Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters








Database
Language
Publication year range
1.
Life Sci ; 284: 119903, 2021 Nov 01.
Article in English | MEDLINE | ID: mdl-34453948

ABSTRACT

AIMS: Gulf War Illness (GWI), a chronic debilitating disorder characterized by fatigue, joint pain, cognitive, gastrointestinal, respiratory, and skin problems, is currently diagnosed by self-reported symptoms. The Boston Biorepository, Recruitment, and Integrative Network (BBRAIN) is the collaborative effort of expert Gulf War Illness (GWI) researchers who are creating objective diagnostic and pathobiological markers and recommend common data elements for GWI research. MAIN METHODS: BBRAIN is recruiting 300 GWI cases and 200 GW veteran controls for the prospective study. Key data and biological samples from prior GWI studies are being merged and combined into retrospective datasets. They will be made available for data mining by the BBRAIN network and the GWI research community. Prospective questionnaire data include general health and chronic symptoms, demographics, measures of pain, fatigue, medical conditions, deployment and exposure histories. Available repository biospecimens include blood, plasma, serum, saliva, stool, urine, human induced pluripotent stem cells and cerebrospinal fluid. KEY FINDINGS: To date, multiple datasets have been merged and combined from 15 participating study sites. These data and samples have been collated and an online request form for repository requests as well as recommended common data elements have been created. Data and biospecimen sample requests are reviewed by the BBRAIN steering committee members for approval as they are received. SIGNIFICANCE: The BBRAIN repository network serves as a much needed resource for GWI researchers to utilize for identification and validation of objective diagnostic and pathobiological markers of the illness.


Subject(s)
Persian Gulf Syndrome/pathology , Boston , Humans , Information Dissemination , Magnetic Resonance Imaging , Persian Gulf Syndrome/blood , Positron-Emission Tomography , Saliva/metabolism
2.
Transl Psychiatry ; 6(11): e944, 2016 11 08.
Article in English | MEDLINE | ID: mdl-27824358

ABSTRACT

Connections between the amygdala and medial prefrontal cortex (mPFC) are considered critical for the expression and regulation of emotional behavior. Abnormalities in frontoamygdala circuitry are reported across several internalizing conditions and associated risk factors (for example, childhood trauma), which may underlie the strong phenotypic overlap and co-occurrence of internalizing conditions. However, it is unclear if these findings converge on the same localized areas of mPFC or adjacent anterior cingulate cortex (ACC). Examining 46 resting-state functional connectivity magnetic resonance imaging studies of internalizing conditions or risk factors (for example, early adversity and family history), we conducted an activation likelihood estimation meta-analysis of frontoamygdala circuitry. We included all reported amygdala to frontal coordinate locations that fell within a liberal anatomically defined frontal mask. Peak effects across studies were centered in two focal subareas of the ACC: pregenual (pgACC) and subgenual (sgACC). Using publicly available maps and databases of healthy individuals, we found that observed subareas have unique connectivity profiles, patterns of neural co-activation across a range of neuropsychological tasks, and distribution of tasks spanning various behavioral domains within peak regions, also known as 'functional fingerprints'. These results suggest disruptions in unique amygdala-ACC subcircuits across internalizing, genetic and environmental risk studies. Based on functional characterizations and the studies contributing to each peak, observed amygdala-ACC subcircuits may reflect separate transdiagnostic neural signatures. In particular, they may reflect common neurobiological substrates involved in developmental risk (sgACC), or the broad expression of emotional psychopathology (pgACC) across disease boundaries.


Subject(s)
Affective Symptoms/physiopathology , Amygdala/physiopathology , Gyrus Cinguli/physiopathology , Internal-External Control , Nerve Net/physiopathology , Prefrontal Cortex/physiopathology , Amygdala/diagnostic imaging , Brain Mapping/methods , Gyrus Cinguli/diagnostic imaging , Humans , Imaging, Three-Dimensional , Magnetic Resonance Imaging , Nerve Net/diagnostic imaging , Positron-Emission Tomography , Prefrontal Cortex/diagnostic imaging
3.
FEBS Lett ; 441(2): 242-6, 1998 Dec 18.
Article in English | MEDLINE | ID: mdl-9883892

ABSTRACT

The PhoB protein from Escherichia coli is a member of the two-component signal transduction pathway that controls an adaptive response to limiting phosphate. Activation involves its phosphorylation on a conserved aspartate. Site-directed mutations were introduced at conserved acidic residues. The E9D, D10E, D10N, E11A, E11D and E11Q mutants were each able to induce alkaline phosphatase under low phosphate growth conditions whereas the E9A, D10A, D53A, D53E and D53N could not. The E9Q mutant was constitutively active. Phosphorylation assays showed that only the E9D, E11A, E11Q and E11D mutants were phosphorylated by acetyl phosphate. Most mutants also displayed defects in magnesium binding.


Subject(s)
Bacterial Proteins/metabolism , Escherichia coli/metabolism , Magnesium/metabolism , Bacterial Proteins/genetics , Base Sequence , DNA Primers , Hydrogen-Ion Concentration , Mutagenesis, Site-Directed , Phosphorylation , Protein Binding , Spectrometry, Fluorescence
SELECTION OF CITATIONS
SEARCH DETAIL