Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters








Database
Publication year range
1.
Sleep Breath ; 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39088141

ABSTRACT

BACKGROUND: Asthma is a heterogeneous disorder. This study aimed to identify changes in gene expression and molecular mechanisms associated with moderate to severe asthma. METHODS: Differentially expressed genes (DEGs) were analyzed in GSE69683 dataset among moderate asthma and its controls as well as between severe asthma and moderate asthma. Key module genes were identified via co-expression analysis, and the molecular mechanism of the module genes was explored through enrichment analysis and gene set enrichment analysis (GSEA). GSE89809 was used to verify the characteristic genes related to moderate and severe asthma. RESULTS: Accordingly, 2540 DEGs were present between moderate asthma and the control group, while 6781 DEGs existed between severe asthma and moderate asthma. These genes were identified into 14 co-expression modules. Module 7 had the highest positive correlation with severe asthma and was recognized to be a key module by STEM. Enrichment analysis demonstrated that the module genes were mainly involved in oxidative stress-related signaling pathways. The expression of HSPA1A, PIK3CG and PIK3R6 was associated with moderate asthma, while MAPK13 and MMP9 were associated with severe asthma. The AUC values were verified by GSE89809. Additionally, 322 drugs were predicted to target five genes. CONCLUSION: These results identified characteristic genes related to moderate and severe asthma and their corresponding molecular mechanisms, providing a basis for future research.

2.
J Environ Manage ; 365: 121508, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38924889

ABSTRACT

In order to enhance ecosystem stability and promote sustainable regional ecological, social, and economic development, it is crucial to explore the coupling relationship between ecosystem service supply and demand and the resilience of ecosystem, so as to propose scientific ecological management zones and strategies. Taking the vulnerable alpine ecosystem in Gannan Tibetan Autonomous Prefecture (Gannan Prefecture) as the study area, this paper comprehensively utilized multi-source data, grid analysis, ecosystem service supply and demand estimation model, and coupled coordination model to analyze the spatio-temporal differentiation and coordination pattern of ecosystem service supply and demand in the study area from 2000 to 2020. With the assistance of the Analytic Hierarchy Process (AHP), the ecosystem resilience index system was constructed to evaluate the regional ecological resilience. The results reveal the following: (1) In the past 20 years, the ecosystem service supply and resilience in Gannan Prefecture showed a fluctuating upward trend, and the demand continued to grow steadily. Their spatial differentiation were obvious, but the pattern remained stable. (2) There was a moderate incoordination indicated by the average coordination degree of the supply and demand coupling of ecosystem services, which rangeed between 0.3 and 0.4. (3) Gannan Prefecture was split into three ecological management zones, considering the spatial distribution of ecosystem service supply and demand, as well as resilience. Through system function monitoring and other measures, the ecological conservation zone will rely on its high resilience to support the restoration and self-sufficiency of the system, ensuring the stability and well-being of the ecosystem. The primary objectives of general protected zone includes environmental preservation, strict regulations, and the prevention of human intervention. To enhance their ecological background, key restoration zone must intensify the implementation of ecological restoration initiatives. To address the needs of the locals, strategies such as ecological compensation, optimizing the land use structure, and fostering the growth of environmentally friendly companies can be implemented simultaneously.


Subject(s)
Conservation of Natural Resources , Ecosystem , Ecology
3.
AoB Plants ; 72015 Nov 12.
Article in English | MEDLINE | ID: mdl-26567212

ABSTRACT

Water deficits severely affect growth, particularly for the plants in arid and semiarid regions of the world. In addition to precipitation, other subsidiary water, such as dew, fog, clouds and small rain showers, may also be absorbed by leaves in a process known as foliar water uptake. With the severe scarcity of water in desert regions, this process is increasingly becoming a necessity. Studies have reported on physical and physiological processes of foliar water uptake. However, the molecular mechanisms remain less understood. As major channels for water regulation and transport, aquaporins (AQPs) are involved in this process. However, due to the regulatory complexity and functional diversity of AQPs, their molecular mechanism for foliar water uptake remains unclear. In this study, Tamarix ramosissima, a tree species widely distributed in desert regions, was investigated for gene expression patterns of AQPs and for sap flow velocity. Our results suggest that the foliar water uptake of T. ramosissima occurs in natural fields at night when the humidity is over a threshold of 85 %. The diurnal gene expression pattern of AQPs suggests that most AQP gene expressions display a circadian rhythm, and this could affect both photosynthesis and transpiration. At night, the PIP2-1 gene is also upregulated with increased relative air humidity. This gene expression pattern may allow desert plants to regulate foliar water uptake to adapt to extreme drought. This study suggests a molecular basis of foliar water uptake in desert plants.

