycolytic rate-limiting enzymes and energy transporters in ischemic stroke rats and BV2 microglia. In contrast, these beneficial effects were greatly blocked by AMPK inhibitor compound C. CONCLUSION: Overall, these results collectively suggested that AS facilitated tissue remodeling that may be partially through modulating polarization of microglia in AMPK- dependent metabolic pathways after ischemic stroke.

2.
Poult Sci ; 103(8): 103968, 2024 Jun 08.
Article in English | MEDLINE | ID: mdl-38959643

ABSTRACT

Berberine (BBR), a well-known quaternary ammonium alkaloid, is recognized for its ability to prevent and alleviate metabolic disorders because of its anti-oxidative and anti-inflammatory properties. However, the underlying mechanisms of BBR to mitigate fatty liver hemorrhagic syndrome (FLHS) through the modulation of gut microbiota and their metabolism remained unclear. The results revealed that BBR ameliorates lipid metabolism disorder in high-energy and low-protein (HELP) diet-induced FLHS laying hens, as evidenced by improved liver function and lipid deposition of the liver, reduced blood lipids, and the expression of liver lipid synthesis-related factors. Moreover, BBR alleviated HELP diet-induced barrier dysfunction, increased microbial population, and dysregulated lipid metabolism in the ileum. BBR reshaped the HELP-perturbed gut microbiota, particularly declining the abundance of Desulfovibrio_piger and elevating the abundance of Bacteroides_salanitronis_DSM_18170. Meanwhile, metabolomic profiling analysis revealed that BBR reshaped microbial metabolism and function, particularly by reducing the levels of hydrocinnamic acid, dehydroanonaine, and leucinic acid. Furthermore, fecal microbiota transplantation (FMT) experiments revealed that BBR-enriched gut microbiota alleviated hepatic lipid deposition and intestinal inflammation compared with those chicks that received a gut microbiota by HELP. Collectively, our study provided evidence that BBR effectively alleviated FLHS induced by HELP by reshaping the microbial and metabolic homeostasis within the liver-gut axis.

4.
Front Pharmacol ; 15: 1359939, 2024.
Article in English | MEDLINE | ID: mdl-38933676

ABSTRACT

Heart failure is the most costly cardiovascular disorder. New treatments are urgently needed. This study aims to evaluate the safety, pharmacokinetics, and pharmacodynamic profile of HEC95468, a soluble guanylate cyclase (sGC) stimulator, in healthy volunteers. Sixty-two, eighteen, and forty-eight participants were enrolled in the single ascending dose (SAD) study, the food effect (FE) study, and the multiple ascending dose (MAD) study, respectively. The study conforms to good clinical practice and the Declaration of Helsinki. Overall, HEC95468 was safe and tolerable; a higher proportion of HEC95468-treated participants reported mild headaches, dizziness, decreased blood pressure, increased heart rate, and gastrointestinal-related treatment-emergent adverse events (TEAEs), similar to the sGC stimulators riociguat and vericiguat. In terms of pharmacokinetic parameters, the maximum observed plasma concentration (Cmax) and the area under the concentration-time curve (AUC0-t) were dose-proportional over the dose range. Moderate accumulation was observed after multiple administrations of HEC95468. Systolic blood pressure (SBP) and diastolic blood pressure decreased, while 3',5'-cyclic guanosine monophosphate (cGMP) concentration in plasma increased and heart rate was induced. Vasoactive hormones (renin, angiotensin II, and norepinephrine) in plasma were compensatorily elevated after oral administration. These data supported further clinical trials of HEC95468 in the treatment of heart failure and pulmonary arterial hypertension. Systematic Review Registration: http://www.chinadrugtrials.org.cn, identifier CTR20210064.

5.
Phys Rev Lett ; 132(21): 216001, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38856265

ABSTRACT

We propose a universal spin superconducting diode effect (SDE) induced by spin-orbit coupling (SOC) in systems with spin-triplet correlations, where the critical spin supercurrents in opposite directions are unequal. By analysis from both the Ginzburg-Landau theory and energy band analysis, we show that the spin-↑↑ and spin-↓↓ Cooper pairs possess opposite phase gradients and opposite momenta from the SOC, which leads to the spin SDE. Two superconductors with SOC, a p-wave superconductor as a toy model and a practical superconducting nanowire, are numerically studied and they both exhibit spin SDE. In addition, our theory also provides a unified picture for both spin and charge SDEs.

6.
Gut Microbes ; 16(1): 2372881, 2024.
Article in English | MEDLINE | ID: mdl-38940400

ABSTRACT

Despite the observed decrease in liver fat associated with metabolic-associated fatty liver disease (MAFLD) in mice following fecal microbiota transplantation, the clinical effects and underlying mechanisms of washed microbiota transplantation (WMT), a refined method of fecal microbiota transplantation, for the treatment of MAFLD remain unclear. In this study, both patients and mice with MAFLD exhibit an altered gut microbiota composition. WMT increases the levels of beneficial bacteria, decreases the abundance of pathogenic bacteria, and reduces hepatic steatosis in MAFLD-affected patients and mice. Downregulation of the liver-homing chemokine receptor CXCR6 on ILC3s results in an atypical distribution of ILC3s in patients and mice with MAFLD, characterized by a significant reduction in ILC3s in the liver and an increase in ILC3s outside the liver. Moreover, disease severity is negatively correlated with the proportion of hepatic ILC3s. These hepatic ILC3s demonstrate a mitigating effect on hepatic steatosis through the release of IL-22. Mechanistically, WMT upregulates CXCR6 expression on ILC3s, thereby facilitating their migration to the liver of MAFLD mice via the CXCL16/CXCR6 axis, ultimately contributing to the amelioration of MAFLD. Overall, these findings highlight that WMT and targeting of liver-homing ILC3s could be promising strategies for the treatment of MAFLD.


Subject(s)
Chemokine CXCL16 , Fecal Microbiota Transplantation , Gastrointestinal Microbiome , Liver , Receptors, CXCR6 , Animals , Receptors, CXCR6/metabolism , Chemokine CXCL16/metabolism , Mice , Humans , Liver/metabolism , Liver/microbiology , Lymphocytes/immunology , Lymphocytes/metabolism , Mice, Inbred C57BL , Male , Immunity, Innate , Fatty Liver/therapy , Fatty Liver/metabolism , Fatty Liver/microbiology , Interleukin-22 , Non-alcoholic Fatty Liver Disease/therapy , Non-alcoholic Fatty Liver Disease/microbiology , Non-alcoholic Fatty Liver Disease/metabolism , Non-alcoholic Fatty Liver Disease/immunology , Interleukins/metabolism , Female
7.
Ecotoxicol Environ Saf ; 279: 116458, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38759536

ABSTRACT

Heavy metals interact with each other in a coexisting manner to produce complex combined toxicity to organisms. At present, the toxic effects of chronic co-exposure to heavy metals hexavalent chromium [Cr(VI)] and divalent nickel [Ni(II)] on organisms are seldom studied and the related mechanisms are poorly understood. In this study, we explored the mechanism of the colon injury in mice caused by chronic exposure to Cr or/and Ni. The results showed that, compared with the control group, Cr or/and Ni chronic exposure affected the body weight of mice, and led to infiltration of inflammatory cells in the colon, decreased the number of goblet cells, fusion of intracellular mucus particles and damaged cell structure of intestinal epithelial. In the Cr or/and Ni exposure group, the activity of nitric oxide synthase (iNOS) increased, the expression levels of MUC2 were significantly down-regulated, and those of ZO-1 and Occludin were significantly up-regulated. Interestingly, factorial analysis revealed an interaction between Cr and Ni, which was manifested as antagonistic effects on iNOS activity, ZO-1 and MUC2 mRNA expression levels. Transcriptome sequencing further revealed that the expression of genes-related to inflammation, intestinal mucus and tight junctions changed obviously. Moreover, the relative contents of Cr(VI) and Ni(II) in the Cr, Ni and Cr+Ni groups all changed with in-vitro gastrointestinal (IVG)digestion, especially in the Cr+Ni group. Our results indicated that the chronic exposure to Cr or/and Ni can lead to damage to the mice colon, and the relative content changes of Cr(VI) and Ni(II) might be the main reason for the antagonistic effect of Cr+Ni exposure on the colon damage.


Subject(s)
Chromium , Colon , Mucin-2 , Nickel , Animals , Chromium/toxicity , Nickel/toxicity , Mice , Colon/drug effects , Colon/pathology , Mucin-2/genetics , Mucin-2/metabolism , Nitric Oxide Synthase Type II/metabolism , Nitric Oxide Synthase Type II/genetics , Gene Expression Profiling , Male , Digestion/drug effects , Zonula Occludens-1 Protein/metabolism , Zonula Occludens-1 Protein/genetics , Transcriptome/drug effects , Occludin/metabolism , Occludin/genetics , Intestinal Mucosa/drug effects , Intestinal Mucosa/metabolism , Intestinal Mucosa/pathology
8.
Poult Sci ; 103(7): 103814, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38718538

ABSTRACT

Yolk Peritonitis can lead to a rapid decline in egg production, which seriously affects the health of laying hens and the profitability of chicken farms. Escherichia coli (E. coli) is the most common cause of yolk peritonitis in laying hens. In this study, bacterial samples were collected from the ovaries and fallopian tubes of laying hens with suspected yolk peritonitis from a laying farm in Jiangsu Province, and their pathogenicity and drug resistance were investigated. Initially, morphological and biochemical detection methods were employed to isolate and identify the pathogenic bacteria. The results showed that a total of 16 strains of E. coli were isolated from laying hens with yolk peritonitis. Subsequently, the drug resistance and pathogenicity of a randomly selected E. coli strain were analyzed and predicted by genome sequencing technology, and the drug resistance of E. coli was verified by drug sensitivity test and PCR. Finally, the virulence was verified by infection experiment in mice. The study revealed that the egg-yolk peritonitis in laying hens was caused by E. coli infection, and the genome sequencing analysis revealed that the bacteria had multidrug resistance and high virulence. The drug susceptibility testing indicates that E. coli exhibited resistance to aminoglycosides, ß-lactam, macrolides, fluoroquinolones, and sulfonamides. In this study, resistance genes including KdpE, aadA5, APH(3 ")-ID, APH(6)-ID, and TEM-1 were identified, and their expression levels varied across different stages of bacterial growth. The results of virulence analysis indicated a mortality rate of 50% in mice infected with E. coli at a concentration of 2.985 × 107 CFU/mL. E. coli infection resulted in damage to various tissues and organs in mice, with the intestinal tissue structure being the most severely affected. This study provides a reference for the study of drug resistance mechanisms in E. coli and provides valuable insights into the selection of drugs for the treatment of vitelline peritonitis.


Subject(s)
Anti-Bacterial Agents , Chickens , Escherichia coli Infections , Escherichia coli , Peritonitis , Poultry Diseases , Animals , Peritonitis/microbiology , Peritonitis/veterinary , Peritonitis/drug therapy , Escherichia coli/drug effects , Escherichia coli/genetics , Escherichia coli/physiology , Escherichia coli/pathogenicity , Escherichia coli Infections/veterinary , Escherichia coli Infections/microbiology , Poultry Diseases/microbiology , Female , Anti-Bacterial Agents/pharmacology , Virulence , Mice , Drug Resistance, Bacterial , Egg Yolk
9.
Sci Adv ; 10(15): eadl0372, 2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38608014

ABSTRACT

Aging skin, vulnerable to age-related defects, is poor in wound repair. Metabolic regulation in accumulated senescent cells (SnCs) with aging is essential for tissue homeostasis, and adequate ATP is important in cell activation for aged tissue repair. Strategies for ATP metabolism intervention hold prospects for therapeutic advances. Here, we found energy metabolic changes in aging skin from patients and mice. Our data show that metformin engineered EV (Met-EV) can enhance aged mouse skin repair, as well as ameliorate cellular senescence and restore cell dysfunctions. Notably, ATP metabolism was remodeled as reduced glycolysis and enhanced OXPHOS after Met-EV treatment. We show Met-EV rescue senescence-induced mitochondria dysfunctions and mitophagy suppressions, indicating the role of Met-EV in remodeling mitochondrial functions via mitophagy for adequate ATP production in aged tissue repair. Our results reveal the mechanism for SnCs rejuvenation by EV and suggest the disturbed energy metabolism, essential in age-related defects, to be a potential therapeutic target for facilitating aged tissue repair.


Subject(s)
Extracellular Vesicles , Metformin , Humans , Animals , Mice , Aged , Energy Metabolism , Aging , Cellular Senescence , Adenosine Triphosphate
10.
Nat Commun ; 15(1): 3546, 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38670960

ABSTRACT

Phase singularities are phase-indeterminate points where wave amplitudes are zero, which manifest as phase vertices or wavefront dislocations. In the realm of optical and electron beams, the phase singularity has been extensively explored, demonstrating a profound connection to orbital angular momentum. Direct local imaging of the impact of orbital angular momentum on phase singularities at the nanoscale, however, remains challenging. Here, we study the role of orbital angular momentum in phase singularities in graphene, particularly at the atomic level, through scanning tunneling microscopy and spectroscopy. Our experiments demonstrate that the scatterings between different orbital angular momentum states, which are induced by local rotational symmetry-breaking potentials, can generate additional phase singularities, and result in robust single-wavefront dislocations in real space. Our results pave the way for exploring the effects of orbital degree of freedom on quantum phases in quasiparticle interference processes.

11.
Lupus Sci Med ; 11(1)2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38637124

ABSTRACT

BACKGROUND: Lupus nephritis (LN) is a complication of SLE characterised by immune dysfunction and oxidative stress (OS). Limited options exist for LN. We aimed to identify LN-related OS, highlighting the need for non-invasive diagnostic and therapeutic approaches. METHODS: LN-differentially expressed genes (DEGs) were extracted from Gene Expression Omnibus datasets (GSE32591, GSE112943 and GSE104948) and Molecular Signatures Database for OS-associated DEGs (OSEGs). Functional enrichment analysis was performed for OSEGs related to LN. Weighted gene co-expression network analysis identified hub genes related to OS-LN. These hub OSEGs were refined as biomarker candidates via least absolute shrinkage and selection operator. The predictive value was validated using receiver operating characteristic (ROC) curves and nomogram for LN prognosis. We evaluated LN immune cell infiltration using single-sample gene set enrichment analysis and CIBERSORT. Additionally, gene set enrichment analysis explored the functional enrichment of hub OSEGs in LN. RESULTS: The study identified four hub genes, namely STAT1, PRODH, TXN2 and SETX, associated with OS related to LN. These genes were validated for their diagnostic potential, and their involvement in LN pathogenesis was elucidated through ROC and nomogram. Additionally, alterations in immune cell composition in LN correlated with hub OSEG expression were observed. Immunohistochemical analysis reveals that the hub gene is most correlated with activated B cells and CD8 T cells. Finally, we uncovered that the enriched pathways of OSEGs were mainly involved in the PI3K-Akt pathway and the Janus kinase-signal transducer and activator of transcription pathway. CONCLUSION: These findings contribute to advancing our understanding of the complex interplay between OS, immune dysregulation and molecular pathways in LN, laying a foundation for the identification of potential diagnostic biomarkers and therapeutic targets.


Subject(s)
Lupus Erythematosus, Systemic , Lupus Nephritis , Humans , Lupus Nephritis/diagnosis , Lupus Nephritis/genetics , Phosphatidylinositol 3-Kinases , Oxidative Stress/genetics , Machine Learning , DNA Helicases , RNA Helicases , Multifunctional Enzymes
12.
Carbohydr Polym ; 332: 121933, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38431401

ABSTRACT

Minimally invasive, efficient, and satisfactory treatment for irregular and lacunar bone defects is still a challenge. Alginate hydrogels serve as promising stem cell (SC) delivery systems for bone regeneration but are limited by low cellular viability, poor osteogenic differentiation, and insufficient mechanical support. Herein, we developed a BMSCs-laden mechanically reinforced bioactive sodium alginate composite hydrogel microspheres (BCHMs) system via a microfluidic method that possesses 1) a uniform size and good injectability to meet clinical bone defects with complex shapes, 2) high cellular viability maintenance and further osteogenic induction capacity, and 3) improved mechanical properties. As the main matrix, the sodium alginate hydrogel maintains the high viability of encapsulated BMSCs and efficient substance exchange. Enhanced mechanical properties and osteogenic differentiation of the BCHMs in vitro were observed with xonotlite (Ca6Si6O17(OH)2, CSH) nanowires incorporated. Furthermore, BCHMs with 12.5 % CSH were injected into rat femoral bone defects, and satisfactory in situ regeneration outcomes were observed. Overall, it is believed that BCHMs expand the application of polysaccharide science and provide a promising injectable bone substitute for minimally invasive bone repair.


Subject(s)
Hydrogels , Osteogenesis , Rats , Animals , Hydrogels/pharmacology , Microspheres , Bone Regeneration , Alginates
13.
J Nanobiotechnology ; 22(1): 94, 2024 Mar 06.
Article in English | MEDLINE | ID: mdl-38449005

ABSTRACT

BACKGROUND: Impaired osteo-/angiogenesis, excessive inflammation, and imbalance of the osteoimmune homeostasis are involved in the pathogenesis of the alveolar bone defect caused by periodontitis. Unfortunately, there is still a lack of ideal therapeutic strategies for periodontitis that can regenerate the alveolar bone while remodeling the osteoimmune microenvironment. Quercetin, as a monomeric flavonoid, has multiple pharmacological activities, such as pro-regenerative, anti-inflammatory, and immunomodulatory effects. Despite its vast spectrum of pharmacological activities, quercetin's clinical application is limited due to its poor water solubility and low bioavailability. RESULTS: In this study, we fabricated a quercetin-loaded mesoporous bioactive glass (Quercetin/MBG) nano-delivery system with the function of continuously releasing quercetin, which could better promote the bone regeneration and regulate the immune microenvironment in the alveolar bone defect with periodontitis compared to pure MBG treatment. In particular, this nano-delivery system effectively decreased injection frequency of quercetin while yielding favorable therapeutic results. In view of the above excellent therapeutic effects achieved by the sustained release of quercetin, we further investigated its therapeutic mechanisms. Our findings indicated that under the periodontitis microenvironment, the intervention of quercetin could restore the osteo-/angiogenic capacity of periodontal ligament stem cells (PDLSCs), induce immune regulation of macrophages and exert an osteoimmunomodulatory effect. Furthermore, we also found that the above osteoimmunomodulatory effects of quercetin via macrophages could be partially blocked by the overexpression of a key microRNA--miR-21a-5p, which worked through inhibiting the expression of PDCD4 and activating the NF-κB signaling pathway. CONCLUSION: In summary, our study shows that quercetin-loaded mesoporous nano-delivery system has the potential to be a therapeutic approach for reconstructing alveolar bone defects in periodontitis. Furthermore, it also offers a new perspective for treating alveolar bone defects in periodontitis by inhibiting the expression of miR-21a-5p in macrophages and thereby creating a favorable osteoimmune microenvironment.


Subject(s)
NF-kappa B , Periodontitis , Humans , Quercetin/pharmacology , Periodontitis/drug therapy , Flavonoids , Inflammation , RNA-Binding Proteins , Apoptosis Regulatory Proteins
14.
J Pharm Biomed Anal ; 243: 116111, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38493752

ABSTRACT

Xijiao Dihuang decoction (XDT), a famous formula, was usually used to improve the prognosis of patients with blood-heat and blood-stasis syndrome-related diseases. There were some mutual promotion and mutual assistance herb pairs in XDT. However, the exact functions of these herb pairs in the compatibility of XDT were not elucidated due to the lack of appropriate methodologies. Based on the theory of serum pharmacochemistry, a systematic method was established for the qualitative and quantitative analysis of characteristic components in the extracts and drug-containing plasma samples of XDT and its relational mutual promotion/assistance herb pairs. For qualitative analysis, 85 characteristic components were identified using the liquid chromatography with triple time-of-flight mass/mass spectrometry (LC-Triple QTOF-MS/MS) based on the mass defect filtering, product ion filtering, neutral loss filtering and isotope pattern filtering techniques. For quantitative detection, a relative quantitation assay using an extract ion chromatogram (EIC) of the full scan MS experiment was validated and employed to assess the quantity of the 85 identified compounds in the test samples of single herb, herb pairs and XDT. The results of multivariate statistical analyses indicated that both the assistant and guide herbs could improve the solubilization of active compounds from the sovereign and minister herbs in XDT in vitro, might change the trans-membrane transportation, and regulate metabolism in vivo. The methods used in present study might be also valuable for the investigation of multiple components from other classic TCM formulas for the purpose of compatibility feature study.


Subject(s)
Drugs, Chinese Herbal , Humans , Drugs, Chinese Herbal/chemistry , Medicine, Chinese Traditional , Tandem Mass Spectrometry/methods , Liquid Chromatography-Mass Spectrometry , Chromatography, Liquid , Chromatography, High Pressure Liquid/methods
15.
Poult Sci ; 103(5): 103388, 2024 May.
Article in English | MEDLINE | ID: mdl-38428352

ABSTRACT

Pulmonary artery remodeling is a characteristic feature of broiler ascites syndrome (BAS). Pulmonary artery endothelial cells (PAECs) regulated by HIF-1α play a critical role in pulmonary artery remodeling, but the underlying mechanisms of HIF-1α in BAS remain unclear. In this experiment, primary PAECs were cultured in vitro and were identified by coagulation factor VIII. After hypoxia and RNA interference, the mRNA and protein expression levels of HIF-1α and VEGF were determined by qPCR and Western blotting. The transcriptome profiles of PAECs were obtained by RNA sequencing. Our results showed that the positive rate of PAECs was more than 90%, hypoxia-induced promoted the proliferation and apoptosis of PAECs, and RNA interference significantly downregulated the expression of HIF-1α, inhibited the proliferation of PAECs, and promoted the apoptosis of PAECs. In addition, transcriptome sequencing analysis indicated that HIF-1α may regulate broiler ascites syndrome by mediating COL4A, vitronectin, vWF, ITGα8, and MKP-5 in the ECM, CAMs and MAPK pathways in PAECs. These studies lay the foundation for further exploration of the mechanisms of pulmonary artery remodeling, and HIF-1α may be a potentially effective gene for the prevention and treatment of BAS.


Subject(s)
Chickens , Endothelial Cells , Hypoxia-Inducible Factor 1, alpha Subunit , Pulmonary Artery , RNA Interference , Animals , Pulmonary Artery/metabolism , Pulmonary Artery/cytology , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Endothelial Cells/physiology , Endothelial Cells/metabolism , Cell Proliferation , Avian Proteins/genetics , Avian Proteins/metabolism , Poultry Diseases/genetics , Ascites/veterinary , Ascites/genetics , Apoptosis , Cells, Cultured
16.
Adv Healthc Mater ; 13(12): e2303134, 2024 05.
Article in English | MEDLINE | ID: mdl-38348511

ABSTRACT

The effective repair of large bone defects remains a major challenge due to its limited self-healing capacity. Inspired by the structure and function of the natural periosteum, an electrospun biomimetic periosteum is constructed to programmatically promote bone regeneration using natural bone healing mechanisms. The biomimetic periosteum is composed of a bilayer with an asymmetric structure in which an aligned electrospun poly(ε-caprolactone)/gelatin/deferoxamine (PCL/GEL/DFO) layer mimics the outer fibrous layer of the periosteum, while a random coaxial electrospun PCL/GEL/aspirin (ASP) shell and PCL/silicon nanoparticles (SiNPs) core layer mimics the inner cambial layer. The bilayer controls the release of ASP, DFO, and SiNPs to precisely regulate the inflammatory, angiogenic, and osteogenic phases of bone repair. The random coaxial inner layer can effectively antioxidize, promoting cell recruitment, proliferation, differentiation, and mineralization, while the aligned outer layer can promote angiogenesis and prevent fibroblast infiltration. In particular, different stages of bone repair are modulated in a rat skull defect model to achieve faster and better bone regeneration. The proposed biomimetic periosteum is expected to be a promising candidate for bone defect healing.


Subject(s)
Biomimetic Materials , Bone Regeneration , Periosteum , Polyesters , Bone Regeneration/drug effects , Animals , Periosteum/drug effects , Rats , Biomimetic Materials/chemistry , Biomimetic Materials/pharmacology , Polyesters/chemistry , Rats, Sprague-Dawley , Deferoxamine/pharmacology , Deferoxamine/chemistry , Gelatin/chemistry , Delayed-Action Preparations/chemistry , Delayed-Action Preparations/pharmacology , Delayed-Action Preparations/pharmacokinetics , Osteogenesis/drug effects , Skull/drug effects , Skull/injuries , Male , Nanoparticles/chemistry , Tissue Engineering/methods , Cell Differentiation/drug effects , Tissue Scaffolds/chemistry
17.
ACS Omega ; 9(7): 8457-8463, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38405532

ABSTRACT

BACKGROUND: The alarming mortality rate of sepsis in ICUs has garnered significant attention. The precise etiology remains elusive. Mitochondria, often referred to as the cellular powerhouses, have been postulated to have a dysfunctional role, correlating with the onset and progression of sepsis. However, the exact causal relationship remains to be defined. METHOD: Employing the Mendelian randomization approach, this study systematically analyzed data from the IEUOpenGWAS and UKbiobank databases concerning mitochondrial function-related proteins and their association with sepsis, aiming to delineate the causal relationship between the two. RESULTS: The findings underscored a statistically significant association of GrpE1 with sepsis, registering a P value of 0.005 and an OR of 0.499 (95% CI: 0.307-0.810). Likewise, HTRA2, ISCU, and CUP3 each manifested significant associations with sepsis, yielding OR values of 0.585, 0.637, and 0.634, respectively. These results suggest potential implications of the aforementioned proteins in the pathogenesis of sepsis. CONCLUSION: The present study furnishes novel evidence elucidating the roles of GrpE1, HTRA2, ISCU, and CUP3 in the pathophysiology of sepsis. Such insights pave the way for a deeper understanding of the pathological mechanisms underpinning sepsis and hint at promising therapeutic strategies for the future.

18.
Poult Sci ; 103(4): 103482, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38387286

ABSTRACT

Fatty liver hemorrhagic syndrome (FLHS) is a prevalent metabolic disorder observed in egg-laying hens, characterized by fatty deposits and cellular steatosis in the liver. Our preliminary investigations have revealed a marked decrease in the concentration of butyric acid in the FLHS strain of laying hens. It has been established that sodium butyrate (NaB) protects against metabolic disorders. However, the underlying mechanism by which butyrate modulates hepato-lipid metabolism to a great extent remains unexplored. In this study, we constructed an isolated in vitro model of chicken primary hepatocytes to induce hepatic steatosis by free fatty acids (FFA). Our results demonstrate that treatment with NaB effectively mitigated FFA-induced hepatic steatosis in chicken hepatocytes by inhibiting lipid accumulation, downregulating the mRNA expression of lipo-synthesis-related genes (sterol regulatory element binding transcription factor 1 (SREBF1), acetyl-CoA carboxylase 1(ACC1), fatty acid synthase (FASN), stearoyl-CoA desaturase 1 (SCD1), liver X receptor α (LXRα), 3-hydroxy-3-methylglutaryl-CoA reductase (HMGR)) (P < 0.05), and upregulating the mRNA and protein expression of AMP-activated protein kinase α1 (AMPKα1), peroxisome proliferator-activated receptor α (PPARα), and carnitine palmitoyl-transferase 1A (CPT1A) (P < 0.05). Moreover, AMPK and PPARα inhibitors (Compound C (Comp C) and GW6471, respectively) reversed the protective effects of NaB against FFA-induced hepatic steatosis by blocking the AMPK/PPARα pathway, leading to lipid droplet accumulation and triglyceride (TG) contents in chicken primary hepatocytes. With these findings, NaB can alleviate hepatocyte lipoatrophy injury by activating the AMPK/PPARα pathway, promoting fatty acid oxidation, and reducing lipid synthesis in chicken hepatocytes, potentially being able to provide new ideas for the treatment of FLHS.


Subject(s)
Abnormalities, Multiple , Craniofacial Abnormalities , Fatty Liver , Growth Disorders , Heart Septal Defects, Ventricular , PPAR alpha , Animals , Female , PPAR alpha/genetics , PPAR alpha/metabolism , PPAR alpha/pharmacology , Chickens/genetics , Fatty Acids, Nonesterified/metabolism , AMP-Activated Protein Kinases/metabolism , Butyric Acid/pharmacology , Butyric Acid/metabolism , Fatty Liver/chemically induced , Fatty Liver/drug therapy , Fatty Liver/veterinary , Liver/metabolism , Hepatocytes , Lipid Metabolism , RNA, Messenger/metabolism , Fatty Acids/metabolism
19.
Antioxidants (Basel) ; 13(2)2024 Jan 23.
Article in English | MEDLINE | ID: mdl-38397738

ABSTRACT

Fatty liver hemorrhagic syndrome (FLHS) in laying hens is a nutritional metabolic disease commonly observed in high-yielding laying hens. Sodium butyrate (NaB) and ferroptosis were reported to contribute to the pathogenesis of fatty liver-related diseases. However, the underlying mechanism of NaB in FLHS and whether it mediates ferroptosis remains unclear. A chicken primary hepatocyte induced by free fatty acids (FFAs, keeping the ratio of sodium oleate and sodium palmitate concentrations at 2:1) was established, which received treatments with NaB, the ferroptosis inducer RAS-selective lethal 3 (RSL3), and the inhibitor ferrostatin-1 (Fer-1). As a result, NaB increased biochemical and lipid metabolism indices, and the antioxidant level, while inhibiting intracellular ROS accumulation and the activation of the ferroptosis signaling pathway, as evidenced by a reduction in intracellular iron concentration, upregulated GPX4 and xCT expression, and inhibited NCOA4 and ACSL4 expression. Furthermore, treatment with Fer-1 reinforced the protective effects of NaB, while RSL3 reversed it by blocking the ROS/GPX4/ferroptosis pathway, leading to the accumulation of lipid droplets and oxidative stress. Collectively, our findings demonstrated that NaB protects hepatocytes by regulating the ROS/GPX4-mediated ferroptosis pathway, providing a new strategy and target for the treatment of FLHS.

20.
Animal Model Exp Med ; 7(1): 71-76, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38375555

ABSTRACT

The rodent running-wheel recording apparatus is a reliable approach for studying circadian rhythm. This study demonstrated how to construct a simple and intelligent running-wheel recording system. The running wheel was attached to the cage's base, whereas the Hall sensor was attached to the cage's cover. Then, the RJ25 adaptor relayed the running signal to the main control board. Finally, the main control board was connected to the USB port of the computer with the USB connection. Data were collected using the online-accessible, self-created software Magturning. Through Magturning, generated data were saved and exported in real time. Afterward, the device was validated by collecting data on the locomotor activities of mice under different light conditions. In conclusion, this new device can record circadian activity of rodents. Our device is appropriate for interdisciplinary investigations related to biological clock research.


Subject(s)
Biological Clocks , Circadian Rhythm , Mice , Animals
SELECTION OF CITATIONS
SEARCH DETAIL