4.
Huan Jing Ke Xue ; 35(6): 2108-13, 2014 Jun.
Article in Chinese | MEDLINE | ID: mdl-25158484

ABSTRACT

There are few studies on the hydrologic processes of the landscape zone scales at present. Since the water environment is worsening, there is sharp contradiction between supply and demand of water resources in Shanxi province. The principle of the hydrologic processes of the landscape zones in Fenhe River headwater catchment was revealed by means of isotope tracing, hydrology geological exploration and water chemical signal study. The results showed that the subalpine meadow zone and the medium high mountain forest zone were main runoff formation regions in Fenhe River headwater catchment, while the sparse forest shrub zone and the mountain grassland zone lagged the temporal and spatial collection of the precipitation. Fenhe River water was mainly recharged by precipitation, groundwater, melt water of snow and frozen soil. This study suggested that the whole catchment precipitation hardly directly generated surface runoff, but was mostly transformed into groundwater or interflow, and finally concentrated into river channel, completed the "recharge-runoff-discharge" hydrologic processes. This study can provide scientific basis and reference for the containment of water environment deterioration, and is expected to deliver the comprehensive restoration of clear-water reflowing and the ecological environment in Shanxi province.


Subject(s)
Fresh Water , Hydrology , Water Movements , China , Climate , Groundwater , Rivers , Snow , Soil
5.
Huan Jing Ke Xue ; 34(10): 3797-803, 2013 Oct.
Article in Chinese | MEDLINE | ID: mdl-24364295

ABSTRACT

There are few studies on the hydrological characteristics on the landscape zone scale in alpine cold region at present. This paper aimed to identify the spatial and temporal variations in the origin and composition of the runoff, and to reveal the hydrological characteristics in each zone, based on the isotopic analysis of glacier, snow, frozen soil, groundwater, etc. The results showed that during the wet season, heavy precipitation and high temperature in the Mafengou River basin caused secondary evaporation which led to isotope fractionation effects. Therefore, the isotope values remained high. Temperature effects were significant. During the dry season, the temperature was low. Precipitation was in the solid state during the cold season and the evaporation was weak. Water vapor came from the evaporation of local water bodies. Therefore, less secondary evaporation and water vapor exchange occurred, leading to negative values of delta18O and deltaD. delta18O and deltaD values of precipitation and various water bodies exhibited strong seasonal variations. Precipitation exhibited altitude effects, delta18O = -0. 005 2H - 8. 951, deltaD = -0.018 5H - 34. 873. Other water bodies did not show altitude effects in the wet season and dry season, because the runoff was not only recharged by precipitation, but also influenced by the freezing and thawing process of the glacier, snow and frozen soil. The mutual transformation of precipitation, melt water, surface water and groundwater led to variations in isotopic composition. Therefore, homogenization and evaporation effect are the main control factors of isotope variations.


Subject(s)
Groundwater/chemistry , Hydrology , Ice Cover/chemistry , Rivers/chemistry , Snow/chemistry , China , Climate , Cold Temperature , Freezing , Oxygen Isotopes/analysis , Seasons , Spatio-Temporal Analysis
6.
Springerplus ; 2(Suppl 1): S4, 2013.
Article in English | MEDLINE | ID: mdl-24701387

ABSTRACT

The standardized FAO56 Penman-Monteith model, which has been the most reasonable method in both humid and arid climatic conditions, provides reference evapotranspiration (ETo) estimates for planning and efficient use of agricultural water resources. And sensitivity analysis is important in understanding the relative importance of climatic variables to the variation of reference evapotranspiration. In this study, a non-dimensional relative sensitivity coefficient was employed to predict responses of ETo to perturbations of four climatic variables in the Ejina oasis northwest China. A 20-year historical dataset of daily air temperature, wind speed, relative humidity and daily sunshine duration in the Ejina oasis was used in the analysis. Results have shown that daily sensitivity coefficients exhibited large fluctuations during the growing season, and shortwave radiation was the most sensitive variable in general for the Ejina oasis, followed by air temperature, wind speed and relative humidity. According to this study, the response of ETo can be preferably predicted under perturbation of air temperature, wind speed, relative humidity and shortwave radiation by their sensitivity coefficients.

7.
Environ Manage ; 45(3): 476-87, 2010 Mar.
Article in English | MEDLINE | ID: mdl-19756858

ABSTRACT

Land degradation due to erosion is one of the most serious environmental problems in China. To reduce land degradation, the government has taken a number of conservation and restoration measures, including the Sloping Land Conversion Program (SLCP), which was launched in 1999. A logical question is whether these measures have reduced soil erosion at the regional level. The objective of this article is to answer this question by assessing soil erosion dynamics in the Zuli River basin in the Loess Plateau of China from 1999 to 2006. The MMF (Morgan, Morgan and Finney) model was used to simulate changes in runoff and soil erosion over the period of time during which ecological restoration projects were implemented. Some model variables were derived from remotely sensed images to provide improved land surface representation. With an overall accuracy rate of 0.67, our simulations show that increased ground vegetation cover, especially in forestlands and grasslands, has reduced soil erosion by 38.8% on average from 1999 to 2006. During the same time period, however, the change in rainfall pattern has caused a 13.1% +/- 4.3% increase in soil erosion, resulting in a net 25.7% +/- 8.5% reduction in soil erosion. This suggests that China's various ecological restoration efforts have been effective in reducing soil loss.


Subject(s)
Conservation of Natural Resources/methods , Ecosystem , Models, Theoretical , Soil , Water Movements , Agriculture , China , Computer Simulation , Geologic Sediments , Reproducibility of Results , Time Factors , Water/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL